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LIMITED INFORMATION ESTIMATION AND TESTING OF THURSTONIAN MODELS
FOR PAIRED COMPARISON DATA UNDER MULTIPLE JUDGMENT SAMPLING

ALBERT MAYDEU-OLIVARES

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

We relate Thurstonian models for paired comparisons data to Thurstonian models for ranking data,
which assign zero probabilities to all intransitive patterns. We also propose an intermediate model for
paired comparisons data that assigns nonzero probabilities to all transitive patterns and to some but not all
intransitive patterns.

There is a close correspondence between the multidimensional normal ogive model employed in
educational testing and Thurstone’s model for paired comparisons data under multiple judgment sampling
with minimal identification restrictions. Alike the normal ogive model, Thurstonian models have two
formulations, a factor analytic and an IRT formulation. We use the factor analytic formulation to estimate
this model from the first and second order marginals of the contingency table using estimators proposed by
Muthén. We also propose a statistic to assess the fit of these models to the first and second order marginals
of the contingency table. This is important, as a model may reproduce well the estimated thresholds and
tetrachoric correlations, yet fail to reproduce the marginals of the contingency table if the assumption of
multivariate normality is incorrect.

A simulation study is performed to investigate the performance of three alternative limited infor-
mation estimators which differ in the procedure used in their final stage: unweighted least squares (ULS),
diagonally weighted least squares (DWLS), and full weighted least squares (WLS). Both the ULS and
DWLS show a good performance with medium size problems and small samples, with a slight better
performance of the ULS estimator.

Key words: UMD, EWMD, WMD, GLS estimation, LISREL, categorical data analysis, preference data,
MPLUS, binary data, goodness of fit.

1. Introduction

Consider the problem of modeling the choice behavior of a homogeneous population of
subjects in a paired comparisons design. For a fixed set of n objects and a random sample of N
individuals from the population of interest, this experimental design consists in constructing all
possible pairs of objects,

ñ =
(

n
2

)
= n(n − 1)

2
,

and presenting them one pair at a time to each individual in the sample. These individuals are
also given some preference or choice criterion and are asked to express their preferences for one
object in each pair using the specified criterion.

Throughout this presentation, we shall assume that: (a) no equality judgments are allowed,
(b) each subject in the sample is asked to judge all pairs—this is what Bock and Jones (1968)
refer to as multiple judgment sampling—and that (c) presentation order effects are negligible—
possibly through randomization of the order of presentation of pairs, and of the stimuli within a
pair.
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One of the most widely known class of models for paired comparisons data are Thursto-
nian models which assume that (Thurstone, 1927): (a) whenever a pair of stimuli is presented
to a subject it elicits a continuous preference (utility function, or in Thurstone’s terminology,
discriminal process) for each stimulus; (b) the stimulus whose value is larger at the moment of
the comparison will be preferred by the subject; (c) these unobserved preferences are normally
distributed in the population.

By imposing constraints on the mean and covariance matrix of the underlying normal den-
sity one obtains different Thurstonian models such as Case III and Case V models (Thurstone,
1927), the factorial model (Takane, 1980; Heiser & de Leeuw, 1981), the wandering vector model
(Carroll, 1980; De Soete & Carroll, 1983), the ideal point model (Brady, 1989), or the wandering
ideal point model (De Soete, Carroll & DeSarbo, 1986). Takane (1987) discussed what restric-
tions these models impose on the binary pattern probabilities. He also proposed a mean and
covariance structures analysis approach to estimating these models via Muthén’s (1978) lim-
ited information estimator. However, Takane (1987) provided neither identification restrictions
nor empirical examples and hence his paper largely remained programmatic. Here, taking on
Takane’s (1987) suggestive proposals, we provide a set of identification restrictions for Thursto-
nian paired comparisons models and we discuss the estimation of these models by the limited
information methods proposed by Muthén (1978, 1993; Muthén, du Toit & Spisic, in press).

A drawback of these limited information methods is that no statistical test for assessing the
overall fit of the models to the contingency table was available. A test statistic will be proposed
to overcome this limitation. Also, a small simulation study will be performed to investigate the
small sample behavior of this statistic and the relative merits in estimating these models of three
different estimators proposed by Muthén (1978, 1993; Muthén, du Toit & Spisic, in press).

