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Abstract—Dual-polarized multiple-input and multiple-output
(MIMO) antenna systems, where the antennas are grouped
in pairs of orthogonally polarized antennas, are a spatially-
efficient alternative to single polarized MIMO antenna systems.
A limited feedback beamforming technique is proposed for dual-
polarized MIMO channels where the receiver has perfect channel
knowledge but the transmitter only receives partial information
regarding the channel instantiation. The system employs an effec-
tive signal-to-noise ratio (SNR) distortion minimizing codebook
to convey channel state information (CSI) in the form of beam-
forming direction. By investigating the average SNR performance
of this system, an upper bound on the average SNR distortion is
found as a weighted sum of two beamforming distortion metrics.
The distortion minimization problem is solved by designing a
concatenated codebook. Finally, we propose a codebook switching
scheme exploiting the cross-polar discrimination (XPD) statistics.
Simulations show that the proposed codebook switching scheme
with an XPD dependent concatenated codebook has the ability to
adapt to dual-polarized channels.

Index Terms—Dual-polarized channel, multiple-input multiple-
output (MIMO) systems, quantized beamforming, codebook de-
sign.

I. INTRODUCTION

MULTIPLE-input and multiple-output (MIMO) antenna

systems have become more and more important with

the evolution of next generation and beyond (i.e., 4G and

beyond) broadband wireless standards that support high data

rate and high performance [1]. In order to obtain the maximum

capacity and reliability benefits available in MIMO wireless

systems, it is usually required that the antennas are spaced at

least a half wavelength at the subscriber unit and at least ten

wavelengths at the base station [2]. However, device space

limitations do not allow large spacing at either side. One

solution to decreasing the necessary physical space needed

is to employ dual-polarized antennas, where the antennas are

grouped in pairs of polarized collocated antennas.

Unfortunately, the different orthogonal polarizations of the

dual-polarized antenna systems result in complicated proper-

ties. Much work has been aimed at modeling and analyzing

the coupling of dual-polarized MIMO channels [2]–[6]. In
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[3], measured data was used to show that the capacity varies

significantly with channel imperfection such as delay spread,

Ricean K-factor, and cross-polar discrimination (XPD). The

performance of spatial multiplexing and space-time block cod-

ing (e.g., Alamouti coding) in MIMO dual-polarized antenna

systems has been investigated in [4]. In [2], a dual-polarized

channel is modeled using a vector geometrical scattering

mechanism. Spatially separated dual-polarized MIMO chan-

nels are modeled in [5], and the insensitivity of performance

to channel imperfections compared to the single polarized

channel is emphasized. Based on measured data, [6] and [7]

conclude that the mean value of the XPD variable for MIMO

channels evolves from 5 dB to 15 dB, and when the channel

has a large K-factor, dual-polarized antennas provide robust

isolation between orthogonal polarizations.

Closed-loop MIMO signaling techniques such as beamform-

ing and spatial multiplexing require knowledge of the channel

state information (CSI) at the transmitter [8]. Acquisition of

CSI at the transmitter in frequency division duplexing (FDD)

systems is challenging, because the uplink channel realization

is normally independent of the downlink channel realization.

Thus, a feedback link from the receiver to the transmitter

is required to provide the transmitter with CSI. In theory,

acquisition of CSI at the transmitter is available in time

division duplexing (TDD) systems by using the channel reci-

procity between uplink and downlink. However, in practice,

tight RF chain calibration is required at the transmitter and

receiver to accomplish this TDD reciprocity across the entire

analog signal path [9]. Thus, the utility of the feedback is

not restricted to FDD systems only. To meet the bandwidth

requirement of the feedback channel, limited feedback tech-

niques have been considered for MIMO channels (e.g., [9]–

[13]). Limited feedback MIMO schemes dealing with transmit

spatial correlation have also been studied [14], [15]. In these

limited feedback systems, the receiver sends to the transmitter

an index of the transmit beamformer chosen in a finite-set

vector codebook common to the transmitter and the receiver.

The transmitter uses this feedback to direct the beam to the

receiver.

For dual-polarized MIMO channels, designing an optimal

beamforming codebook matched to the channel statistics is

not tractable due to the power leakage between different po-

larizations. Only limited work has been published on codebook

designs for dual-polarized systems [16], [17]. An approach for

precoding codebook design in dual-polarized MIMO channels

has been proposed in [16]. In [17], an intuitive concatenated

codebook approach has been proposed for a beamforming
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system.

In this paper, a framework for limited feedback beam-

forming and combining in MIMO dual-polarized channels is

proposed that assumes the transmitter and receiver both know

the XPD variable. This can be accomplished by having the

receiver measure the XPD and share this long term statistic

with the transmitter. In beamforming and combining systems,

it has been shown that the beamformer and combiner must be

chosen to maximize the effective SNR in order to minimize

the average symbol error rate and maximize the capacity

[18], [19]. Thus, following the analysis in [10], [12]–[15],

we use the average SNR distortion as a performance metric

to design the limited feedback system. Here, we extend the

basic intuition on the concatenated codebook discussed in the

conference version [17] of this paper. However, different from

[17], we propose a rigorous and complete framework to design

and use limited feedback in dual-polarized MIMO channels.

First, the average SNR distortion metric is analyzed and useful

properties are derived. This analysis allows us to derive a

tractable upper bound on the average SNR distortion. Next,

the effects of XPD variation on the average SNR distortion are

studied. This motivates our proposed concatenated codebook

switching method. The distortion upper bound of the concate-

nated codebook switching scheme is minimized by adjusting

the allocation of the codewords between different codebooks.

The key analytical tool used to solve the minimization problem

is a random vector quantization (RVQ) argument that enables

closed-form solutions to the codeword allocation problem.

In order to provide clear insight about the behavior of the

proposed scheme, asymptotic analysis is carried out. Finally,

the performance of the proposed algorithm is verified by

extensive simulation study.

The paper is organized as follows. In Section II, we describe

the limited feedback system model in dual-polarized MIMO

channels. The performance metric is defined and a tractable

performance bound is obtained in Section III. In Section IV,

a codebook structure that can adapt to the XPD variable

of the channel is defined, and in Section V, the codebook

design problem is solved by minimizing the distortion bound.

Simulation results to verify the analysis and performance are

given in Section VI, and we close by discussing conclusions

in Section VII.

Notation: A boldcase capital letter A denotes a matrix, a

bold lowercase letter a denotes a vector, T denotes a transpose,
∗ denotes a conjugate transpose, ‖a‖2 denotes a vector two

norm, λk(A∗A) denotes the k-th dominant eigenvalue of the

matrix A∗A, ⊙ denotes the Hadamard product, ⊗ denotes the

Kronecker product, 1M×N and 0M×N denote the M by N
matrices with all 1 entries and the M by N matrices with

all 0 entries, respectively, and r.h.s. and l.h.s. denote the right

hand side and the left hand side, respectively. If A denotes

a set, car (A) denotes the cardinality of A, and a function

f(x) : [a, b] → R is called monotonically increasing function

on [a, b] if a ≤ x1 ≤ x2 ≤ b implies f(x1) ≤ f(x2).

II. SYSTEM MODEL

Consider a MIMO wireless system employing limited

feedback transmit beamforming and receive combining. The

transmitter and receiver employ Mt transmit antennas and

Mr receive antennas, respectively. Because we assume dual-

polarized antennas, Mt and Mr are assumed to be even num-

bers. The antenna configuration is shown in Fig. 1, where the

V-Ant. denotes the antenna with vertical (V) polarization and

H-Ant. denote the antenna with horizontal (H) polarization,

respectively.

