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Abstract 
We consider the estimation of multivariate normal structural models that have been discretized
according to a set of thresholds. A popular estimation procedure for this restricted multinomial
model consists in the following three stage estimator: First, estimate by maximum likelihood the
thresholds for each variable separately from the univariate marginals of the contingency table.
Then, estimate by maximum likelihood each of the polychoric correlations separately from the
bivariate marginals of the contingency table given the estimated thresholds. Finally, if
restrictions are imposed on the thresholds and polychoric correlations, estimate the underlying
parameters from the estimated thresholds and polychoric correlations by a weighted least squares
procedure. An unresolved issue is how to perform goodness of fit tests in this context.  
 
We show that the first, second and third stage estimates can be expressed asymptotically as a
linear function of the bivariate marginal proportions. Using this result, we propose limited
information tests of discretized multivariate normality, as well as of the overall restrictions
imposed by the model. 
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1. Introduction 

 A popular model for n-way contingency tables assumes that these arise by 

categorizing a n-dimensional multivariate standard normal density according to a set of 

thresholds. The thresholds and polychoric correlations may in turn be assumed to depend on 

a smaller set of structural parameters. Generally speaking, the estimation of such models is 

not possible by standard maximum likelihood estimation (e.g., Bock & Aitkin, 1981) due to 

the difficulty in evaluating high order multivariate normal integrals. However, these models 

can be easily estimated using the following three-stage limited information procedure:  

• Stage 1: Estimate by maximum likelihood the thresholds for each variable separately 

from the univariate marginals of the contingency table.  

• Stage 2: Estimate by maximum likelihood each of the polychoric correlations separately 

from the bivariate marginals of the contingency table given the estimated thresholds.  

• Stage 3: If restrictions are imposed on the thresholds and polychoric correlations, 

estimate the underlying parameters from the estimated thresholds and polychoric 

correlations by a weighted least squares procedure.  

 This estimation method has a long tradition is Psychometrics using both grouped and 

ungrouped data (i.e. sample proportions vs. individual observations). When the objective is 

to estimate the parameters of a discretized structured multivariate normal density then it is 

computationally more efficient to estimate the model parameters using grouped data 

(Muthén, du Toit & Spisic, 1997). However, when continuous exogenous are included in the 

model, then it is more convenient to resort to ungrouped data due to data sparseness 

(Muthén, 1982). The use of this estimation method using grouped data has been considered 

by Muthén (1978, 1993), Olsson (1979), Christoffersson and Gunsjö (1983, 1996), Gunsjö 

(1994), Jöreskog (1994) and Maydeu-Olivares (2001). Using ungrouped data it has been 

considered by Muthén (1984, Muthén & Satorra, 1995; Muthén, du Toit & Spisic, 1997), 

Küsters (1987) and Bermann (1993). Furthermore, this estimation method is currently 

available in such popular software as PRELIS/LISREL (Jöreskog & Sörbom, 2001) and 

MPLUS (Muthén & Muthén, 2001) and also in the lesser known program MECOSA 

(Arminger, Wittenberg  & Schepers, 1996). Alternative sequential limited information 

estimators for these models have been proposed by other authors (e.g., Lee, Poon & Bentler, 

1995), but these will not be discussed here.  

 However, although this estimation method has been in used for several years now no 

satisfactory solution has been offered as to how to assess the goodness of fit of these models 

to the contingency table. See Muthén (1993) for a detailed discussion of this issue. Assessing 
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the goodness of fit of discretized multivariate normal structural models involves assessing the 

overall discrepancy between the observed contingency table and the specified model. This 

overall discrepancy can be decomposed into a distributional discrepancy (i.e., the extent to 

which the data arises from discretizing a multivariate normal density) and a structural 

discrepancy (i.e., the extent to which the restrictions imposed on the parameters of the 

underlying normal density are appropriate). Tests for assessing the structural restrictions on 

the parameters of the discretized multivariate normal model are well known (Muthén, 1978, 

1984, 1993) and routinely used in practice. However, these tests are only meaningful if the 

distributional restrictions hold (i.e., if the data arises by categorizing a multivariate normal 

density). The main aim of the present research is to fill this gap using asymptotic theory for 

sample proportions. In so doing, we shall also review and integrate the literature on the use 

of this sequential procedure to estimate discretized multivariate normal structural models. 

The paper is organized as follows. In Section 2 the sequential estimation procedure 

just described is presented. In Section 3 we provide the asymptotic distribution of the first, 

second, and third stage estimates using standard results from maximum likelihood estimation 

using grouped data and standard results from weighted least estimation of moment 

structures. In Section 4 we discuss goodness of fit testing. In this section after reviewing 

existing tests for the structural restrictions we propose tests of the distributional and of the 

overall restrictions imposed by the model on the bivariate marginals of the contingency 

table. Computational aspects of these tests are provided in Section 5. In Section 6 we 

provide a small simulation study to illustrate the small sample behavior of the sequential 

estimator under consideration and of the goodness of fit tests proposed. Finally, Section 7 

includes three applications. In the first two applications we fit a covariance structure model 

to the 5-category items of the LOT (Scheier & Carver, 1985) and to the LSAT 6 binary data 

(Bock & Lieberman, 1970). In the third application we fit a mean and covariance structure 

model to Agresti’s (1992) soft drink data (graded paired comparisons) and compare our 

results with those obtained by Böckenholt and Dillon (1997) using full information maximum 

likelihood. 

Additional material is provided as appendices. In one of the appendices we show that 

our expression for the asymptotic covariance matrix of the sample thresholds and polychoric 

correlations reduces to the expressions provided by Muthén (1978) for the binary case, by 

Olsson (1979) for the bivariate case, and by Christoffersson and Gunsjö (1983, 1996) and 

Jöreskog (1994) for the asymptotic covariance matrix of the polychoric correlations. In 

another appendix we review the estimation of the parameters of the correlation structure by 
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minimizing a function of the polychoric correlations alone in the third stage. Finally, in 

another appendix we review the estimation of mean and covariance structure models. 

 

2. Sequential estimation of discretized multivariate normal structural 

models 
Let  where Ρ  denotes a correlation matrix with elements ii ′ρ . Suppose that each *

iz , 

i = 1, ..., n, has been categorized as yi = ki  if 1

*
k ki i iz

+
< <τ τ , ki = 0, ..., K - 1, where 

0
,

Ki i= −∞ =∞τ τ . That is, for ease of exposition and without loss of generality, we shall 

assume that all observed categorical variables yi have the same number of categories, K.  

 According to the model 

 ( ) ( )* *

1

Pr : ,
n

i i n
i

y k dΡ
=

 
 = =  

∫ ∫R
z 0 zφ∩  (1) 

where ( )n •φ  denotes a n-dimensional normal density function, and R is a n-dimensional area 

of integration with intervals ( )
1

,
k ki i iR

+
= τ τ . In particular,  

 ( ) ( )
1

* *
1Pr : 0,1

ik

k

ik

i i i i iy k z dz
+

= = = ∫
τ

τ

π φ  (2) 

 ( ) ( ) ( )
1 1

* * * *
2Pr , : 0, 0,1,1,

iik k

k k

i ik k

i i i ii i i i i ii iy k y k z z dz dz
′ ′+ +

′

′ ′

′ ′ ′ ′ ′ ′
 = = ∩ = =  ∫ ∫

ττ

τ τ

π φ ρ  (3) 

We shall first introduce some notation: Let ( )
0 1Ki i iπ

−

′= π , ,π , and 

( )
0 0 0 1 1 1

,
K Kii i i i i i iπ
− −′ ′ ′ ′

′= π ,π ,π . Also, we let ( )1 1 nπ π π
′′ ′= , ,  and ( )2 21 31 1nnπ π π π −

′′ ′ ′= , ,   . 

where the sample counterparts of these univariate and bivariate marginal probabilities will 

be denoted by 1 2 and p p . Finally, let ( )
1 1Ki i iτ

−

′= τ , ,τ , ( )1 nτ τ τ
′′ ′= , , , 

( )21 31 , 1, , , n nρ −
′= ρ ρ ρ  and ( ),κ τ ρ ′′ ′= .  