Thurstonian models for paired comparisons data assign nonzero probabilities to all paired
comparisons patterns. These models are closely related to Thurstonian models for ranking data
which can be seen as models for paired comparisons data that assign nonzero probability only
to transitive paired comparisons (Maydeu-Olivares, 1999). A model between these two extremes
that may be of interest in applications would postulate that intransitivities should occur only for
certain combinations of objects. We refer to these models as models with localized intransitivities
and discuss how they can be specified within a Thurstonian framework.

Most of our discussion revolves around the unrestricted Thurstonian (UT) model for paired
comparisons data. This is a Thurstonian model in which the mean and covariance matrix of
the underlying normal variates are unconstrained except for minimal restrictions needed for its
identification. We find this model appealing in applications because it has a straightforward in-
terpretation. Also, it is a useful benchmark model to assess the suitability of the whole class of
Thurstonian models to the data at hand. With the identification restrictions provided here, there
are close similarities between the UT model and the multidimensional normal ogive (MNO)
model employed in the educational testing literature. Just as the MNO model can be expressed
using a factor analytic (FA) or an item response theory (IRT) formulation (Takane & de Leeuw,
1987), so does the UT model, and we shall provide both formulations of the model.

2. Thurstone’s Model for Multiple Judgment Paired Comparison Data

Consider a set of n objects and a random sample of N individuals; ñ pairs of objects are
constructed and each pair is presented to each individual in the sample. The outcomes of each
paired comparison will be represented by a dichotomous random variable yl indicating whether
for each ordered pairwise combination of objects l a subject chooses object i or i ′

yl j =
{= 1 if subject j chooses object i
= 0 if subject j chooses object i ′ l = 1, . . . , ñ; j = 1, . . . , N (1)

where l ≡ (i, i ′), (i = 1, . . . , n − 1; i ′ = i + 1, . . . , n).
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Let ti j denote subject j’s unobserved continuous preference for object i . Thurstone (1927)
proposed performing the following pairwise linear transformation on the set of unobserved pref-
erences

y∗l = ti − ti ′ (2)

Since under the model choices are performed according to the rule:

Choose object

{
i if ti j ≥ ti ′ j
i ′ if ti j < ti ′ j

,

it follows that

yl j =
{= 1 if y∗l j ≥ 0

= 0 if y∗l j < 0
. (3)

Now, as proposed by Takane (1987), Thurstonian models for ñ-dimensional patterns of
paired comparisons are obtained by considering the joint distribution of a n-dimensional vector
of unobserved continuous preferences t and a ñ-dimensional vector of random errors e associated
with each specific paired comparison. We assume that(

t
e

)
∼ N

((
�t

0

)
,

(
�t

0 �

))
(4)

where � is a diagonal matrix with diagonal elements ωl .
As in (2) we assume the linear transformation

y∗ = (A I
) (t

e

)
= A t+ e, (5)

where A is a ñ × n matrix of simple pairwise contrasts with element in row l and column k

alk =



0 if k /∈ {i, i ′}
1 if k = i
−1 if k = i ′

.

For example, when n = 4, A is

A =




1 −1 0 0
1 0 −1 0
1 0 0 −1
0 1 −1 0
0 1 0 −1
0 0 1 −1



. (6)

Finally from (3), for any paired comparisons pattern

Pr

[
ñ⋂

l=1

yl

]
=
∫
· · ·
R

∫
φñ(y

∗ : A�t ,A�t A′ +	)dy∗, (7)

where φñ(•) denotes a ñ-dimensional normal density, and the limits of integration in (7) are

Rl =
{
(0,∞) if yl = 1
(−∞, 0) if yl = 0

. (8)
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Equations (7) and (8) define an unrestricted Thurstonian model. Restricted Thurstonian
models can be obtained by imposing suitable constraints on �t and �t (see Takane, 1987).