With the flat fading assumption, the channel matrix is

depicted by an input-output relation with V to V, V to H,

H to H, and H to V polarized waves. For example, a 4×4
dual-polarized channel matrix can be expressed as

H =




h11,V V h12,V V h13,V H h14,V H

h21,V V h22,V V h23,V H h24,V H

h31,HV h32,HV h33,HH h34,HH

h41,HV h42,HV h43,HH h44,HH


 . (1)

The hij,PiPj
in (1) denotes the fading element from the j-

th transmit antenna with Pj polarization to the i-th receive

antenna with Pi polarization where Pi, Pj ∈ {V,H}. In Fig.

1, the 4×4 dual-polarized MIMO system has two spatially

separated dual-polarized antennas at each side, where the first

dual-polarized antenna is formed by grouping the first antenna

with V polarization and the third antenna with H polarization

in pairs, and the second dual-polarized antenna is formed by

grouping the second V antenna and the forth H antenna.

The received signal is represented as

y =
√

ρz∗Hχfs + z∗n. (2)

The vectors z ∈ C
Mr×1 and f ∈ C

Mt×1 represent the

unit-norm (i.e., ‖z‖2 = ‖f‖2 = 1) receive combining and

transmit beamforming vectors, respectively. The noise vector

n ∈ C
Mr×1 has independent and identically distributed (i.i.d.)

entries with normal distribution CN (0, 1), s represents the

transmitted symbol whose energy is Es[|s|2] = 1, and ρ is

the signal to noise ratio (SNR). The channel Hχ ∈ C
Mr×Mt is

a dual-polarized MIMO channel parameterized by the single

parameter χ that is assumed to be modeled by [20]

Hχ = X ⊙ Hw, (3)

where Hw ∈ C
Mr×Mt denotes a single polarized channel

having i.i.d. entries with CN (0, 1). The term “single polarized

channel” is used to represent a channel inducing no power

imbalance between the channel elements, i.e., all channel

elements have unit power. X ∈ C
Mr×Mt is a matrix describing

the power imbalance between the orthogonal polarizations. It

is modeled as

X =

[
1

√
χ√

χ 1

]
⊗ 1 Mr

2
×Mt

2

. (4)

The parameter 0 ≤ χ ≤ 1 stands for the inverse of the XPD,

where 1 ≤ XPD ≤ ∞. The XPD refers to the physical ability

of the antennas to distinguish the orthogonal polarization.

Then, the Hadamard product of X and Hw in (3) gives a

block matrix representation

Hχ =

[
Hw,11

√
χHw,12√

χHw,21 Hw,22

]
. (5)

In (5), the Hw,ij for 1 ≤ i, j ≤ 2 is formed by taking

rows from (Mr(i − 1)/2) + 1 to Mr(i/2) and columns from
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Fig. 1. Block diagram of an Mr×Mt dual-polarized channel MIMO system

(Mt(j − 1)/2)+1 to Mt(j/2) of Hw having i.i.d. entries dis-

tributed as CN (0, 1). Note that Hw,11 and Hw,22 correspond

to co-polarized components, and
√

χHw,12 and
√

χHw,21

correspond to cross-polarized components. Here, we assume

that the amounts of power coupling from V to H and from H to

V are the same. This symmetry assumption is motivated by the

work in [2], [4], [5], [7], [20]. The model in (5) is matched well

for line of sight (LOS) propagation conditions. When there

are non-LOS (NLOS) or LOS with low K-factor, the dual-

polarized channel can be effectively modeled by encompassing

the effect of the polarization rotation [21], [22].

The receive SNR after combining is called the effective SNR

and is given by

γr = ρ |z∗Hχf |2 .

We assume a maximal-ratio combiner (MRC) is used at the

receiver (i.e., z = Hχf/‖Hχf‖2) where the MRC weight is

aimed to maximize γr yielding γr = ρ ‖Hχf‖2
2. In the limited

feedback beamforming system, assuming ideal channel estima-

tion, the receiver determines the best beamforming vector fopt

among N=2B codewords in the codebook F={f1, f2, . . . , fN}
so that it maximizes γr, i.e., fopt = argmax

1≤k≤N
‖Hχfk‖2

2. The

codebook F is known to both the transmitter and the receiver,

and the receiver reports the index of fopt to the transmitter.

By selecting the transmit beamforming vector codeword with

respect to (w.r.t.) the fed back index, transmit beamforming

is performed. The codeook F is optimized using a system

performance metric that will be introduced in the next few

sections. Throughout the paper, we use the notation Q to

denote the optimized F .

III. AVERAGE DISTORTION AND PERFORMANCE BOUND

In this section, we analyze the performance averaged over

the fading distribution. The average SNR distortion metric

is employed to measure the performance loss due to the

quantization. A tractable upper bound of the average SNR

distortion for designing the distortion minimizing codebook is

derived.

It is helpful to decompose the channel Hχ using a block

diagonal matrix Hd and off-block diagonal matrix Hod as

Hχ =Hd+
√

χHod (6)

,

[
Hw,11 0Mr

2
×Mt

2

0Mr
2
×Mt

2

Hw,22

]
+
√

χ

[
0Mr

2
×Mt

2

Hw,12

Hw,21 0Mr
2
×Mt

2

]
. (7)

As a performance metric, we use the average effective

SNR, i.e., E
[
max
f∈F

‖Hχf‖2
2

]
. Our goal is to design a code-

book F={f1, f2, . . . , fN} to maximize the objective func-

tion E
[
max
f∈F

‖Hχf‖2
2

]
. Maximizing the objective function is

equivalent to minimizing

G(F , χ) = E
[
λ1

(
H∗

χHχ

)]
− E

[
max
f∈F

‖Hχf‖2
2

]
, (8)

which represents the average SNR loss due to the quantization.

To facilitate the analysis, in the sequel, given the codeword set

F = {f1, f2, . . . , fN}, we define the Voronoi region associated

with the codeword fn as the set of all channel matrices closer

to fn than the other codeword fm (m 6= n), i.e.,

Vχ,n =
{
Hχ :‖Hχfn‖2

2≥‖Hχfm‖2
2 ∀m 6= n, 1 ≤ m ≤ N

}
. (9)

In order to analyze the performance, we will have to

understand the statistics of H∗
χHχ. Using (6), we can expand

H∗
χHχ as

H∗
χHχ = H∗

dHd + χH∗
odHod +

√
χRc, (10)

where Rc = H∗
dHod + H∗

odHd denotes a symmetric off-

block diagonal matrix. In addition, we define a dual-polarized

channel with an arbitrary variation
√

χ∆ added to
√

χ as

Hχ+∆ ,

[
Hw,11

√
χ(1 + ∆)Hw,12√

χ(1 + ∆)Hw,21 Hw,22

]
(11)

where 0≤∆≤ 1−√
χ√

χ . Note that when ∆=0, Hχ+∆ becomes

Hχ and when ∆ =
1−√

χ√
χ , Hχ+∆ equals H1. This definition

will be found to be useful in the later derivations. With the

above definitions, we establish a monotonicity of λ1

(
H∗

χHχ

)

on χ as below.
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Lemma 1: Given a single realization of Hw, for χ∈[0, 1],
the dominant eigenvalues of H∗

χHχ and H∗
χ+∆Hχ+∆, both de-

fined according to (11), satisfy λ1

(
H∗

χHχ

)
≤λ1

(
H∗

χ+∆Hχ+∆

)

for 0≤∆≤ 1−√χ√
χ . This asserts that λ1

(
H∗

χHχ

)
is a monotonic

increasing function of χ.

Proof: See Appendix A.

From Lemma 1, it is obvious to state that E[λ1(H
∗
χHχ)] is

also a monotonic increasing function of χ. We next establish

the monotonicity of E
[
max
f∈F

‖Hχf‖2
2

]
below.

Lemma 2: For χ∈[0, 1], E
[
max
f∈F

‖Hχf‖2
2

]
is a mono-

tonic increasing function of χ. Thus, E
[
max
f∈F

‖Hχf‖2
2

]

≤E
[
max
f∈F

‖Hχ+∆f‖2
2

]
with 0≤∆≤ 1−√χ√

χ .