 Now, given a random sample of N observations from (1), we can place the 

observations in a Kn contingency table. We are interested in the following sequential 

procedure for estimating (1) from the contingency table: 

First stage: Estimate the thresholds for each variable separately by maximizing 
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 ( ) ( )
1

0

ln
k k

K

i i i i
k

L N pτ τ
−

=

= ∑ π  (4) 

where 
ki

p  denotes the sample counterpart of 
ki

π . 

Second stage: Given the first stage estimates, estimate separately each polychoric correlation 

ii ′ρ  by maximizing 

 ( ) ( )
1 1

0 0

ˆ ˆ ˆ ˆ, ln ,
k kk k

K K

i iii i i i i i ii i
k k

L N pπ τ τ τ τ
′ ′

− −

′ ′ ′ ′ ′ ′
′= =

= ∑∑ π ρ  (5) 

where 
k ki ip

′′
 denotes the sample counterpart of 

k ki i ′′
π .  

Suppose now that some parametric structure is assumed on the reduced form 

parameters κ, say κ(θ), where θ  is a vector of q mathematically independent parameters. 

Then, these parameters can be estimated in an additional stage. 

Third stage: Estimate θ by minimizing the weighted least squares function 

 ( )( ) ( )( )ˆˆ ˆF κ κ θ κ κ θ′= − −W  (6) 

where Ŵ  is a matrix converging in probability to W, a positive definite matrix. Denoting 

the asymptotic covariance matrix of the sample thresholds and polychoric correlations by Ξ, 

obvious choices of Ŵ  in (6) are 1ˆ Ξ̂ −=W  (weighted least squares, WLS: Muthén, 1978), 

( )( ) 1ˆ ˆDiag Ξ
−

=W  (diagonally weighted least squares, DWLS: Gunsjö, 1994; Muthén, du 

Toit & Spisic, 1997),  and ˆ =W I   (unweighted least squares, ULS: Muthén, 1993). 

 

 

3. Asymptotic distribution of the estimates 
Before proceeding we notice that the univariate probabilities are simply sums of 

bivariate probabilities, exemplified here for n = 3, 

 
2 21 21

2 1 2 31

3 321 1

π π
π π
π π

             =                   

T T 0

T 0 T

0 T T

, 

where letting 1K and 0K denote K-dimensional column vectors of 1's and 0's respectively, we 

have for K = 4 
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4 4 4 4

4 4 4 4

1

4 4 4 4

4 4 4 4

 ′ ′ ′ ′      ′ ′ ′ ′   =    ′ ′ ′ ′      ′ ′ ′ ′      

1 0 0 0

0 1 0 0
T

0 0 1 0

0 0 0 1

 ( )2 4 4 4 4=T I I I I . 

Therefore, 

 ( ) ( )1 1 2 2N Nπ π− = −p T p . (7) 

 We shall now provide the asymptotic properties of the first and second stage 

estimates. We first notice that îτ  is a maximum likelihood estimate, as (4) is the kernel of 

the log-likelihood function for estimating τi from a univariate marginal of the contingency 

table pi. Similarly, (5) is the kernel of the log-likelihood function for estimating ρii´ from a 

bivariate marginal of the contingency table pii´ given the estimated thresholds. That is, îi ′ρ  is 

a pseudo-maximum likelihood estimate in the terminology of Gong and Samaniego (1981). 

As a result, the asymptotic properties of these estimates can be readily obtained using 

standard results for maximum likelihood estimation for categorical models. Before 

proceeding, we shall review some of the relevant theory. 

 Let π and p be vectors of multinomial probabilities and sample proportions 

respectively. Consider a parametric structure for π, π(ϑ), with Jacobian matrix π∆
ϑ
∂=

′∂
, 

and suppose we estimate ϑ by maximizing ( ) ( )
1

0

ln
C

c c
c

L N pϑ ϑ
−

=

= ∑ π . Then, under typical 

regularity conditions, it follows that (e.g., Agresti, 1990; Jöreskog, 1994) 

 ( ) ( ),dN Nπ Γ− →p 0  ′= −DΓ ππ  (8) 

 ( ) ( )ˆ aN Nϑ ϑ π− = −B p  (9) 

where ( ) 1∆ ∆ ∆−′ ′=B D D , ( ) 1Diag π −=D , d→  denotes convergence in distribution, and a=  

denotes asymptotic equality.  

 Now, we apply (9) to the first stage estimates obtaining  

 ( ) ( )11 1 1ˆ aN Nτ τ π− = −B p , (10) 
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where ( ) 1
11 11 1 11 11 1∆ ∆ ∆−′ ′=B D D , ( ) 1

1 1Diag π −=D , and 1
11

π∆
τ

∂=
′∂
.  Furthermore, from (7)  

 ( ) ( )11 2 2ˆ aN Nτ τ π− = −B T p . (11) 

Now, to apply (9) to the second stage estimates we need the asymptotic distribution of  

( )( )2 2 ˆ,N π ρ τ−p . In Appendix 1, we show that  

 ( )( ) ( ) ( )2 2 21 11 2 2ˆ, aN Nπ ρ τ ∆ Β π− = − −p I T p  (12) 

where 2
21

π∆
τ

∂=
′∂
. Then, applying (9) to (12) we obtain 

 ( ) ( ) ( )22 21 11 2 2ˆ aN Nρ ρ Β ∆ Β π− = − −I T p  (13) 

where ( ) 1
22 22 2 22 22 2∆ ∆ ∆−′ ′=B D D , ( ) 1

2 2Diag π −=D , and 2
22

π∆
ρ

∂=
′∂

. In Appendix 2 we 

sketch the derivatives involved in ∆11, ∆21, and ∆22 . Further details can be found in Olsson 

(1979). 

 Collecting (11) and (13), the first and second stage estimates can be expressed 

asymptotically as a linear function of the bivariate marginal proportions as follows 

 
( ) ( )

11

2 2
22 21 11

ˆ

ˆ
aN N

Βτ τ
πρ ρ Β ∆ Β

  −     = −   − −      
G

T
p

I T
. (14) 

Now, since the marginal proportions 2p  are simply sums of multinomial cell 

proportions 

 ( ) ( )2 2 ,dN Nπ Γ− →p 0  2 2Γ Γ π π= − . (15) 

where provided n > 3, the elements of Γ  are fourth order marginal probabilities. Thus, we 

find by (14) and (15) that 

 ( ) ( )ˆ ,dN Nκ κ Ξ− → 0  Ξ Γ ′= G G  (16) 

where G and Γ  are to be evaluated at the true population values. Also, partitioning 

1

2

  =     

G
G

G
 and 11 21

21 22

Ξ Ξ
Ξ

Ξ Ξ

 ′   =     
 according to the partitioning of κ we have that  
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 ( )22 2 2ˆAcovNΞ ρ Γ ′= = G G  (17) 

where Acov(•) denotes asymptotic covariance matrix. In Appendix 3 we show that (17) 

equals the expression given by Jöreskog (1994) and that (16) reduces to the expression given 

by Muthén (1978) for the binary case (K = 2) and by Olsson (1979) for the bivariate case  

(n = 2).  

 Now, the asymptotic properties of the third stage estimates can be obtained from 

(16) using standard results for weighted least squares estimators (e.g., Browne, 1984; 

Satorra, 1989; Satorra & Bentler, 1994). Letting ( ) 1
∆ ∆ ∆

−
′ ′=H W W , where κ∆

θ
∂=

′∂
, 

 ( ) ( )ˆ ˆaN Nθ θ κ κ− = −H  (18) 

 ( ) ( )ˆ ,dN Nθ θ Ξ ′− → 0 H H  (19) 

where ∆  and W are to be evaluated at the true parameter values. Now, when 1ˆ Ξ̂ −=W , 

(19) simplify to  

 ( ) ( )( )11ˆ ,dN Nθ θ ∆ Ξ ∆
−−′− → 0  (20) 

and we obtain an estimator that asymptotically has minimum variance among the class of 

estimators based on the first and second stage estimates.  

 In closing this section we note that throughout our presentation we assume a  

multivariate standard normal density that has been categorized according to a set of 

thresholds, where some parametric structure is imposed on the thresholds and polychoric 

correlations. When no restrictions are imposed on the thresholds, then some simplifications 

are available in the third estimation stage. For completeness, these are provided in Appendix 

4 following Muthén (1978, 1993). Finally, in Appendix 5 we discuss the estimation of a 

discretized multivariate normal density with some mean and covariance structure following 

Maydeu-Olivares and Hernández (2000).  