3. Identification Restrictions

Since the observed variables are dichotomous, the means and variances of y∗ are not iden-
tifiable separately. This can be solved for instance by setting σ 2

y∗l
= 1, ∀l, so that y∗ has a

correlation structure, Py∗ . One way to enforce the variance normalization restriction on y∗ is by
using a restriction analogous to that employed in factor analysis for dichotomous variables

� = I− diag(A�t A′). (9)

Hence, Thurstonian models will be identified if and only if they are can be identified from
the reduced form parameters of the model, �y∗ and Py∗ . We notice that since A is of rank n − 1,
the parameters of any Thurstonian model suffer from a location indeterminacy. In the case of the
UT model, this indeterminacy can be solved for instance by setting

µn = 0
σi i = 1,∀i

(10)

so that Pt , a correlation matrix among the continuous unobserved preferences, is estimated in-
stead of their covariance matrix.

Consider now Thurstone’s (1927) Case V and Case III models, in which �t = ψI and �t

is a diagonal matrix, respectively. Given (9), the location indeterminacy in these models can be
solved (and hence these models are identified) by just letting µn = 0.

4. Relationships Between the Unrestricted Thurstonian Model for Paired Comparisons
Data and the Normal Ogive Model for Item Response Modeling

The UT model for paired comparisons data is a latent trait model because the random vari-
ables y∗ conditional on t are mutually independent by the diagonal assumption on �. Further-
more, if we define item response models as latent trait models with categorical indicators, then
this model is an item response model. We shall now see that there is a close relationship be-
tween the UT model defined by (7) and (8) with identification restrictions (9) and (10) and the
multidimensional normal ogive (MNO) item response model for dichotomous test data (e.g.,
Christoffersson, 1975). The latter is defined by

Pr

[
n⋂

i=1

yi

]
=
∫
· · ·�
R

∫
φn(w∗;�w∗,Pw∗) dw∗ (11)

�

Ri =
{
(τi ,∞) if yi = 1
(−∞, τi ) if yi = 0

i = 1, . . . , n.

In (11), it is assumed that w∗ has the following mean and correlation structure: �w∗ = 0 and
Pw∗ = ���′ +�, and it is further assumed that w∗ has been dichotomized according to a set
of thresholds �.

There is a rather obvious relationship between the reduced form parameters of this model,
� and Pw∗ , with those of the UT model for paired comparisons data.

Lemma. The reduced forms of the MNO model for ñ items and of the UT model for n
objects are equivalent with

�y∗ = −�

Py∗ = Pw∗
(12)
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Proof. Perform a change of variable y∗l = w∗l − τl , in the normal ogive model. Then dy∗l =
dw∗l and at w∗l = τl , y∗l = 0.

As for the relationships between the actual parameters of both models, the MNO model can
be identified (McDonald, 1985) by letting � be a low echelon matrix, � a correlation matrix,
and � = I − diag(���′). Taking into account these identification restrictions, we see that the
MNO and UT models differ in

1. The dimension of the latent variable vector. This is fixed in the UT model, n (in fact, n − 1,
see the next section), whereas the MNO model just requires that p < n.

2. The correlation structure. � in the MNO model consists of regression coefficients to be esti-
mated, whereas A in the UT model is a fixed design matrix.

3. The mean structure. This is an unrestricted vector, −�, in the MNO model, whereas in the
UT model it is a linear function (given by the design matrix A) of the parameter vector �t .

Equation (11) corresponds to a factor analytic formulation of the MNO model (Takane &
de Leeuw, 1987). This model has an alternative formulation that is more frequently used in item
response theory (IRT). Just as the MNO model has two formulations, so does the unrestricted
Thurstonian model. We next present an IRT formulation of the UT model.

5. An IRT Formulation of the Unrestricted Thurstonian Model for Paired Comparison Data

The identification restrictions (10) are not unique of course and were chosen for ease of
interpretation (see Maydeu-Olivares, 1999, Appendix B). Now, to formulate the UT model as an
IRT model it is convenient to reparameterize it as

z = S t (13)

where S = [In−1 − 1n−1] is a matrix arbitrarily chosen so that its rows are in the row space of
A. With this reparameterization, the parameters being estimated are �z = S�t and �z = SPt S′.
Letting µi ∈ �t , µ̃i ∈ �z, ρi i ′ ∈ Pt , σ̃i i ′ ∈ �z , the relationship between both parameterizations
is given by

µ̃i = µi

σ̃i i = 2− 2ρni i = 1, . . . , n − 1; i ′ = i + 1, . . . , n (14)

σ̃i i ′ = 1+ ρi i ′ − ρni − ρni ′ .