Proof: See Appendix B.

From Lemma 1 and Lemma 2, we establish the mono-

tonicity of E
[
λ1

(
H∗

χHχ

) ]
and E

[
max
f∈F

‖Hχf‖2
2

]
on the χ

axis. Now, we expand these results to establish that the averag

SNR distortion G(F , χ) is also monotonic and even a convex

function on
√

χ.

Theorem 1: The average SNR distortion G(F , χ), where

the beamforming codeword is chosen in the finite elements

codebook F , is a monotonically increasing convex function

of
√

χ for 0 ≤ χ ≤ 1.

Proof: See Appendix C.

Unfortunately, directly working with G(F , χ) when de-

signing a codebook is impractical. Alternatively, we derive a

tractable upper bound of G(F , χ) and optimize the codebook

by minimizing this upper bound.

Corollary 1: The average SNR distortion G(F , χ) is upper

bounded by

G(F , χ)≤√
χE

[
λ1(H

∗
wHw)−max

f∈F
‖Hwf‖2

2

]

+(1−√
χ)E

[
λ1(H

∗
dHd)−max

f∈F
‖Hdf‖2

2

]
.(12)

Proof: : For any convex function h(x) over an interval

x ∈ [a, b], the definition of the convex function gives

h(x) = h

(
x − a

b − a
b +

b − x

b − a
a

)

≤ x − a

b − a
h(b) +

b − x

b − a
h(a). (13)

Applying (13) to G(F , χ) over the interval
√

χ ∈ [0, 1] gives

(12).

Now, G(F , χ) is upper bounded by the weighted sum of the

average SNR loss for a single polarized channel and average

SNR loss for a block diagonal channel.

Before we proceed to the codebook design details, we

address the tightness of the bound (12). In (12), we use the

definition of the convex function to obtain the upper bound.

Usually, the inequality in the definition of the convex function

results in a trivial bound unless the function is monotone

across the interval. However, by Theorem 1, we know that

G(F , χ) is a monotonically increasing function which implies

the bound in (12) is a non-trivial upper bound. Also, the bound

is quite tight for small and large value of χ. The inequality

becomes equality for the particular values of χ = 0 and χ = 1.

For values of χ between 0 and 1, directly arguing the tightness

of the bound requires closed-form solutions of the quantities

at the r.h.s. of (12) which are in general unknown. However, as

we will show in the simulation study of the resulting codebook

design, the bound in (12) closely models the average SNR

distortion in (8).

IV. CONCATENATED CODEBOOK STRUCTURE

In our system setup, we have assumed the scenario where

the receiver can measure the long term statistic χ and share this

information with the transmitter so that the codebook F can be

adapted to the current channel XPD. We assume the overhead

required to send χ is negligible. In this section, we define a

concatenated codebook structure that can adapt to the long

term statistic χ. This codebook structure is fully motivated by

the proposed distortion upper bound in (12).

Before we proceed, consider the two special cases of χ=1
and χ = 0. When χ = 1, the channel matrix becomes

Hw, i.e., an i.i.d. complex Gaussian matrix. For the channel

matrix Hw, we denote the codebook matched to Hw as

Fw ={fw,1, fw,2, . . . , fw,N}. Then, G(Fw, 1) can be bounded

by [12]

G(Fw, 1) = E

[
λ1(H

∗
wHw)− max

fw∈Fw

‖Hχfw‖2
2

]

≤ E[λ1 (H∗
wHw)]E

[
1− max

fw∈Fw

∣∣v∗
w,1fw

∣∣2
]

, (14)

where vw,1 denotes the dominant eigenvector of H∗
wHw,

which is isotropically distributed in Mt-dimensional unit norm

vector space1. Thus, the codebook Fw should be designed

by quantizing the random vector space of vw,1 so that (14)

is minimized [11], [12]. When χ = 0, the channel matrix

becomes block diagonal matrix Hd. In this case, we denote

the codebook matched to Hd as Fd = {fd,1, fd,2, . . . , fd,N}.

Then, G(Fd, 0) can be upper bounded by

G(Fd, 0) = E

[
λ1(H

∗
dHd)− max

fd∈Fd

‖Hdfd‖2
2

]

≤ E[λ1 (H∗
dHd)]E

[
1− max

fd∈Fd

∣∣v∗
d,1fd

∣∣2
]

, (15)

where vd,1 denotes the dominant eigenvector of H∗
dHd.

Thus, the codebook Fd should be designed by quantizing

the random vector space of vd,1 so that (15) is minimized.

Note that vd,1 has either an upper non-zero structure (i.e.,

vd,1=[vT
du,1 01×Mt/2]

T where vdu,1 is the dominant eigen-

vector of H∗
w,11Hw,11) or a lower non-zero structure (i.e.,

vd,1=[01×Mt/2 vT
dl,1]

T where vdl,1 is the dominant eigenvec-

tor of H∗
w,22Hw,22). Hence, an upper non-zero or lower non-

zero constraint on any codeword fd ∈ Fd is necessary to be

matched with the channel subspace. We denote Fd as the block

diagonal codebook.

Motivated by the distortion upper bound in (12), the

concatenated codebook structure needed to adapt to χ is

1When there exist antenna correlations, eigenvectors are no longer isotrop-
ically distributed. In this case, the impact of the biased eigenvectors on the
capacity performance has been studied in [23], which includes the case of
dual-polarized channel.
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defined as follows. The distortion minimizing concatenated

codebook is denoted by Q={q1,q1, . . . ,qN} with car(Q)=
N = 2B . We also denote car(Fw) = Nw and car(Fw) =
Nd, respectively. Then, the size N concatenated code-

book Q is constructed by augmenting Nw elements code-

book Fw={fw,1, fw,2, . . . , fw,Nw
} and Nd elements codebook

Fd={fd,1, fd,2, . . . , fd,Nd
} (i.e., Q = {Fw,Fd} and N =

Nw+Nd). For notational convenience, we denote λ1(H
∗
wHw)

and λ1(H
∗
dHd) as λw,1 and λd,1, respectively. By replacing

F with Q, (12) can be rewritten and upper bounded by

G(Q, χ) ≤ √
χE

[
λw,1−max

q∈Q
‖Hwq‖2

2

]

+(1−√
χ)E

[
λd,1−max

q∈Q
‖Hdq‖2

2

]

≤ √
χE[λw,1]E

[
1−max

q∈Q

∣∣v∗
w,1q

∣∣2
]

+(1−√
χ)E[λd,1] E

[
1−max

q∈Q

∣∣v∗
d,1q

∣∣2
]

(16)

≤ √
χE[λw,1]E

[
1− max

fw∈Fw

∣∣v∗
w,1fw

∣∣2
]

+(1−√
χ)E[λd,1] E

[
1− max

fd∈Fd

∣∣v∗
d,1fd

∣∣2
]

, (17)

where in (17) we use the facts car (Fw) ≤ car (Q) and

car (Fd) ≤ car (Q). Now, our goal is to design the concate-

nated codebook Q = {Fw,Fd} to minimize (17).

A significant amount of work has been done on code-

book designs that minimize the first term on the r.h.s.

of (17) (e.g., [11], [12]). To enable the design Fd,

we investigate the second term on the r.h.s. of (17).