 

4. Goodness of fit assessment 
Within this estimation framework currently one tests the structural restrictions ( )κ θ  

using standard results for weighted least squares estimators. However, these tests are only 

meaningful if the distributional restrictions hold (i.e., if the data arises by categorizing a 

multivariate normal density). For a detailed discussion of this issue see Muthén (1993). 
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Currently, the distributional restrictions ( )2π κ  are assessed piecewise by performing tests of 

bivariate normality for each pair of variables using the likelihood ratio statistic G2. These 

tests are implemented for instance in PRELIS/LISREL (Jöreskog & Sörbom, 2001). 

However, it is not clear what to conclude if the hypothesis of categorized bivariate normality 

is accepted for some pairs of variables but rejected for others. To overcome this limitation we 

propose here a test of the joint distributional restrictions ( )2π κ . It is also possible to test 

the overall restrictions imposed by the model directly, ( )2π θ  and we shall propose a test 

statistic to this purpose.  

 

4.1 Goodness of fit testing of the structural restrictions 

 Consider the structural residuals ( )ˆˆs κ κ θ= −e . Using standard results for weighted 

least squares estimators  

 ( ) ( )ˆa
sN N∆ κ κ= − −e I H  (21) 

 ( ),d
sN N→e 0 V  ( ) ( )s ∆ Ξ ∆ ′= − −V I H I H  (22) 

 ( ) ( )( )( ) 2
1

1

ˆ ˆ ˆ ˆ:
sra d

s s s i
i

T NF N N κ κ ∆ κ κ
=

′′= = = − − − →∑e We W I H α χ  (23) 

where ( ) ( )11
2s

n nr n K q−= − + −  is the degrees of freedom available for testing the 

structural restrictions ( )κ θ . 

In (23) the 2
1 'sχ  are independent chi-square variables with one degree of freedom and 

the 'i sα  are the non-null eigenvalues of   

 ( )s ∆ Ξ= −M W I H . (24) 

When 1ˆ Ξ̂ −=W , (23) simplify to 2
s

d
s rT →χ . On the other hand, when ( )( ) 1ˆ ˆDiag Ξ

−
=W  or 

ˆ =W I , a goodness of fit of the model can be obtained following Satorra and Bentler (1994) 

by scaling Ts by its mean or adjusting it by its mean and variance so that it approximates a 

chi-square distribution as follows (Muthén, 1993; Muthén et al., 1997) 

 
( )Tr /

s
s

s s

TT
r

=
M

 
( )2Tr /

s
s

s s

TT
r

=
M

 (25) 
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where  and s sT T , denote the scaled (for mean) and adjusted (for mean and variance) test 

statistics. The former is referred to a chi-square distribution with rs degrees of freedom, 

whereas the latter is referred to a chi-square distribution with 
( )
( )

2

2

Tr
Tr /

s
s

s s

d
r

=
M

M
 degrees of 

freedom. 

 

4.2 Goodness of fit testing of the distributional restrictions 

 Consider now the distributional residuals ( )2 2 ˆd π κ= −e p  and let 

( )2
21 22

π∆ ∆ ∆
κ

∂= =
′∂

. In Appendix 1 we show that 

 ( ) ( )2 2
d

dN N∆ π→ − −e I G p . (26) 

From (15) and (26) we immediately have  

 ( ),d
d dN N→e 0 V  ( ) ( )d ∆ Γ ∆ ′= − −V I G I G  (27) 

 Now, to test the distributional restrictions of the model ( )2π κ  we propose using the 

test statistic 

  2
1

1

:
drd

d d d i
i

T N
=

′= →∑e e α χ  (28) 

where by Theorem 2.1 of Box (1954) the 'i sα  are now the non-null eigenvalues of Vd and 

the number of degrees of freedom available for testing is ( ) ( )2 12
2

n nK K −− .  Goodness of 

fit tests of the distributional restrictions imposed by the model can be obtained by scaling Td 

by its mean or adjusting it by its mean and variance so that it approximates a chi-square 

distribution as follows  

 
( )Tr /

d
d

d d

TT
r

=
M

 
( )2Tr /

d
d

d d

TT
r

=
M

 (29) 

where  and d dT T , denote the scaled (for mean) and adjusted (for mean and variance) test 

statistics. The former is referred to a chi-square distribution with rd degrees of freedom, 

whereas the latter is referred to a chi-square distribution with 
( )
( )

2

2

Tr
Tr /

d
d

d d

d
r

=
M

M
 degrees of 

freedom.  
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4.3 Goodness of fit testing of the overall restrictions 

 Consider now the overall residuals ( )2 2
ˆ

o π θ= −e p . In Appendix 1 we show that 

 ( ) ( )2 2
d

oN N∆∆ π→ − −e I HG p . (30) 

From (15) and (30) we immediately have  

 ( ),d
o oN N→e 0 V  ( ) ( )o ∆∆ Γ ∆∆ ′= − −V I HG I HG  (31) 

 Akin to (28), to test the overall restrictions of the model, ( )2π θ , we propose using 

the test statistic 

  2
1

1

:
ord

o o o i
i

T N
=

′= →∑e e α χ  (32) 

where the 'i sα  are now the non-null eigenvalues of Vo and the number of degrees of freedom 

available for testing is ( ) ( ) ( )2 11 1
2o

n nr n K K q−= − + − − .  Goodness of fit tests of the 

distributional restrictions imposed by the model can be obtained by scaling To by its mean 

or adjusting it by its mean and variance so that it approximates a chi-square distribution as 

follows  

 
( )Tr /

o
o

o o

TT
r

=
M

 
( )2Tr /

o
o

o o

TT
r

=
M

 (33) 

where  and o oT T , denote the scaled (for mean) and adjusted (for mean and variance) test 

statistics. The former is referred to a chi-square distribution with ro degrees of freedom, 

whereas the latter is referred to a chi-square distribution with 
( )
( )

2

2

Tr
Tr /

o
o

o o

d
r

=
M

M
 degrees of 

freedom.  

 In closing this section we note that the overall residuals eo can be decomposed, 

asymptotically, as a linear function of the distributional residuals ed and of the structural 

residuals es 

 a
o d s∆= +e e e . (34) 

This is shown in Appendix 1. In this appendix we also show that  
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 ( ) ( ) ( ) ( ) ( )Acov , 2Trd sT T ∆ ∆ Γ ∆ ∆ Γ
 ′′ ′= − − − −  
I G I G G I H W I H G , (35) 

 ( ) ( ) ( ) ( ) ( )Acov , 2Tro sT T ∆∆ ∆∆ Γ ∆ ∆ Γ
 ′ ′ ′= − − − −  
I HG I HG G I H W I H G , (36) 

 ( ) ( ) ( ) ( ) ( )Acov , 2Trd sT T ∆∆ ∆∆ Γ ∆ ∆ Γ
 ′ ′ = − − − −  
I HG I HG I G I G . (37) 

Thus, the overall, distributional, and structural test statistics are asymptotically correlated 

because of their common dependency on the asymptotic covariance matrix of the bivariate 

proportions. 

 

5. Computational aspects 
 The asymptotic covariance matrix of the bivariate marginal proportions 2p , which we 

denote by Γ  is of dimension ( )2 1
2

n nK − . Clearly, the size of this matrix grows very rapidly 

for increasing n and K. Thus, it is important to consider how to compute the asymptotic 

covariance matrix of the sample thresholds and polychoric correlations and the traces 

required for the proposed distributional and overall goodness of fit tests without having to 

store into memory Γ . We show how to estimate the elements of the asymptotic covariance 

matrix of the sample thresholds and polychoric correlations efficiently for very large models 

and how to obtain tests of the distributional restrictions as a by-product with very 

additional computation. The approach employed here relies heavily in Jöreskog (1994). The 

approach taken here is not applicable in general to the computation of the overall tests.  