With this reparameterization, (7) can be rewritten as

Pr

[
ñ⋂

l=1

yl

]
=
∫
· · ·
R

∫
φñ(y

∗ : K�z,K�zK′ +�) dy∗ (15)

where K = AS′(SS′)−1 equals the first n − 1 columns of A, and now � = I − diag(K�zK′).
Now, as in Takane and de Leeuw (1987) we let

Pr

[
ñ⋂

l=1

yl

]
=
∫
· · ·
R

∫ 


∞∫
−∞

· · ·
∞∫

−∞
φñ(y

∗|z)φn−1(z) dz


 dy∗

=
∞∫

−∞
· · ·

∞∫
−∞

φn−1(z : 0,�z)

{∫
· · ·
R

∫
φñ(y

∗|z : �y∗ −Kz,�) dy∗
}

dz
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=
∞∫

−∞
· · ·

∞∫
−∞

φn−1(z : 0,�z)

ñ∏
l


∫

Rl

φ1(y
∗
l |z : k′lz+ µy∗l , ωl) dy∗l


 dz. (16)

In the last expression in (16) we use that the y∗l |z are mutually uncorrelated by the diagonality
assumption on �, and hence independent by the multivariate normality of y|z. Finally,

∫
Rl

φ1
(
y∗l |z : k′lz+ µy∗l , ωl

)
dy∗l =

(
�1

(
k′lz+ µy∗l√

ωl

))yl
(

1−�1

(
k′lz+ µy∗l√

ωl

))1−yl

(17)

where �1(•) denotes a univariate standard normal distribution function.
Equation (16) with (17) is the IRT formulation of the unrestricted Thurstonian model for

paired comparisons data in which pattern probabilities require integrating over the n − 1 dimen-
sional multivariate normal density z. The purpose of the reparameterization (13) is to reduce the
dimensionality of the integration problem from n to n − 1.

6. Model Interpretation, Improper Solutions, Boundary Solutions,
and Models with Localized Intransitivities

Under the sampling scheme considered in this paper, the parameters of the unrestricted
Thurstonian model have a straightforward interpretation: The µi and σi i denote the mean and
variance of the population’s unobserved continuous preferences for that object, while ρi i ′ denotes
the correlation between the preferences for objects i and i ′ in that population.

The random errors e in (5) are crucial in modeling paired comparisons data. Their inclusion
allows the modeling of intransitive patterns of paired comparisons. A pattern of binary prefer-
ences is said to be transitive when given the pattern it is possible to rank order the objects, and
intransitive otherwise. Substantively, a random error e(i,i ′) j reflects that a subject’s preference for
an object can change during the paired comparisons experiment as the object is presented next to
different objects, thus giving rise to intransitivities. These errors are assumed to be uncorrelated
with the continuous preferences and uncorrelated with each other, so that their covariance matrix,
�, is diagonal.

Maydeu-Olivares (1999) has shown that since A is of rank n− 1, APt A′ has rank n− 1 and
that (7) and (8) with � = 0 assign nonzero probabilities only to transitive patterns, thus defin-
ing a Thurstonian model suitable for ranking data. Mathematically, the addition of � to APt A′
transforms Py∗ into a positive definite matrix, so that the model assigns nonzero probabilities to
all 2ñ paired comparisons patterns.

Therefore, if all members of a population were transitive in their paired comparisons pref-
erences, then � = 0. We have found in unpublished applications that when all objects to be
compared are similar to each other (as when the objects to be compared are different products
within a market segment), almost invariably over 85% of the subjects in the sample yield transi-
tive patterns. In these situations, one should expect some diagonal elements of � be very close
to zero in the population. In fact, any number of them may be zero in the population as long as

Py∗ = APt A′ +�

is positive definite, since that is a necessary and sufficient condition for the model to assign
nonzero probabilities to all paired comparisons patterns.