First, we study the structure of Fd. Let us denote

Fd={Fdu,Fdl}={fdu,1, . . . , fdu,Nd/2, fdl,1, . . . , fdl,Nd/2} as a

codebook consisting of Nd/2 upper non-zero codewords fdu

and Nd/2 lower non-zero codewords fdl, where Nd is an

even positive integer. Having car (Fdu)=car (Fdl) = Nd

2 is

obvious because the probability of having upper non-zero or

lower non-zero structure for vd,1 is equally likely. Then, the

second term on the r.h.s. of (17) is given by

E

[
1− max

fd∈Fd

|v∗
d,1fd|2

]
=

1

2
E

[
1− max

fdu∈Fdu

|v∗
du,1fdu|2

]

+
1

2
E

[
1− max

fdl∈Fdl

|v∗
dl,1fdl|2

]
.(18)

Since the eigenvectors vdu,1 and vdl,1 are i.i.d., we obtain

E
[
1− max

fdu∈Fdu

|v∗
du,1fdu|2

]
= E

[
1− max

fdl∈Fdl

|v∗
dl,1fdl|2

]
. This allows

us to equivalently express (18) as

E

[
1− max

fd∈Fd

|v∗
d,1fd|2

]
= E

[
1−max

fs∈Fs

|v∗
s,1fs|2

]
(19)

where vs,1 denotes the dominant eigenvector of H∗
sHs and

Hs denotes an Mr/2 by Mt/2 single polarized channel matrix

having i.i.d. entries distributed according to CN (0, 1).

Now, Fdu and Fdl are generated by using an Mt

2 -

dimensional line packing Fs={fs,1, fs,2, . . . , fs,Nd/2} as the

upper and lower non-zero parts, respectively. Using this, the

bound (17) is equivalently rewritten by

G(Q, χ) ≤ √
χE[λw,1]E

[
1− max

fw∈Fw

∣∣v∗
w,1fw

∣∣2
]

+(1−√
χ)E[λd,1] E

[
1−max

fs∈Fs

∣∣v∗
s,1fs

∣∣2
]

.(20)

Note that the bound in (20) is still asymptotically tight in the

sense that for a fixed Mt and Mr, as both Nw and Nd tend

to infinity the l.h.s. of (20) converges to zero distortion. With

the concatenated codebook, the adaptation to χ is performed

by adjusting the cardinality of Fw and Fd to minimize (20),

which will be introduced in the next section.

V. ADAPTATION TO CROSS-POLAR DISCRIMINATION

(XPD)

In this section, we design the codebook to minimize the

upper bound on the average SNR distortion (20) by exploiting

the channel’s XPD. The codebook design problem boils down

to two optimization problems. The first one is how to pick

Nw = car (Fw) and Nd = car (Fd) to minimize (20). We

refer to this as the codeword allocation problem. The second

problem (called the concatenation problem) is how to combine

Fw and Fd to construct Q.

A. Codeword Allocation

According to the concatenated codebook structure, the adap-

tation of the codebook to the current χ can be done by finding

the combination of Nw and Nd. As shown in the previous

section, when χ = 1, setting N = Nw (i.e., Q = Fw) is

the optimal codeword allocation and when χ = 0, setting

N = Nd (i.e., Q = Fd) is the optimal codeword allocation.

The scenario when 0 < χ < 1 is the case where Nw and Nd

are determined to minimize the bound (20).

In order to obtain solutions in closed-form, random vector

quantization (RVQ) codebooks are employed to minimize the

bound in (20). Using the RVQ results in [24] (Corollary 1)

and [25] (Lemma 1), we can further get

G(Q, χ)≤√
χE[λw,1]N

− 1

Mt−1

w +(1−√
χ)E[λd,1]N

− 2

Mt−2

s (21)

where Ns =car (Fs) and Ns = Nd

2 . Under the constraints N =
Nw+Nd and Nd is even, we find the combination of (Nw, Nd)
to minimize (21). This optimization problem is formulated as

Nw=argmin
Ñw

(√
χE[λw,1]Ñ

− 1

Mt−1

w

+(1−√
χ)E[λd,1](N−Ñw)−

2

Mt−2 2
2

Mt−2

)
(22)

s.t. N =Ñw+Ñd, Ñw≥0, Ñd≥0, and Ñd is even integer.

It is not difficult to show that the objective function (22) is

convex on Ñw. From (22), it is evident that when χ=0, the

minimizer of the objective function in (22) is obtained at Ñw =
0, and when χ = 1, Ñw = N is the minimizer. The problem

now is to find Ñw that minimizes the objective function for
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0 < χ < 1. By using standard Lagrangian optimization, we

obtain the condition for the optimal Nw as

(
1 −√

χ
√

χ

E[λd,1]

E[λw,1]

Mt − 1

Mt − 2
N

Mt
Mt−1

w

)Mt−2

Mt

=
N − Nw

2
. (23)

Given Mt, Mr, and 0 < χ < 1, (23) can be solved through a

numerical grid search as

N̄w = argmin
N̂w∈Nw

∣∣∣∣∣
N−N̂w

2

−
(

1−√χ
√

χ

E[λd,1]

E[λw,1]

Mt−1

Mt−2
N̂

Mt
Mt−1

w

)Mt−2

Mt

∣∣∣∣∣(24)

where Nw = {0, N/L, 2N/L, . . . , (L − 1)N/L, N} and L
denotes the number of quantization levels. Then, the codeword

allocation can be done by

Nw = min
{
⌊N̄w⌋2, N

}
(25)

and

Nd = N − Nw (26)

where ⌊·⌋2 denotes the flooring function to the nearest even in-

teger. The quantization level L indicates how many codebooks

with different combinations of (Nw, Nd) with N = Nw +Nd

are employed to perform the adaptation to the XPD.

Note that the grid search provides a convenient way of

handling the case when the XPD is random or not initially

known. In this case, the XPD statistic χ can be estimated

by the receiver and one of the L+1 codeword allocations

determined from the grid search can be sent as feedback

overhead to the transmitter. We refer to this technique as

codebook switching. Given the XPD and quantization level

L, the adaptation is performed by choosing a codebook corre-

sponding to the optimal codeword allocation pairs (Nw, Nd)
among L+1 codebooks. Variation of the XPD results in a

codebook switching within L + 1 codebooks. For example,

when L = 1, (25) and (26) allocate two codebooks Q=Fw

with N =Nw and Q=Fd with N =Nd across the χ axis (i.e.,

codebook switching within {Fw,Fd} depending on χ).

To evaluate (24), the values of E[λw,1] and E[λd,1] should

be known. These can be computed numerically or can be

obtained analytically by using the p.d.f. of the dominant

eigenvalue of a Wishart matrix [18]. For deriving (25) and

(26), the RVQ bounds E
[
1− max

fw∈Fw

|v∗
w,1fw|2

]
≤N

− 1

Mt−1

w and

E
[
1− max

fs∈Fs

|v∗
s,1fs|2

]
≤ N

− 2

Mt−2

s have been employed. For

fixed Mt, in general, the RVQ bound is loose for small N
and thereby produces loose estimation for Nw and Nd in (25)

and (26). However, as N becomes larger, the RVQ bounds

becomes tighter and the trend of the codeword allocation

complies with the original distribution.

B. Asymptotic Analysis

In this subsection, we look at the trend of the codeword

allocation in (25) and (26) in the large number of antennas

regime. In [26], it has been shown that if Mt and Mr tend to

infinity and the ratio Mr

Mt
converges to a certain bounded value

α ∈ [0, 1] (i.e., lim
Mt,Mr→∞

Mr

Mt
= α), λw,1 satisfies

lim
Mt,Mr→∞

λw,1

Mt

a.s.→
(
1 +

√
α
)2

(27)

almost surely. Define R11 = H∗
11H11 and R22 = H∗

22H22.