 

5.1 Asymptotic covariance matrix of sample thresholds and polychoric correlations 

Akin to (10) we have  

 ( ) ( )( )
11ˆ a i

i i i iN Nτ τ π− = −B p ,  (38) 

where ( ) 1
( ) ( ) ( ) ( )
11 11 11 11
i i i i

i i∆ ∆ ∆
−

′ ′=B D D , ( ) 1Diagi iπ −=D , and ( )
11
i i

i

π∆
τ

∂=
′∂
. Also,  akin to (13) 

we have 

 ( ) ( )( )
2ˆ a ii

ii ii ii iiN N π′
′ ′ ′ ′− = −G pρ ρ  (39) 
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 ( )( ) ( ) ( ) ( ) ( ) ( )
2 22 21 11 1 21 11 2
ii ii i i i i∆ ∆′ ′ ′ ′= − −G B I B T B T  (40) 

where ( ) 1
( ) ( ) ( ) ( )
22 22 22 22
ii ii ii ii

ii ii∆ ∆ ∆
−

′ ′ ′ ′
′ ′

′ ′=B D D , ( ) 1Diagii iiπ −
′ ′=D , ( )

22
ii ii

ii

π∆ ′ ′

′

∂
=

∂ρ
, and ( )

21
i ii

i

π∆
τ

′∂
=

′∂
. 

 Then, letting ( ),i i ′  be any two variables (not necessarily distinct) the asymptotic 

variances and covariances among the estimated thresholds can be obtained using 

 ( ) ( )( ) ( )
11 11ˆ ˆAcov , i i

i ii ii iN τ τ ′
′ ′ ′

′= −B C Bπ π  (41) 

where ii ′C  is a K × K table of bivariate probabilities. Similarly, letting ( ), ,i i j′  be any three 

variables such that i i ′≠ , the asymptotic covariances between the estimated thresholds and 

polychoric correlations can be obtained using 

 ( ) ( )( ) ( )
2 11ˆ ˆAcov , ii j

j jii ii j iiN τ ′
′ ′ ′

′= −G C Bρ π π  (42) 

where ii j′C  is a K2 × K table of trivariate probabilities. Finally, letting ( ), , ,i i j j′ ′  be any four 

variables such that i i ′≠  and j j ′≠ , the asymptotic variances and covariances between the 

estimated polychoric correlations can be obtained using 

 ( ) ( )( ) ( )
2 2ˆ ˆAcov , ii jj

ii jj ii jj ii jjN ′ ′
′ ′ ′ ′ ′ ′

′= −G C Gρ ρ π π  (43) 

where ii jj′ ′C  is a K2 × K2 table of four-way probabilities.  

Note that the two and three-way probability tables can be obtained from the four-

way probability tables by using T1 and T2 matrices as needed. Also, in (41) to (43) it is 

possible to use the following simplification: Since 11 1 1∆ π′ =D 0 ,  11 1 2∆ π′ =D T 0  and hence 

11 2π =B T 0 . Similarly, 22 2π =B 0 . Hence,  

 2π =G 0   (44) 

and Ξ Γ ′= G G , 22 2 2Ξ Γ ′= G G . Thus, for instance, the term ii jj′ ′−π π  can be dropped from 

(43).  

To compute Ξ̂  we store into memory all (K - 1) × K ( )
11
iB  matrices, and all 1 × K 

vectors ( )
22
ii ′G . We consistently estimate ( )

11
iB  and ( )

22
ii ′G  by evaluating all derivative matrices  

and all univariate and bivariate probabilities at κ̂ . Also, we consistently estimate the four-

way probability tables by using four-way sample proportions. The four-way contingency 

tables need not be stored in memory. We compute them one at a time from the raw data. 
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By using these consistent estimates our asymptotic covariance matrix for the polychoric 

correlations equals Jöreskog's (1994) as implemented in PRELIS/LISREL (Jöreskog & 

Sörbom, 2001). 

  

5.2 Tests of the distributional restrictions imposed by the model 

Akin to (26) we have 

 ( )( ) ( ) ( )( ) ( )ˆ a ii ii
ii ii ii iiN Nπ κ ∆ π′ ′
′ ′ ′ ′− = − −p I G p  (45) 

where ( )( ) ( ) ( )
21 22

ii ii ii∆ ∆ ∆′ ′ ′= , 
( )
1( )
( )
2

ii

ii
ii

′

′
′

   =     

G
G

G
, ( )( ) ( ) ( )

21 21 21
ii i i∆ ∆ ∆′ ′= , and 

( )
11 1( )

1 ( )
11 2

i

ii
i

′
′

   =     

B T
G

B T
.  

Now, to obtain  and d dT T , we need ( ) ( )2Tr  and Trd dV V  where dV  is a symmetric 

matrix structured in blocks, each of dimension K2 × K2. These blocks can be obtained akin 

to (27) using (45) as 

 ( )( )( )( ) ( ) ( ) ( ) ( )ll l l l l
d lll l∆ ππ ∆′ ′ ′

′ ′
′= − − −V I G C I G  (46) 

where to simplify the notation we let ( ): , ; 2, , ; 1, , 1l i j i n j i= = = − . Then,  

 ( ) ( )( )Tr Tr l
d d

l

=∑V V  ( ) ( ) ( )2 ( )2 ( ) ( )Tr Tr 2Trll ll ll
d d d d

l l l

′ ′

′≠

′= +∑ ∑V V V V  (47) 

where (46) is consistently estimated by evaluating all derivative matrices and univariate and 

bivariate probabilities at κ̂ , and by estimating the four-way probability tables by using 

four-way sample proportions. Very additional computation is involved to obtain these tests 

and in our implementation we compute them in a single loop while obtaining the asymptotic 

covariance matrix of the estimated thresholds and polychoric correlations. 

 

6. Small sample behavior 
 To illustrate the small sample behavior of the sequential estimation procedure under 

consideration and of the proposed distributional and overall tests we performed a small 

simulation study. We considered a three factor correlation structure model, 

( )* Off
z

Ρ ΛΦΛ′= , with unrestricted thresholds for n = 12 variables, where each variable 

consists of K = 3 categories with thresholds ( )0.5, 0.5iτ ′= −  and  
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0.7 0.6 0.5 0.4 0 0 0 0 0 0 0 0

0 0 0 0 0.7 0.6 0.5 0.4 0 0 0 0

0 0 0 0 0 0 0 0 0.7 0.6 0.5 0.4

Λ

′     =       

1 0.3 0.4

0.3 1 0.5

0.4 0.5 1

Φ

     =       

. 

 Two sample sizes were considered: N = 200 and N = 1000. ULS was employed in the 

third estimation stage. It is known that the asymptotically optimal WLS has a poorer small 

sample behavior than ULS due to the instability of the four-way proportions in small 

samples (Muthén, 1993). Furthermore, when ULS is employed no weight matrix needs to be 

inverted. Thus, larger models can be handled by ULS than by WLS. Alternatively, DWLS 

could have been used in the third stage. In the binary case, Maydeu-Olivares (2001) has  

shown that the small sample behavior of ULS and DWLS is very similar.  

 A summary of the parameter estimates and asymptotic standard errors are shown in 

Table 1. As can be seen in this table, a sample size of 200 observations suffices to obtain  

-------------------------------------------- 

Insert Tables 1 and 2 about here 

-------------------------------------------- 

accurate parameter estimates as there is no consistent bias in the parameter estimates. Also, 

200 observations suffice to obtain accurate standard errors because although we observe a 

consistent downward bias, the relative bias does not exceed 7%. Of course when N = 1000 

we obtain more accurate parameter estimates and standard errors. In this case there is no 

consistent bias neither in the parameter estimates nor in the standard errors, and the 

relative bias of the standard errors does not exceed 5%.  

 A summary of the goodness of fit results is shown in Table 2. As can be seen in this 

table, when N = 1000 both the scaled and the adjusted statistics match very well their 

reference distributions when testing the structural restrictions. When testing the 

distributional and overall restrictions, the mean and variance adjusted statistics also match 

well their reference distributions, particularly in the critical region 0.01 0.20≤ ≤α . The 

mean scaled statistic, on the other hand, is too optimistic in this region. When N = 200, the 

mean and variance adjusted statistic matches adequately its reference distribution when 

testing the structural restrictions until α = 0.40 whereas the mean statistic is too optimistic. 