Because some diagonal elements of � can be zero in the population, improper solutions in
which some estimates become negative are very likely to occur in paired comparisons applica-
tions with few observed intransitive patterns. Now, since with the identification restrictions laid
out in section 3, � = I − diag(APt A′), its elements are of the form ωl = 1 − 2ρi i ′ . Therefore,
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for ωl to be positive,

|ρi i ′ | > 1

2
, ∀ρi i ′ ∈ Pt . (18)

Hence, the ρi i ′ are not properly correlations since they are bounded by (18) and they should be
interpreted accordingly.

Should an improper solution arise, inequality constraints can be enforced by reparameteri-
zation (McDonald, 1980) to obtain a boundary solution. However, whenever a boundary solution
is obtained, the rank of Py∗ should be evaluated to determine whether the model assigns nonzero
probabilities to all paired comparisons patterns. The rank of Py∗ (i.e., its maximum rank over the
admissible parameter space) can be efficiently determined using computer algebra (see Bekker,
Merckens & Wansbeek, 1994). Direct verification shows, for example, that for Py∗ to be posi-
tive definite when n = 3, only one element of � needs to be nonzero. On the other hand, when
n = 4, (a) if 4 or more elements of � are nonzero, Py∗ will be positive definite; (b) if 2 or fewer
elements are nonzero, Py∗ will not be positive definite, and (c) if there are exactly three nonzero
elements, Py∗ will be positive for all but four permutations of the zero elements in �. Note that a
necessary condition for Py∗ to be of full rank is that at least ñ−n+1 elements of � are nonzero.

Whenever the UT model has zero elements in �, y∗|z is a singular multivariate normal
density, and for all l such that ωl = 0, y∗l |z is a degenerate distribution. In this case, the IRT
formulation of the UT model is given by (16) with (17) for all l such that ωl �= 0, and by (16)
with∫

Rl

φ
(
y∗l |z : k′lz+ µy∗l , ωl

)
dy∗l = (Iz)

yl (1− Iz)
1−yl where Iz =

{
1 if k′lz+ µy∗l > 0
0 if k′lz+ µy∗l < 0

(19)
for all l such that ωl = 0.

Whenever ωl = 0 one of the two stimuli in pair l is consistently chosen for fixed z. To
see why in this case intransitivities may still arise, consider three objects {o1, o2, o3}. Assume
ω(1,2) > 0, ω(1,3) > 0, ω(2,3) = 0. This implies that subjects consistently choose between objects
2 and 3, but intransitivities may arise as subjects need not consistently choose between objects 1
and 2 or between objects 1 and 3.

In some applications researchers may have some prior substantive knowledge to believe that
intransitivities should occur only for certain combinations of objects, thus leading to models with
more than n! but less than 2ñ expected patterns. We shall refer to these models as models with
localized intransitivities. Within a Thurstonian framework, such models with localized intransi-
tivities arise when (a) some but not all elements of � are zero and (b) Py∗ is not positive definite.
It can be readily verified that when these two conditions are satisfied, intransitive paired compar-
isons patterns that except for the columns in which ωl �= 0 equal a transitive pattern are assigned
zero probability. Note that since when n = 3 Py∗ is positive definite whenever any element of �
is nonzero, models with localized intransitivities only exists for n ≥ 4.

7. Model Estimation and Testing

Using the Lemma in section 4, any of the methods proposed for the estimation of the nor-
mal ogive model can be directly applied to estimate Thurstonian models for paired comparisons
data: (a) limited information methods (e.g., Christoffersson, 1975; Muthén, 1978, 1984, 1993;
Küsters, 1987), (b) full information methods based on the EM algorithm (Bock & Aitkin, 1981),
or (c) resampling methods (e.g., Albert, 1992; Hajivassiliou, 1993; Schilling, 1993). Further-
more, any available computer program for the estimation of the normal ogive model can be used
to estimate these models provided that the Thurstonian modeling constraints can be imposed on
the thresholds and tetrachoric correlations of the normal ogive model via (12).
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As paired comparisons experiments are rather time consuming, only small samples are gen-
erally collected in applications of this methodology. As a result, contingency tables, which are of
size 2ñ , will generally be very sparse. This may give an edge to limited information estimators
over full information estimators, as the former only make use of the lower order marginals of
the contingency table which may be well estimated even in sparse tables. Furthermore, limited
information estimators are considerably faster than full information estimators.