Then, by using (27), as Mt and Mr tend to infinity with Mr

Mt
→

α, the ratio E[λd,1]/E[λw,1] in (23) converges to

lim
Mt,Mr→∞

E[λd,1]

E[λw,1]
= lim

Mt,Mr→∞
E[max{λ1 (R11) , λ1 (R22)}]

E [λw,1]

= lim
Mt,Mr→∞

E
[
max

{
λ1(R11)

Mt/2 , λ1(R22)
Mt/2

}]

2 E
[

λw,1

Mt

]

a.s
=

1

2

max
{
2(1+

√
α)2, 2(1+

√
α)2

}

2 (1 +
√

α)
2 (28)

=
1

2
(29)

where the equality in (28) follows from the fact that
λw,1

Mt

a.s.−→
2(1+

√
α)2 and

{
λ1 (R11)

Mt/2
,
λ1 (R22)

Mt/2

}
a.s.−→

{
2(1+

√
α)2, 2(1+

√
α)2

}

almost surely.

Using the convergence result in (29), (23) becomes (1−√
χ)/

√
χ

a.s.
= (N −Ñw)/Ñw almost surely. In this case, the

codeword allocation becomes simply

Nw = ⌊N√
χ⌋2 (30)

and

Nd = N − ⌊N√
χ⌋2. (31)

The resulting codeword allocation in (30) and (31) implies that

with an asymptotically large number of antennas, the optimal

Nw minimizing (21) is given by the fraction of N where the

fraction is determined by
√

χ. Note that with a large number of

antennas, regardless of the codebook size N , the same number

of codewords are assigned to Fw and Fd at χ=1/4.

C. Concatenation

Once Nw and Ns = Nd/2 are determined according to

(25) and (26), the codebooks Fw and Fs are designed to

minimize the distortion upper bound in (20). Thus, Fw =
{fw,1, fw,2, . . . , fw,Nw

} is designed by maximizing the min-

imum distance between codewords in the Mt-dimensional

Grassmannian manifold where the minimum distance is given

by

σ(Fw) = min
1≤i<j≤Nw

√
1 −

∣∣f∗w,ifw,j

∣∣2. (32)

Similarly, Fs ={fs,1, fs,2, . . . , fs,Ns
} is designed by maximiz-

ing the minimum distance between codewords in the Mt/2-

dimensional Grassmannian manifold. The minimum distance

is given by

σ(Fs) = min
1≤i<j≤Ns

√
1 −

∣∣f∗s,ifs,j

∣∣2. (33)
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Fig. 2. Codewords allocation between Nw and Nd for various combination of Mt and Mr .

As shown in Section IV, Fd is generated by construct-

ing the upper non-zero vector and lower non-zero vector,

fdu,i =
[
fT
s,i 0T

Mt/2×1

]T

and fdl,Ns+i =
[
0T

Mt/2×1 fT
s,i

]T

for i = 1, 2, . . . , Ns. Then, we get Fd = {Fdu,Fdl} =
{fdu,1, . . . , fdu,Nd/2, fdl,1, . . . , fdl,Nd/2}.

Since Fw and Fd are designed independently, a direct

concatenation {Fw,Fd} would produce an undesirable code-

word alignment such that
∣∣f∗w,ifd,j

∣∣ ≈ 1 for fw,i ∈ Fw and

fd,j ∈ Fd. In this case, the distinction between fw,i and

fd,j in a metric space is not clear resulting in degradation in

codebook performance. This problem is solved by designing

the rotation matrix U so that two codebooks UFw and Fd

are separated as far as possible, where U is a Mt-dimensional

unitary matrix. In other words, the concatenated codebook

is designed as Q = {UFw,Fd} so that the unitary matrix

U maximizes the minimal distance between codewords in

Q = {q1,q2, . . . ,qN} by rotating the codebook Fw, i.e.,

U = argmax
Ũ∈U(Mt,Mt)

min
1≤i<j≤N

√
1 − |q∗

i qj |2, (34)

where U(Mt, Mt) denotes the set of all Mt-dimensional uni-

tary matrices. In order to design U, it is often most practical to

employ a random computer search that improves the codebook

iteratively by a hill-climbing strategy until convergence.

VI. SIMULATION RESULTS

In this section, we provide simulations to corroborate the

results in the previous sections and also perform Monte Carlo

simulations to verify the average effective SNR performance

and capacity performance of our limited feedback MIMO dual-

polarized antennas system.

First, we look at how the codeword allocation should vary

as χ evolves from 0 to 1. Fig. 2 shows the Nw and Nd com-

binations (i.e., (25) and (26)) for N = 16 with different Mt

and Mr. Note that in Fig. 2 the antenna dimension increases

while maintaining the ratio Mr/Mt = 1/2 demonstrating the

asymptotic behavior of the codeword allocation studied in

Section V-B. From Figs. 2 (a) to (d), we can observe that the

codeword allocation trend approaches the functions ⌊N√
χ⌋2

and N−⌊N√
χ⌋2 for Nw and Nd, respectively, as Mt and Mr

tend to infinity. As can be seen from Fig. 2 (c), the codeword

allocation begins to be governed by the scaling law N
√

χ
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Fig. 3. Codewords allocation between Nw and Nd for various number of codebook size N .

around Mt =16 and Mr =8. In Fig. 2 (c) and (d), the same

number of codewords for Fd and Fw are assigned at χ = 1/4,

which corresponds to the analysis in Section V-B.

In the next simulation study, we observe the codeword

allocation trend in the large codebook size regime. Fig. 3

displays the (Nw, Nd) combinations (i.e., (25) and (26)) with

different N for Mt = 4 and Mr = 2. In Fig. 3, we can observe

that as N increases, the transition regime where Nw changes

from 0 to N is concentrated around χ = 0. To understand this

behavior, define a specific point χǫ on χ axis, where at χǫ

the equality in (23) holds as Nw = N
1+ǫ . Here, ǫ is any value

in (0,∞). By plugging Nw = N
1+ǫ in (23) and after some

algebraic manipulation, the equality (23) yields

(
1 −√

χǫ√
χǫ

E[λd,1]

E[λw,1]

Mt − 1

Mt − 2

)Mt−2

Mt

=
1

2

(
N

ǫMt−1

1 + ǫ

) 1

Mt−1

.

This expression implies that for fixed Mt and any ǫ ∈ (0, ∞),
as N tends infinity (respectively, N tends zero), the χǫ

approaches 0 (respectively, χǫ approaches 1). The fact that

χǫ → 0 as N → ∞ for an arbitrary 0 < ǫ < ∞ reveals that

as N → ∞ all the values Nw ∈ (0, N) are concentrated

around the point χǫ = 0 due to the definition Nw = N
1+ǫ

and the convergence χǫ → 0. Therefore, asymptotically

with N , the codebook is Q = Fw for 0 < χ ≤ 1 and

Q = Fd for χ = 0. With the concatenated codebook structure

Q = {Fw,Fd} where Fw is Mt-dimensional Grassmannian

line packing (GLP) codebook and Fd is the block diagonal

codebook, the Mt-dimensional GLP codebook is the optimal

codebook almost everywhere on χ as N tend infinity. As can

be seen from Fig. 3, this trend is observed when the system

employs over 18 bits of feedback. Note that the purpose of this

simulation is to gain intuition about the codeword allocation

in the large codebook regime and not as a demonstration of

practicality.

As mentioned in the last paragraph of Section V-A, the

codeword allocation in (25) and (26) does not cope with

the original distribution, since the RVQ bound is loose for

small N . However, for large N , we can expect the derived

codeword split will comply with original distribution because

of its tightness for large N such that log2(N) ≫ Mt. Fig. 4

shows a comparison between the codeword allocation based

on the RVQ bound (21) and the codeword allocation obtained
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Fig. 4. Comparison between proposed codeword allocation and codeword allocation based on the original distribution for Mt = Mr = 4, N = 64 and
N = 256.

numerically from the original distortion (8) for Mt = Mr = 4
and N = 64, 256. For the simulated curves, we ran Monte

Carlo simulations over 50, 000 iterations on the χ axis with

interval [0, 1]. For each iteration, N = 64 and N = 256
RVQ codebooks with all possible combinations (Nw, Nd) are

generated randomly and evaluated. As can be seen from Fig.