Above this point, the mean scaled statistic behaves very well, better than the mean and 

variance adjusted statistic which is too optimistic. Finally, when testing the distributional 

and overall restrictions, the mean and variance adjusted statistics are too conservative 

within the critical region 0.01 0.20≤ ≤α , whereas the mean scaled statistic is too liberal 
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within this region. This led us to investigate the use of a heuristic procedure consisting in 

averaging the p-values obtained from these two statistics. Thus, in this table we have 

included an additional column, H, obtained by this heuristic procedure. As can be seen in 

this table, our heuristic procedure enable us to draw meaningful inferences about the 

distributional and overall fit of the model within the critical region 0.01 0.20≤ ≤α  when  

N = 200. This is remarkable, as the number of degrees of freedom for testing the 

distributional and overall restrictions are 198 and 249, respectively. 

 In closing this section, we note that for the model under consideration and N = 1000 

the correlation between the p-values obtained when testing the structural and distributional 

restrictions was 0.95, between the structural and overall p-values 0.32, and between the 

distributional and overall p-values 0.04. When N = 200, these correlations were 0.94, 0.33, 

and 0.03, respectively. 

  

7. Applications 
 Three applications are considered. In the first two a covariance structure is assumed. 

Since these covariance structures are scale invariant and no restrictions are imposed on the 

thresholds, the parameters of the covariance structure can be estimated in the third stage by 

minimizing a discrepancy function of the polychoric correlations alone (see Appendices 4 and 

5). In the first example, the variables consist of five categories, in the second example the 

data is binary. Finally, the third application involves a mean and covariance structure model 

in which the covariance structure is not scale invariant.  

  

7.1 Life Orientation test 

The Life Orientation Test (LOT: Scheier & Carver, 1985), is a eight item 

questionnaire designed to measure optimism and pessimism where each item consists of 5 

categories. Chang, D'Zurilla and Maydeu-Olivares (1994) fitted the following covariance 

structure model to this questionnaire: ( )Σ θ ΛΨΛ Θ′= + , where Θ is a diagonal matrix, 

11 41

52 82

0 0

0 0
Λ

  ′ =     

λ λ

λ λ
, and 

21

21

1

1
Ψ

  =     

ψ

ψ
. The clusters correspond to the 

positively and to the negatively worded items of the questionnaire, respectively. That is, the 

factors measure optimism and pessimism, respectively. Since this covariance structure is 

scale invariant and no restrictions are imposed on the thresholds, ( )11 82 21, , ,θ ′ = λ λ ψ  can be 

estimated in the third stage by minimizing a discrepancy function of the polychoric 

correlations only where for identification purposes ( )DiagΘ ΛΨΛ′= −I . 
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Chang et al. (1994) used WLS and found that this model reproduced well the 

polychoric matrix. We shall re-analyze their data here which consists of 389 observations. 

Using ULS in the third stage we find that the model reproduces well the polychoric matrix 

sT  = 25.4 on 14 df, p = 0.15 and sT  = 15.4 on 11.5 df, p = 0.19. But this test is only 

meaningful if the distributional restrictions hold. Using the standard procedure of testing 

categorized bivariate normality for each pair of variables using a likelihoood ratio statistic, 

G2, we find that for 15 out of 28 pairs of variables the null hypotheses of categorized 

bivariate normality is rejected at α = 0.01. Thus, it is not clear what to conclude. Our tests 

of the distributional assumptions, however, reveal that the hypothesis of joint categorized 

bivariate normality is to be rejected: dT  = 1070.9 on 420 df, p < 0.01, and dT  = 252.1 on 

98.9 df, p < 0.01. Not surprisingly, overall, the model fails to fit the bivariate tables: oT  = 

1112.1 on 439 df, p < 0.01, and oT  = 253.8 on 100.2 df, p < 0.01. Thus, although we are 

able to reproduce well the matrix of polychoric correlations, the model does not really fit the 

bivariate tables because the distributional restrictions do not hold.  

 

7.2 LSAT 6 data 

 These data, consisting of 1000 observations on 5 binary variables was originally 

reported in Bock and Lieberman (1970). The data have been re-analyzed repeatedly in the 

literature using a variety of full and limited information methods (see McDonald & Mok, 

1995). A one factor model fits well the 25 contingency table. Bock and Lieberman (1970) 

report a likelihood ratio statistic G2 = 21.28 on 21 df, p = 0.44, and we computed Pearson’s 

statistic using their parameter estimates obtaining X2 = 18.03, p = 0.65.   

We fitted a one factor model to these data using ULS in the third stage. The 

structural tests yielded sT  = 4.67 on 5 df, p = 0.46 and sT  = 4.31 on 4.6 df, p = 0.45, so the 

model fits well the tetrachoric correlations. Now, when all the variables are binary it is not 

possible to perform the proposed tests of categorized normality as there are no degrees of 

freedom available for testing. A test of trivariate dichotomized normality has been proposed 

by Muthén and Hofacker (1988). However, it is not clear what to conclude if the hypothesis 

of dichotomized normality is rejected for some but not all triplets. To overcome this 

limitation one can perform a test of the overall restrictions on the bivariate marginals. We 

obtained oT  = 3.95 on 5 df, p = 0.56, and oT  = 3.55 on 4.50 df, p = 0.56, which is similar to 

Bock and Lieberman's results. 
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7.3 Agresti's Soft drink data 

 This data set (Agresti, 1992) consists of 61 subjects comparing the taste of Coke, 

Classic Coke and Pepsi using a five point preference scale in a paired comparison design 

{Coke vs. Classic Coke, Coke vs. Pepsi, Classic Coke vs. Pepsi}. Böckenholt and Dillon 

(1997) collapsed the two extreme categories to reduce data sparseness, reducing the 

categories to {"Preference for i", "Indiference", ""Preference for i´"}. They fitted the following 

mean and covariance structure to the resulting 33 contingency table 

 µ ν= A  ( )2 22 1Σ ′= + −AA Iσ σ  (48) 

where ( )1 2, , 0ν ′ = ν ν  and 

 

1 1 0

1 0 1

0 1 1

 − 
 = − 
 
 −  

A .  

In addition, letting ( )
1 1 11 1 2 3, ,α ′ = α α α  and ( )

2 2 22 1 2 3, ,α ′ = α α α , the following restrictions are 

assumed on the thresholds: 1α = 1γ , and 2α = − 1γ . It is easy to show that this model is 

equivalent to a Thurstone’s Case V model for graded paired comparisons data under the 

assumption of no order effects in the comparison of the stimuli. For an overview of 

Thurstonian models for graded paired comparisons see Tsai and Böckenholt (in press) and 

Maydeu-Olivares (in press).  

 Now, by (73) in Appendix 5 we find that  

 
( )

( )
1

2

τ ν
τ ν
= −

= − −

D 1 A

D 1 A

γ

γ
 ( )( )*

2 22 1
z

Ρ ′ + −= D AA I Dσ σ  (49) 

where now ( )
1 1 11 1 2 3, ,τ ′ = τ τ τ , ( )

2 2 22 1 2 3, ,τ ′ = τ τ τ , and ( )( )
1

2 2 2Diag 2 1
−′ + −D AA I= σ σ .  

We estimated this model using ULS in the third stage. Böckenholt and Dillon (1997) 

estimated this model using full information maximum likelihood. In Table 3 we provide our  

parameter estimates and standard errors along with Böckenholt and Dillon's. As it can be  

-------------------------------------------- 

Insert Table 3 about here 

-------------------------------------------- 
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seen in this Table, they are very similar. Böckenholt and Dillon (1997) reported a full 

information likelihood ratio statistic G2 = 23.65 on 22 df, p = 0.37. We computed Pearson’s 

statistic using their parameter estimates obtaining X2 = 20.35, p = 0.56. Our tests of the 

distributional restrictions  yield dT  = 7.57 on 9 df, p = 0.58, and dT  = 6.43 on 7.64 df,  

p = 0.56. Hence, the assumption of joint categorized bivariate normality is not rejected. 