4, the codeword allocation in (25) and (26) with 6 bits of

feedback roughly follows the original distribution. Eight bits

of feedback shows close agreement to the original distribution.

To verify the quality of the designed codebook based on

the bound (20) we compare the average SNR distortion of

our codebook with that of a Lloyd codebook. Note that

the Lloyd codebook is designed to minimize SNR distor-

tion in (8) directly. Five Lloyd codebooks are designed

at χ ∈ {0, 0.25, 0.5, 0.75, 1.0} for N = 16 and N =
64.2 For the proposed concatenated codebook, L = 4 for

N = 16 and L = 5 for N = 64 are used where L
denotes the number of quantization level in searching grid

Nw = {0, N/L, 2N/L, . . . , (L − 1)N/L} of the concatenated

codebook. As can be seen from Fig. 5, the proposed code-

book based on the bound (20) does not deviate much from

the performance of the Lloyd codebook. Specifically, when

N = 64, both show similar performance. This demonstrates

that the structured codebook obtained from the bound in (20)

with an optimal codeword allocation provides comparable

performance with the Lloyd codebook. This also reveals that

the bounds (12) and (20) closely models the original SNR

distortion (8).

In this simulation study, we investigate how much benefit

is obtained by using the concatenated codebook rather than

2If designed with enough iterations, the Lloyd codebook is nearly optimal .
However, the convergence speed of the algorithm depends on initial centroids.
For this reason, the Lloyd codebook for a specific χ value is obtained by
choosing the best codebook from 5 candidate codebooks. Each candidate
codebook is acquired by running the Lloyd algorithm independently with
random initial centroids.
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Fig. 5. SNR distortion comparison between Lloyd codebook and concate-
nated codebook for Mt = Mr = 4, N = 16, and 64.

Fw with Nw = N or Fd with Nd = N . Throughout the

simulation 4×4 dual-polarized MIMO channel is assumed.

In Fig. 6 and Fig. 7, the average SNR distortion (8) and

capacity of the concatenated codebook, GLP codebook, and

block diagonal codebook across χ axis are displayed. In Fig.

7, the SNR ρ is fixed at 15 dB. For generating N = 16
and N = 64 concatenated codebooks, L = 4 and L = 5 are

employed, which results in 5 and 6 codebooks with different

(Nw, Nd) combinations, respectively. We can check that the

average SNR performance correctly characterizes the capacity

performance. When N =64, the concatenated codebook with

6 codebook switching yields lower distortion than Fw and Fd

over all χ values. The χ parameter has an inverse relation
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Fig. 6. Average SNR distortion comparison between concatenated codebook, GLP codebook, and block diagonal codebook across χ axis.
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Fig. 7. Average capacity performance comparison between concatenated codebook, GLP codebook, and block diagonal codebook across χ axis.

with XPD, and in [6], [7], it is reported that the XPD of dual-

polarized channel has a large mean value (between 15 dB and

5 dB, which correspond to χ = 0.0316 and χ = 0.3162) in

most scenarios. This fact and the simulation study in Fig. 6

and Fig. 7 demonstrate that the proposed codebook can achieve

a large capacity benefit compared to the codebook designed

for single-polarized antennas. We compare the performance at

ρ = 15 dB. However, this trend does not alter even at low ρ
due to the monotonicity of the log function.

In the previous simulations, the results are shown for

χ = [0, 1]. In the next simulation study, we evaluate the

performance of the concatenated codebook across XPD (dB)

values. Fig. 8 displays the average SNR distortion (8) and

capacity performance. We assume Mt = Mr = 4 and N = 64
and ρ is fixed at 15 dB for the capacity plot. The XPD is

chosen to vary from 0 dB (χ = 1) to 15 dB (χ = 0.031). As

can be seen from the figure, the performance trend in Fig. 6

and Fig. 7 does not change. Next, to provide more practical

evaluations, we used XPD values generated by the space-time

channel model (SCM) [6] in the urban micro environment.

Note that in SCM [6], the XPD value is generated based

on real measurement data. The average SNR distortion and

capacity performance averaged over all XPD values are shown

in Fig. 9 and Fig. 10 across different numbers of feedback
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Fig. 8. Average SNR and capacity performance comparison between concatenated codebook, GLP codebook, and block diagonal codebook across XPD (dB)
axis.

bits. We assume Mt = Mr = 4 and ρ = 15 dB for the

capacity plot. In every channel use, a new XPD value is

produced by the SCM and the performance is evaluated and

averaged. Concatenated codebooks for 2 bits (L = 2), 4 bits

(L = 4), 6 bits (L = 5), and 8 bits (L = 10) of feedback

are generated. In addition to these codebooks, we generate

another set of concatenated codebooks switching only between

Fw and Fd (i.e., L = 1) for 2, 4, 6, and 8 bits of feedback.

As the number of feedback bits increases, the performance

improvement of the block diagonal codebook becomes inferior

to the other codebooks. The concatenated codebook shows

the best performance where the gain mainly comes from the

ability to switch adaptively between L+1 different codebooks

with different codeword allocations. Even for two codebook

switching (i.e., L = 1), the proposed codebook offers better

performance than the GLP codebook for all numbers of feed-

back bits and provides significant gain compared to the block

diagonal codebooks especially at 6 and 8 bits of feedback.

VII. DISCUSSION AND CONCLUSIONS

We proposed a framework for performing limited feedback

beamforming over dual-polarized MIMO channels using a

codebook known to both the transmitter and receiver. Based

on average SNR performance analysis, an upper bound on the

average SNR distortion was found as a weighted sum of two

beamforming distortion metrics corresponding to the single

polarized channel and the block diagonal channel. By applying

RVQ analysis, the distortion minimization problem can be

solved by allocating a different number of codewords for two

beamforming distortion metrics as a function of the channel

XPD. Simulations show the proposed codebook switching

scheme can provide moderate capacity gain in dual-polarized

MIMO channel.

An important point we did not discuss is the implemen-

tation required to realize the proposed codebook switching

scheme. To implement the proposed scheme, L+1 concatenated

codebooks must be designed offline and the mapping table

from χ to a concatenated codebook must be stored at the

transmitter and the receiver. Note that in order to design the

concatenated codebook, we need to compute (24) for each χ
values using numerical grid search. If the grid search is too

complicated, one can simply impose N̄w to be a real value

and get N̄w by using Newton’s method or another iterative

numerical algorithm [27]. In a large dimensional system, we

can simply use (30) and (31) as an approximation to the grid

search. When we perform limited feedback beamforming this

kind of offline complexity is not of much concern. Once the

L+1 concatenated codebooks and the mapping table are stored

at the transmitter and the receiver, the online (or run-time)

complexity consists of feedback overhead related to both the

long term statistic χ and instantaneous beamforming index.

Since the overhead of feeding back the long term statistic χ
is negligible compared to the overhead for feeding back the

beamforming index, the proposed scheme requires the same

operational complexity with the conventional limited feedback

beamforming framework.

Switching the codebook can be done in a long term manner

since the XPD is a long term statistic. Thus, the over-

head caused by switching the codebook is negligible. Here,

switching the codebook can be seen as performing codebook

adaptation based on long term statistics (the codebook is

changed once the long term statistics vary) as supported in

IEEE 802.16m [28]. In addition, IEEE 802.16m [28] supports

another mode of codebook switching between 4 bit and 6
bit codebooks for 4 transmit antennas. Codebook switching

is also a practical approach for 3GPP-LTE [29] where a

codebook subset restriction is supported. The codebook subset
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Fig. 9. Average SNR distortion comparison between concatenated codebook,
GLP codebook, and block diagonal codebook across number of feedback bits.

restriction is used to prevent the receiver from feeding back a

codeword which is useless (i.e., in a correlated environment).

The transmitter and receiver switch to another subset codebook

whenever it is required.