Also, our tests of the structural restrictions yield sT  = 1.34 on 5 df, p = 0.93 and sT  = 1.03 

on 3.8 df, p = 0.89. Hence the model reproduces very well the sample thresholds and 

polychorics. Finally, our tests of the overall restrictions yield oT  = 7.63 on 14 df, p = 0.91, 

and oT  = 5.50 on 10.09 df, p = 0.86. Thus, the model reproduces very well the bivariate 

tables.  

 

8. Conclusions 
 We have presented a unified framework for the sequential estimation of discretized 

multivariate normal structural models and their testing using asymptotic theory for sample 

proportions. In particular, we have proposed tests for the distributional as well as for the 

overall restrictions imposed by these models on the bivariate margins of the contingency 

table. Also, we have shown how the overall restrictions imposed by the model on the 

bivariate margins can be decomposed asymptotically as a linear function of the distributional 

and the structural restrictions.  

 The proposed tests are simply mean and mean and variance corrections to the 

asymptotic distribution of a test statistic consisting of the sum of squared distributional and 

overall residuals. As an alternative to these statistics, one could consider the use of a 

weighted quadratic form using a generalized inverse of a consistent estimate of the 

asymptotic covariance matrix of the distributional and overall residuals as weight matrix. 

These generalized Wald tests (Moore, 1977) would be asymptotically chi-squared distributed. 

However, these tests would only be computationally feasible for small models as the 

asymptotic covariance matrix of the distributional and overall residuals is of dimension 
( )2 1

2
n nK −

. In addition, the generalized inverses required by these asymptotically chi-

square tests are computationally demanding except for small models and they may be 

unstable in small samples as the matrix to be inverted depends on four-way proportions. On 

the other hand, we have shown that the proposed distributional tests can be computed very 

efficiently for very large models. It does not seem possible in general to compute the 

proposed overall tests without storing the large asymptotic covariance matrix of the 
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bivariate proportions in memory. So, in general, there is a limitation in the size of the 

models that can be tested using our proposed overall tests. 

 We have investigated the small sample performance of the sequential estimator and 

of the proposed tests. We have shown that for a covariance structure model for 12 variables 

that has been tricotomized, one can obtain accurate parameter estimates and standard errors 

with as few as 200 observations. Furthermore, one can draw meaningful inferences about the 

structural, distributional and overall misfit of the model with this small sample size.  

 Clearly, as the number of categories and variables increases, the number of degrees of 

freedom available for testing the distributional and overall restrictions grows very rapidly. 

Thus, in applications the distributional and overall null hypotheses are very likely to be 

rejected when the model under consideration is large. Further work is needed to develop a 

test of close fit to these null hypotheses along the lines of Browne and Cudeck (1993). Also, 

further work is needed to investigate the robustness of the sequential estimation procedure 

under mispecification of the distributional assumptions. Finally, a test of the joint 

distributional assumptions when all the observed variables are dichotomous is needed.  

 We have not considered in this paper structured multivariate normal models in which 

some but not all the variables are categorized. Neither we have considered multivariate 

ordinal probit models where one assumes categorized multivariate normality conditional on a 

set of exogonous variables. Estimation and structural inferences for these models have been 

considered by Muthén (1984, Muthén & Satorra, 1995; Muthén, du Toit & Spisic, 1997), 

Küsters (1987) and Bermann (1993). It is not clear how one can test the distributional 

assumptions in these complex situations. Clearly, more work is also needed in this area. 
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TABLE 1 

Simulation results for a three factor model: Parameter estimates and standard errors 

 

N = 200 N  = 1000 

par true x  est x  SE std SE x  est x  SE std SE 

λ1,1 0.7 0.70 0.09 0.10 0.70 0.04 0.04 

λ2,1 0.6 0.60 0.09 0.10 0.60 0.04 0.04 

λ3,1 0.5 0.50 0.09 0.09 0.50 0.04 0.04 

λ4,1 0.4 0.40 0.10 0.10 0.40 0.04 0.04 

λ5,2 0.7 0.69 0.09 0.09 0.70 0.04 0.04 

λ6,2 0.6 0.60 0.09 0.09 0.60 0.04 0.04 

λ7,2 0.5 0.50 0.09 0.09 0.50 0.04 0.04 

λ8,2 0.4 0.40 0.09 0.10 0.40 0.04 0.04 

λ9,3 0.7 0.69 0.09 0.09 0.70 0.04 0.04 

λ10,3 0.6 0.60 0.09 0.09 0.60 0.04 0.04 

λ11,3 0.5 0.49 0.09 0.09 0.50 0.04 0.04 

λ12,3 0.4 0.40 0.09 0.10 0.40 0.04 0.04 

φ2,1 0.3 0.31 0.11 0.12 0.30 0.05 0.05 

φ3,1 0.4 0.41 0.11 0.12 0.40 0.05 0.05 

φ3,2 0.5 0.50 0.11 0.11 0.50 0.05 0.05 

 

Notes: ULS was employed in the third stage; all variables had 3 categories. 
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TABLE 2 

Simulation results for a three factor model: Goodness of fit tests 

 

  Structural restrictions Distributional restrictions Overall restrictions 

  N = 200 N = 1000 N = 200 N = 1000 N = 200 N = 1000 

  sT  sT  H sT  sT  H dT  dT  H dT  dT  H oT  oT  H oT  oT  H 

Mean 52.1 36.6 -- 51.0 42.9 -- 201.1 93.7 -- 199.7 148.9 -- 252.9 103.6 -- 250.8 176.0 -- 

Var. 129.6 57.4 -- 106.5 74.3 -- 489.2 100.0 -- 469.6 250.2 -- 643.7 95.3 -- 614.7 288.3 -- 

1% 2.5 0.8 1.1 1.0 0.4 0.5 2.5 0.2 0.5 1.7 0.7 1.0 2.7 <0.1 0.6 1.8 0.5 0.5 

5% 8.3 4.9 6.1 5.2 4.1 4.8 9.4 2.4 4.5 8.0 4.8 6.5 9.9 1.7 4.1 8.1 4.5 6.1 

10% 13.8 9.6 11.9 10.0 8.4 9.2 16.1 6.7 10.5 13.8 10.3 12.7 16.4 4.9 10.2 14.5 9.6 12.3 

20% 24.0 21.2 22.9 20.1 18.6 19.5 25.6 17.7 22.0 24.9 21.7 23.6 26.1 16.4 22.1 25.3 21.1 23.0 

30% 34.3 32.3 33.0 31.5 30.3 30.8 34.6 28.9 32.2 34.0 32.0 32.9 36.1 28.0 33.0 34.4 31.4 33.0 

40% 44.2 43.3 43.7 41.7 41.4 41.6 44.3 41.8 42.7 42.8 42.1 42.3 46.3 42.6 44.3 43.2 41.8 42.8 

50% 52.9 53.9 53.2 51.5 51.6 51.5 55.0 57.6 55.7 53.1 43.1 53.0 56.0 57.4 56.4 52.4 52.8 52.7 

60% 62.5 65.2 63.5 60.7 61.9 61.6 64.2 70.9 66.8 63.6 63.6 62.6 65.8 72.2 68.3 61.7 63.6 62.4 

70% 71.3 75.4 72.8 69.1 70.6 69.9 73.9 81.0 77.9 70.1 73.9 71.8 74.4 82.8 78.5 70.3 73.7 72.2 

80% 79.9 85.1 82.3 79.0 81.2 80.1 81.2 90.2 85.5 78.8 83.1 80.7 82.5 90.9 86.6 79.8 83.1 81.4 

re
je

ct
io

n 
ra

te
s 

90% 89.4 94.4 92.9 89.0 91.1 90.0 90.5 96.6 92.2 89.4 93.2 91.3 89.9 97.2 94.1 88.8 92.3 91.0 

 

Notes: ULS was employed in the third stage;  and T T  denote the mean scaled and mean and variance adjusted statistics, 

respectively; H is a heuristic p-value obtained by averaging the p-values obtained from  and T T ; dfs = 51, dfd = 178, and dfo = 

249. 
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TABLE 3 

Parameter estimates and standard errors for Agresti’s soft drink data 

 

 

 

 

par. Böckenholt & Dillon sequential estimator (ULS) 

γ -0.37 (0.07) -0.37 (0.06) 

ν1 -0.48 (0.20) -0.47 (0.19) 

ν2 -0.24 (0.19) -0.23 (0.18) 

σ2 0.40 (0.18) 0.40 (0.15) 

 

 

 

Notes: standard errors in parentheses 
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Appendix 1: Proofs of key results 
 

Proof of Equation (12):   

A first order expansion of ( )2 ˆ,π ρ τ  around τ = τ0  yields ( ) ( ) ( )2 2 21ˆ ˆ, ,aπ ρ τ π ρ τ ∆ τ τ= + − , 

where 2
21

π∆
τ

∂=
′∂
. Thus, ( ) ( )( ) ( )2 2 21ˆ ˆ, , aN Nπ ρ τ π ρ τ ∆ τ τ− = − . Now, by (11),  

( ) ( )( ) ( )( )2 2 21 11 2 2ˆ, , ,aN Nπ ρ τ π ρ τ ∆ π ρ τ− = −B T p . Equation (12) follows by noting that 

( )( ) ( )( ) ( ) ( )( )2 2 2 2 2 2ˆ ˆ, , , ,N N Nπ ρ τ π ρ τ π ρ τ π ρ τ− = − − −p p     

 

Proof of Equation (26):  

A first order expansion of ( )2 ˆπ κ  around κ = κ0 yields ( ) ( ) ( )2ˆ ˆaπ κ π κ ∆ κ κ= + − , where 

( )2
21 22

π∆ ∆ ∆
κ

∂= =
′∂

. Coupling this with (14), ( ) ( )( ) ( )2 2 2 2ˆ aN Nπ κ π κ ∆ π− = −G p . 

Equation (26) follows by noting that 

( )( ) ( )( ) ( ) ( )( )2 2 2 2 2 2ˆ ˆ:dN N N Nπ κ π κ π κ π κ= − = − − −e p p .    

 

Proof of Equation (30):  

A first order expansion of ( )2
ˆπ θ  around θ = θ0 yields ( ) ( ) ( )2

2 2
ˆ ˆa ππ θ π θ θ θ

θ
∂= + −

′∂
, where 

2π ∆∆
θ

∂ =
′∂

. Now, again using (14), ( ) ( )( ) ( )2 2 2 2
ˆ aN Nπ θ π θ ∆∆ π− = −G p . Equation 

(30) follows by noting that 

( )( ) ( )( ) ( ) ( )( )2 2 2 2 2 2
ˆ ˆ:oN N N Nπ θ π θ π θ π θ= − = − − −e p p .    

 

Proof of Equation (34):  

By (21) and (14) 

 ( ) ( )2 2
a

sN N∆ π= − −e I H G p .  (50) 

Now from (30), ( )( )2 2
a

o ∆∆ π= − −e I HG p . Thus, ( ) ( )2 2 2 2
a

o π ∆∆ π= − + −e p HG p . Now, 

adding and subtracting ( )2 2∆ π−G p  to this equation and re-arranging terms, 

( )( ) ( ) ( )2 2 2 2
a

o ∆ π ∆ ∆ π= − − + − −e I G p I H G p , and (34) follows immediately from (26) and 

(50).             

 

Proof of Equations (35), (36) and (37):  
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Let ( )2 2: π= −e p  and ( ) ( )∆ ∆′= − −A I G I G . Then from (26), a
dT N ′= e Ae . Also,  

from (50) ( )
1 1
2 2a

sN N∆= −W e W I H G e . Then, letting ( ) ( )∆ ∆′′= − −B G I H W I H G , 

a
sT N ′= e Be . Finally, letting ( ) ( )∆∆ ∆∆′= − −C I HG I HG , a

oT N ′= e Ce . Equations (35), 

(36) and (37) then follow from Theorem 3.2d.4 in Mathai and Provost (1992).    
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Appendix 2: Derivatives involved in ∆11, ∆21, and ∆22  
 

 To obtain the derivatives involved in 1
11

π∆
τ

∂=
′∂
 we note that (2) can be rewritten 

as  

 ( ) ( )
11 1k k ki i i −

= −π Φ τ Φ τ  (51) 

where ( )n •Φ  denotes a n-variate standard normal distribution function, and since 

0
,

Ki i= −∞ =∞τ τ , 

 ( )
01 0i =Φ τ  ( )1 1

Ki
=Φ τ  (52) 

Then, the elements of 11∆  can be obtained using (51) and (52) with  

 
( ) ( )1

1
k

k

k

i
i

i

∂
=

∂
Φ τ

φ τ
τ

. (53) 

We also note that because of (51), (4) has a closed form solution  

 1

1

ˆ
k c

k

i i
c

p−

=

 =    ∑τ Φ ,  k = 1, ..., K - 1.  

Now, to obtain the derivatives involved in 2
21

π∆
τ

∂=
′∂
 and 2

22
π∆
ρ

∂=
′∂
 we first note 

that (3) can be rewritten as 

 ( ) ( ) ( ) ( )1 11 12 2 2 2, , , , , , , ,
k k k kk k k k k ki i i ii i i ii i ii i ii i ii− −′ ′ ′ ′ ′− −′ ′ ′ ′ ′ ′ ′ ′ ′= − − +π Φ τ τ ρ Φ τ τ ρ Φ τ τ ρ Φ τ τ ρ  (54) 

(Olsson, 1979: Equation 4), where ( )2 •Φ  is a bivariate standard normal distribution function 

with parameter ρii´. Again, since 
0

,
Ki i= −∞ =∞τ τ , 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0

0 0 0

2 1 2 2

2 1 2 2

, , , , 1 , , 0

, , , , 0 , , 0

k k KK K k

K kkk

i i i ii ii i ii i ii

i i ii ii i i ii i ii

′

′

′ ′ ′ ′ ′ ′

′ ′ ′ ′ ′ ′ ′

= = =

= = =

Φ τ τ ρ Φ τ Φ τ τ ρ Φ τ τ ρ

Φ τ τ ρ Φ τ Φ τ τ ρ Φ τ τ ρ
 (55) 

Then, the elements of 21∆  can be obtained using (52) through (55), and 
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( ) ( )2

1 1 2

, ,

1
k k kk

k

k

i i ii ii ii
i

i ii

′ ′′ ′ ′ ′

′

 ∂ −  =   ∂  − 

Φ τ τ ρ τ ρ τ
φ τ Φ

τ ρ
 (56) 

(Olsson, 1979: Equation 12). Finally, the elements of 22∆  can also be obtained using (52) 

through (55),  and 

 
( ) ( )2

2

, ,
, :k k

k k

i i ii
i i ii

ii

′

′

′ ′
′ ′

′

∂
=

∂

Φ τ τ ρ
φ τ τ ρ

ρ
 (57) 

(Muthén, 1978: Equation 18), a bivariate standard normal density function with parameter 

ρii´ evaluated at ( ),
k ki i ′′

τ τ . 
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Appendix 3: The asymptotic covariance matrix of sample thresholds and 

polychoric correlations in some special cases 
 

We shall first show that when K = 2 the expression of the asymptotic covariance of 

sample thresholds and tetrachoric correlations (16) reduces to that given by Muthén (1978). 

First we note that for each pair of categorical variables ( ),i iy y ′  there are two mathematically 

independent univariate probabilities, say ( ) ( )Pr 1  and Pr 1i i i iy y′ ′= = = =π π , and one 

mathematically independent bivariate probability, say ( ) ( )Pr 1 Pr 1iii iy y′ ′
 = = ∩ = π .  Let 

( )1 1, , nπ ′= π π , ( )2 21 31 1, , , nnπ −
′= π π π  and ( )1 2,π π π ′= , with sample counterparts 

( )1 2, ′=p p p . Muthén (1978) estimates each threshold and tetrachoric correlation separately 

using 

 ( )1
1î ip−= −τ Φ  (58) 

 ( )1
2ˆ ˆ ˆ,iii ii ip−

′ ′ ′= −ρ Φ −τ τ  (59) 

where Φ1(•) and Φ2(•) denote univariate and bivariate standard normal distribution 

functions. Since the relationship between ( ), ,i i ii′ ′τ τ ρ  and ( ), ,i i ii′ ′π π π  is one to one, using (58) 

and (59) is equivalent to employing (4) and (5) (Hamdan, 1970). Now,  

 ( ) 1

2 1 2
2

π
π π π

  = + =     
c C C C  , (60) 

illustrated here for n = 2 

 

00

01

10

11

1 - -1 1 11

0 0 1 1

1 1 0 1

0 0 0 1

i i ii

i

i

ii

′ ′

′

′

+− −                   −               = + =      −                                  

π π ππ
ππ π
ππ
ππ

-

-
i ii

i ii

ii

′ ′

′

′

               

π
π π
π

. 