One additional cost of deploying the system would be the

storage overhead for saving L+1 multiple codebooks. Using a

constrained (or finite) alphabet structure for the codebook like

3GPP LTE [29] makes storage easy and simplifies channel

quality indicator (CQI) calculation. In addition, given a code-

word allocation Nw and Nd, constructing the concatenated

codebook Q = {Fw,Fd} by choosing each Fw and Fd in

supercodebooks such that Fw ⊂ Sw with car(Sw) = N and

Fd ⊂ Sd with car(Sd) = N can avoid storing L+1 codebooks.

The rotation matrix U can alternatively be designed by max-

imizing the minimum distance of the codebook {USw,Sd}.

Practical standards such as 3GPP LTE [29] and IEEE 802.16m

[28] support this kind of subset selection for constructing the

codebook.

Thus, from the above arguments, the overall overhead

required to deploy the proposed scheme is approximately the

same as the overhead for conventional systems (e.g., 3GPP

LTE and IEEE 802.16m). Therefore, the gain obtained using

the proposed codebook can have practical impact.

Another point that we did not address in detail is the

effect of channel imperfection. For example, when channel

correlation exists the bounds in (14) and (15) do not hold

because the eigenvalues and eigenvectors of the channel Hw

and Hd are no longer independent. Despite these difficulties,

one can derive average SNR distortion bounds similar to (14)

and (15) using the results in [15]. The only difference is

the scaling factor attached to eigenvalues. This reveals that

despite channel correlation, one can still design a codebook

Fw and Fd as in the i.i.d. case. The adaptation of Fw and

Fd to correlation statistics may be done by using projection

technique in [14] or by designing spherical cap codebook in

[15].
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Fig. 10. Average capacity comparison between concatenated codebook, GLP
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One limitation of the proposed work is that we only consid-

ered the codebook design for a single data stream. The dual-

polarized channel can support multiple data streams through

orthogonal polarizations achieving polarization diversity. A

natural extension of our work would be to design a higher rank

codebook by combining block diagonal matrices (or rotated

block diagonal matrices) and full matrices so that the minimum

chordal distance of the combined codebook is maximized. This

has been initially explored in [16]. A more explicit adaptation

to XPD is possible by determining the number of column

subsets from the block diagonal matrix codewords and full

matrix codewords based on channel statistics. Constructing an

adaptive codebook switching scheme in spatial multiplexing

is an interesting topic for future work.

APPENDIX A

PROOF OF LEMMA 1

We prove that

λ1

(
H∗

χHχ

)
≤ ‖Hχ+∆vχ,1‖2

2 , (35)

where the vector vχ,1∈C
Mt×1 denotes the dominant eigenvec-

tor of H∗
χHχ. From (10) and (11), we can expand H∗

χ+∆Hχ+∆

as

H∗
χ+∆Hχ+∆ = H∗

dHd+χ(1+∆)2H∗
odHod+

√
χ(1+∆)Rc

= H∗
χHχ+∆ [χ(∆+2)H∗

odHod+
√

χRc] , (36)

where Rc = H∗
dHod +H∗

odHd. By expanding ‖Hχ+∆vχ,1‖2
2

with (36), we have

‖Hχ+∆vχ,1‖2
2 = λ1

(
H∗

χHχ

)
+∆

[
χ(∆+2)‖Hodvχ,1‖2

2

+
√

χv∗
χ,1Rcvχ,1

]
.(37)

In order to show (35), we need to show the second term on

the r.h.s. of (37) is positive. Since the Rc is not a positive-

semidefinite matrix, concluding that the second term is positive
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is not clear. However, (37) can be rewritten as

‖Hχ+∆vχ,1‖2
2 = λ1

(
H∗

χHχ

)
+∆

[
χ(∆+1)‖Hodvχ,1‖2

2

+λ1

(
H∗

χHχ

)
−‖Hdvχ,1‖2

2

]
,(38)

where in (38) we use the equality that

λ1

(
H∗

χHχ

)
−‖Hdvχ,1‖2

2 =χ ‖Hodvχ,1‖2
2+

√
χv∗

χ,1Rcvχ,1.

This equality is obtained by expanding v∗
χ,1H

∗
χHχvχ,1 using

(10). Let us focus on the two terms λ1

(
H∗

χHχ

)
− ‖Hdvχ,1‖2

2

on the r.h.s. of (38). Clearly, ‖Hdvχ,1‖2
2 ≤ λ1 (H∗

dHd),
and it is evident that λ1(H

∗
11H11) ≤ λ1

(
H∗

χHχ

)
and

λ1 (H∗
22H22) ≤ λ1

(
H∗

χHχ

)
due to the inclusion principle

[30]. Since the dominant eigenvalue of H∗
dHd is the maxi-

mum value of λ1 (H∗
11H11) and λ1 (H∗

22H22), we obtain the

relation

‖Hdvχ,1‖2
2 ≤ λ1 (H∗

dHd)

= max {λ1 (H∗
11H11) , λ1 (H∗

22H22)}
≤ λ1

(
H∗

χHχ

)
, (39)

which implies λ1

(
H∗

χHχ

)
−‖Hdvχ,1‖2

2 ≥ 0. Since

λ1

(
H∗

χHχ

)
−‖Hdvχ,1‖2

2 ≥ 0 and (38) holds for arbitrary

small ∆ ≥ 0, we conclude that λ1

(
H∗

χHχ

)
≤ ‖Hχ+∆vχ,1‖2

2

(i.e., (35)). Since ‖Hχ+∆vχ,1‖2
2 ≤ λ1

(
H∗

χ+∆Hχ+∆

)
, we

finally get the result

λ1

(
H∗

χHχ

)
≤ λ1

(
H∗

χ+∆Hχ+∆

)
. (40)

Eqn. (40) holds for arbitrary small ∆. This concludes the

proof.

APPENDIX B

PROOF OF LEMMA 2

Define f ′=argmax
f∈F

‖Hχf‖2
2. We first claim that

E
[
‖Hχf ′‖2

2

]
≤ E

[
‖Hχ+∆f ′‖2

2

]
. (41)

By using the same procedures employed in (36) to (38) with

f ′ instead of vχ,1, we have

E
[
‖Hχ+∆f ′‖2

2

]
= E

[
‖Hχf ′‖2

2

]
+∆

[
χ (∆+1) E

[
‖Hodf

′‖2
2

]

+E
[
‖Hχf ′‖2

2

]
−E

[
‖Hdf

′‖2
2

] ]
. (42)

Let us focus on the two terms E
[
‖Hχf ′‖2

2

]
−E

[
‖Hdf

′‖2
2

]
on

the r.h.s. of (42). In order to show (41), it is sufficient to verify

that E
[
‖Hχf ′‖2

2

]
−E

[
‖Hdf

′‖2
2

]
≥ 0. The term ‖Hχf ′‖2

2 can

be equivalently written and lower-bounded by

‖Hχf ′‖2

2 = max
f∈F

{
‖Hdf‖2

2+χ ‖Hodf‖2
2+

√
χf∗Rcf

}
(43)

≥
∥∥Hdf

‡∥∥2

2
+χ

∥∥Hodf
‡∥∥2

2
+
√

χ
(
f‡

)∗
Rcf

‡ (44)

where f‡=argmax
f∈F

‖Hdf‖2
2. Then, E

[
‖Hχf ′‖2

2

]
−E

[
‖Hdf

′‖2
2

]

is lower bounded by

E
[
‖Hχf

′‖2

2−‖Hdf
′‖2

2

]
≥E

[
‖Hχf ′‖2

2−
∥∥Hdf

‡∥∥2

2

]
(45)