Now, by (14) and (60), ( ) ( )ˆ aN Nκ κ π− = −GC p . Furthermore, it is easy to verify that 

 

1 1
1 1

1
1

1 1
2 22 2 1 2

π π
τ πτ

π π κπ π π π
τ ρρ τ τ ρ

− −

−
−

− −

  ∂   ∂          ′∂  ′  ∂∂    = = = =      ∂ ∂  ′    ∂  ∂ ∂ ∂ ∂     −          ′ ′ ∂ ∂        ′ ′ ′ ′ ∂ ∂ ∂ ∂     

0 0
GC G . (61) 
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Hence, in the binary case (16) reduces to Muthén's (1978) expression for the covariance 

matrix of the sample thresholds and tetrachoric correlations  

 1 1Ξ Γ− − ′= G G  (62) 

where Γ  denotes the covariance matrix of ( )N π−p . 

 Christoffersson and Gunsjö (1983) and Jöreskog (1994)  have provided expressions for 

the asymptotic covariance matrix of the sample polychoric correlations which are 

algebraically equivalent (Jöreskog, 1994: 386; Christoffersson & Gunsjö, 1996: p. 173).  

We shall now show that (17) equals their expression for the asymptotic covariance matrix of 

the sample polychoric correlations. To do so, we simply apply Jöreskog's (1994) proposition 5 

to the vector of all estimated polychoric correlations instead of to a single correlation as in 

Jöreskog's Equation 12, obtaining  

 ( )( ) ( ) ( ) ( ) ( )
1 1

22 2 22 22 2 2 2 22 2 22 22 2 21ˆ ˆaN N Nρ ρ θ ∆ ∆ ∆ π ∆ ∆ ∆ ∆ τ τ
− −

′ ′ ′ ′− = − − −D D p D D . 

Thus, ( )( ) ( ) ( )22 2 2 22 21ˆ ˆaN N Nρ ρ θ π ∆ τ τ− = − − −B p B  and using (11),  we readily 

obtain (13). Finally, Christoffersson and Gunsjö's (1983) formulae are a direct application to 

the case n > 2 of Olsson's (1979) results. Hence, (16) reduces to Olsson's in the bivariate 

case. 
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Appendix 4: Correlation structure models with unrestricted thresholds 
 Suppose that a parametric structure is imposed on ρ, say ρ (θ), but that τ is left 

unconstrained. Now, we partition 
11 21

21 22

ˆ ˆ
ˆ

ˆ ˆ

 ′   =     

W W
W

W W
 in (6) according to the partitioning of 

( ),κ τ ρ ′′ ′= . Then, we can estimate θ by minimizing in the third stage the weighted least 

squares function 

 ( )( ) ( )( )2 22
ˆˆ ˆF ρ ρ θ ρ ρ θ′= − −W  (63) 

which is computationally more convenient than (6). In this case, 2
ˆ ˆF F=  and the parameter 

estimates for θ and their standard errors estimated by minimizing F2 will equal those 

obtained by minimizing F (Muthén, 1978: p. 554; Maydeu-Olivares & Hernández, 2000: 

Appendix 1).  Also, denoting the asymptotic covariance matrix of the sample polychoric 

correlations by Ξ22, we have when 1
22 22

ˆ Ξ̂ −=W  (WLS), ( ) 1

2 2
ˆ ˆdiag Ξ

−
=W  (DWLS),  and 

2
ˆ =W I   (ULS). 

Let 22
ρ∆
θ
∂=

′∂
 and ( ) 1

2 22 22 22 22 22∆ ∆ ∆
−

′ ′=H W W . When a parametric structure is 

imposed on ρ, say ρ(θ), τ is left unconstrained and θ is estimated by minimizing (63) we 

have 

 ( ) ( )2
ˆ ˆaN Nθ θ ρ ρ− = −H  (64) 

 ( ) ( )2 22 2
ˆ ,dN Nθ θ Ξ ′− → 0 H H  (65) 

 ( )( ) ( ) ( )(2)
22 2

ˆˆ ˆ: a
sN N Nρ ρ θ ∆ ρ ρ= − = − −e I H  (66) 

 ( )(2)
22,d

sN N→e 0 V  ( ) ( ) ( )22
22 2 22 22 2s ∆ Ξ ∆ ′= − −V I H I H  (67) 

 (2) 2
2 1

1

ˆ
srd

s i
i

T NF
=

= →∑α χ  (68) 

where the degrees of freedom available for testing the structural restrictions ρ(θ) are now  
( )1

2s
n nr q−= − . In (68) the 'i sα  are now the non-null eigenvalues of 

( )(22)
22 22 2 22s ∆ Ξ= −M W I H . Also, when 1

22 22
ˆ Ξ̂ −=W , (65) and  (68) simplify to  
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 ( ) ( ) 1
1

22 22 22
ˆ ,dN Nθ θ ∆ Ξ ∆

−
−  ′− →   

0  (2) 2
s

d
s rT →χ . (69) 

On the other hand, when ( )( ) 1

22 22
ˆ ˆDiag Ξ

−
=W  or 22

ˆ =W I , a goodness of fit of the model 

can be obtained using 

 
( )

(2)
(2)

(22)Tr /
s

s
s s

TT
r

=
M

 
( )

(2)
(2)

(22)2Tr /
s

s
s s

TT
r

=
M

 (70) 

The former is referred to a chi-square distribution with rs degrees of freedom, whereas the 

latter is referred to a chi-square distribution with 
( )
( )

2(22)

(22)2

Tr

Tr /
s

s
s s

d
r

=
M

M
 degrees of freedom.  
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Appendix 5: Mean and covariance structure models 
Throughout our presentation we have assumed that the model's underlying normal 

density had a correlation structure and a zero mean vector. Suppose instead that our model 

is ( ) ( )( )* ,N µ θ Σ θy ∼  where Σ denotes a covariance matrix and suppose that each 

variable *
iy  has been categorized using 

1

* if 
k ki i i i iy k y

+
= < <α α  where 

0
,

ki i= −∞ =∞α α .  

According to this model 

 ( ) ( ) ( )( )* *

1

Pr : ,
n

i i n
i

y k dµ θ Σ θ
=

 
 = =  

∫ ∫R
y yφ∩  (71) 

where ( )n •φ  denotes a n-dimensional normal density function, and R  is a n-dimensional area 

of integration with intervals ( )
1

,
k ki i iR

+
= α α .  

Now, these pattern probabilities are unchanged when we perform a change of variable 

of integration in (71) standardizing y* using 

 ( )* * µ= −z D y  ( )
1
2Diag Σ −=D  (72) 

where note that the diagonal matrix D depends on θ. Then, at *
ki iy = α , 

2
: k

k

i i
i

i

−
=

α µ
τ

σ
, 

where 2
iσ  denotes a diagonal element of Σ . Letting ( )1 , ,

k kk nτ ′= τ τ  and 

( )1 , ,
k kk nα ′= α α the transformation (72) yields (1) where *z

µ = 0  and  

 ( )k kτ α µ= −D  *z
Ρ Σ= D D . (73) 

Maydeu-Olivares and Hernández (2000) showed that if and only if Σ(θ) is scale 

invariant, then it is possible to find a reparameterization of θ so that *z
Ρ  has the same 

functional form as Σ. Thus, in this case we can take rid of the diagonal matrix D.  

Consider now the situation in which α is unconstrained and µ = 0. In this case, if 

Σ(θ) is not scale invariant, then the restrictions imposed on the thresholds τ and on the 

polychoric correlations Ρ are k kτ α= D  and *z
Ρ Σ= D D . Therefore, the parameters of a 

categorized covariance structure model that is not scale invariant may not be estimated in 

the third stage from the polychoric correlations alone because the thresholds τ also depend 

on θ through the model-based matrix D. For further details, see Maydeu-Olivares and 

Hernández (2000). 