≥E
[
χ
∥∥Hodf

‡∥∥2

2
+
√

χ
(
f‡

)∗
Rcf

‡
]
,(46)

where in (45) the fact ‖Hdf
′‖2

2 ≤
∥∥Hdf

‡∥∥2

2
is used. In (46),

the lower bound (44) is applied to the term E
[
‖Hχf ′‖2

2

]
on

the r.h.s. of (45). Now, the expectation of
∥∥Hodf

‡∥∥2

2
in (46) is

E
[∥∥Hodf

‡∥∥2

2

]
= Mr

2 , because the f‡ is independent of Hod

(i.e., f‡ is chosen regardless of Hod). The f‡ in E
[(

f‡
)∗

Rcf
‡
]

in (46) is dependent on Hd in Rc, where Rc = H∗
dHod +

H∗
odHd. Using the conditional expectation, we obtain

Ef‡

[(
f‡

)∗
EHw|f‡ [Rc] f

‡
]

= 0, (47)

because EHw|f‡ [Rc] = 0. Thus, the quantity E
[
‖Hχ+∆f ′‖2

2

]

in (42) is lower bounded by

E
[
‖Hχ+∆f ′‖2

2

]
≥ E

[
‖Hχf ′‖2

2

]

+∆

[
χ(∆+1)E

[
‖Hodf

′‖2
2

]
+χ

Mr

2

]
. (48)

Since (48) holds for arbitrary ∆ ≥ 0, this shows the rela-

tion (41). Since E
[
‖Hχ+∆f ′‖2

2

]
≤ E

[
max
f∈F

‖Hχ+∆f‖2
2

]
, we

obtain the desired result

E

[
max
f∈F

‖Hχf‖2
2

]
≤ E

[
max
f∈F

‖Hχ+∆f‖2
2

]
. (49)

Eqn. (49) holds for arbitrary small ∆. This concludes the

proof.

APPENDIX C

PROOF OF THEOREM 1

First, we claim for any unit norm vector u ∈ C
Mt×1, the

quantity ‖Hχu‖2
2 is convex on

√
χ. Convexity can be checked

by verifying the nonnegativity of the second order derivative

of ‖Hχu‖2
2 w.r.t

√
χ. With ‖Hχu‖2

2 =‖Hdu‖2
2+χ‖Hodu‖2

2+√
χu∗Rcu, we have

∂2‖Hχu‖2

2

(∂
√

χ)
2 = 2 ‖Hodu‖2

2 ≥ 0, which

implies the convexity of ‖Hχu‖2
2 on

√
χ.

Now, we claim that the G(F , χ) is also convex on
√

χ. With

the Voronoi region partition, we can rewrite

E
[
λ1(H

∗
χHχ)

]
=

N∑

n=1

Pχ,nEHχ|Hχ∈Vχ,n

[
sup

‖u‖2

2
=1

‖Hχu‖2
2

]
(50)

and

E

[
max
f∈F

‖Hχfχ‖2
2

]
=

N∑

n=1

Pχ,n

(
f∗nEHχ|Hχ∈Vχ,n

[
H∗

χHχ

]
fn

)
(51)

where Pχ,n = Prob(Hχ ∈ Vχ,n). Then, using (50) and (51),

G(F , χ) is given by

G(F , χ)=

N∑

n=1

Pχ,nEHχ|Hχ∈Vχ,n

[
ϕ(Hχ)

]
(52)

where

ϕ(Hχ)= sup
‖u‖2=1

[
‖Hχu‖2

2−f∗nEHχ|Hχ∈Vχ,n

[
H∗

χHχ

]
fn

]
. (53)

Now, conditioned on Hχ∈Vχ,n, ϕ(Hχ) in (52) is convex on√
χ, because the pointwise maximum over the infinite set
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of convex functions (i.e., sup
‖u‖2=1

‖Hχu‖2
2) is convex on

√
χ

conditioned on the fixed value f∗nEHχ|Hχ∈Vχ,n

[
H∗

χHχ

]
fn.

The conditional expectation EHχ|Hχ∈Vχ,n
[ϕ(Hχ)] in (52)

represents the nonnegative weighted infinite summation (i.e.,

integral) of ϕ(Hχ), which preserves the convexity on
√

χ.

Now, Eqn. (52) is the nonnegative weighted finite summation

of EHχ|Hχ∈Vχ,n
[ϕ(Hχ)] over the partition Vχ,n for n =

1, 2, . . . , N , which still preserves the convexity on χ. Thus,

we can conclude that G(F , χ) is a convex function on
√

χ.

Next, we must prove the monotonicity of G(F , χ). The

convexity of G(F , χ) on
√

χ implies that the increasing rate

of (50) is larger than or equal to that of (51) as
√

χ increases.

Thus, G(F , χ) is always monotonically increasing on [0, 1] as√
χ increases if and only if G

′

(F , 0)= ∂
∂
√

χG(F , χ)|√χ=0 ≥
0. In the sequel, we are going to verify that G

′

(F , 0) ≥ 0.

We first need to show the existence of G
′

(F , χ) on [0, 1],
where G

′

(F , χ) is given by

G
′

(F , χ)=
∂E

[
λ1

(
H∗

χHχ

)]

∂
√

χ
−

∂E

[
max
f∈F

‖Hχf‖2
2

]

∂
√

χ
.

Due to the almost everywhere differentiability of a monotone

function [31] and the monotonicity of E
[
λ1

(
H∗

χHχ

)]
and

E

[
max
f∈F

‖Hχf‖2
2

]
on [0, 1] (i.e., Lemma 1 and Lemma 2),

the differentiation of G(F , χ) w.r.t.
√

χ is well defined. This

implies that with probability 1, there exists G
′

(F , χ) on [0, 1].
Now, we are ready to show that G

′

(F , 0) ≥ 0.

For an arbitrarilly small δ > 0, the function G(F , δ) is

given by

G(F , δ) = E

[
‖Hδvδ,1‖2

2−
(

max
f∈F

‖Hδf‖2
2

)]
,

where vδ,1 denotes the dominant eigenvector of H∗
δHδ . Then,

the first order derivative of G(F , χ) on
√

χ = 0 (i.e.,

G
′

(F , 0) = lim
δ→0

G(F,δ)−G(F,0)
δ ) can be equivalently written

and lower bounded as shown at the top of the next page.

In (54), the inequalities ‖Hδvδ,1‖2
2 ≥ ‖Hδvd,1‖2

2 and

max
f∈F

‖Hdf‖2
2 ≥

∥∥∥Hdf
‡
δ

∥∥∥
2

2
, where f

‡
δ = argmax

f∈F
‖Hδf‖2

2 are

used. Now, using the equalities

‖Hδvd,1‖2
2−‖Hdvd,1‖2

2 = δ2 ‖Hodvd,1‖2
2 + δv∗

d,1Rcvd,1
∥∥∥Hδf

‡
δ

∥∥∥
2

2
−

∥∥∥Hdf
‡
δ

∥∥∥
2

2
= δ2

∥∥∥Hodf
‡
δ

∥∥∥
2

2
+ δ(f‡δ )∗Rcf

‡
δ ,

we can further get from (54)

G
′

(F , 0)≥ lim
δ→0

E

[
δ‖Hodvd,1‖2

2−
(
δ
∥∥∥Hodf

‡
δ

∥∥∥
2

2
+(f‡δ )∗Rcf

‡
δ

)]
(55)

= lim
δ→0

E
[
−(f‡δ )∗Rcf

‡
δ

]

=0. (56)

In (55), we set v∗
d,1Rcvd,1 = 0 because Rc is an off-block

diagonal matrix and the dominant eigenvector of H∗
dHd has

either an upper non-zero or a lower non-zero structure. In (56),

we use the property that as δ → 0, f
‡
δ becomes independent

of Hod, which results in lim
δ→0

E
[
(f‡δ )∗Rcf

‡
δ

]
= 0 (i.e., (47) in

Lemma 2). Thus, we have that G
′

(F , 0) ≥ 0, which asserts

that G(F , χ) is a monotonic increasing function of
√

χ.
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