In this paper we shall employ three-stage limited information estimators proposed by
Muthén (1978, 1993; Muthén, du Toit & Spisic, in press). Let 	 = (�,
)′ where � = −�y∗ and
now 
 is used to denote the lower diagonal elements of Py∗ . In a first stage each element of � is
estimated separately as

τ̂l = −�−1
1 ( ṗl), l = 1, . . . , ñ (20)

where ṗl is the sample counterpart of π̇l = Pr(yl = 1).
In the second stage, each element of Py∗ is estimated separately given the first stage esti-

mates as

ρ̂ll ′ = �−1
2

(
ṗll ′ | − τ̂l ,−τ̂l ′

)
, l = 2, . . . , ñ; l ′ = 1, . . . , l − 1 (21)

where ṗll ′ is the sample counterpart of π̇ll ′ = Pr(yl = 1, yl ′ = 1).
Finally, in a third stage the parameters of any Thurstonian model collected in a q-

dimensional vector � are estimated by minimizing

F = (	̂ − 	(�))′Ŵ(	̂ − 	(�)) (22)

where Ŵ is a matrix converging in probability to W, a positive definite matrix.
Let p̃2 = ( ṗ1, · · · , ṗñ, ṗ2,1, · · · , ṗñ,ñ−1)

′ and �̃2 be the vector of its corresponding proba-
bilities, where

√
N (p̃2 − �̃2)

d→ N (0,
) (23)

and
d→ denotes convergence in distribution. Muthén (1978) showed that

√
N (	̂ − 	)

a= �̃−1
√

N (p̃2 − �̃2) (24)

where �̃ = ∂�̃2
∂	′ , and

a= denotes asymptotic equality. Thus,

√
N (	̂ − 	)

d→ N (0,� = �̃−1
�̃−1′). (25)

Therefore, obvious choices of Ŵ in (22) are Ŵ = �̂−1 (Muthén, 1978), Ŵ = diag(�̂)−1

(Muthén, du Toit & Spisic, in press), and Ŵ = I (Muthén, 1993). Using standard results for
weighted least squares estimators (e.g., Browne, 1984; Satorra, 1989; Satorra & Bentler, 1994)

√
N (�̂ − �)

a=H
√

N (	̂ − 	) H = (�′W�)−1�′W (26)

N F̂
d→∑r

i=1 αiχ
2
i (27)

where � = ∂	
∂� ′ , and r = ñ(ñ+1)

2 − q is the number of degrees of freedom of the model. In (27),
the χ2

i ’s are independent chi-square variables with one degree of freedom and the αi ’s are the r
nonnull eigenvalues of

M = W(I− �H)�. (28)
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It then follows (Muthén, 1993) that

√
N (�̂ − �)

d→ N (0,H�H′). (29)

Now, when Ŵ = �̂−1, (27) and (29) simplify to N F̂
d→χ2

r , and
√

N (�̂ − �)
d→ N (0,

(�′�−1�)−1), respectively, and we obtain an estimator that asymptotically has minimum vari-
ance among the class of estimators based on the first and second order marginals of the contin-
gency table. On the other hand, when Ŵ = diag(�̂)−1 or Ŵ = I, a goodness of fit of the model
can be obtained (Muthén, 1993; Muthén et al., in press) by scaling T := N F̂ by its mean or
adjusting it by its mean and variance so that it approximates a chi-square distribution as follows

Ts = r

Tr[M]T Ta = Tr[M]
Tr[M2]T (30)

where Ts and Ta , denote the scaled (for mean) and adjusted (for mean and variance) test statistics.
Ts is referred to a chi-square distribution with r degrees of freedom, whereas Ta is referred to a

chi-square distribution with d = (Tr[M])2
Tr[M2] degrees of freedom.

These statistics can be used to test H0 : 	 = 	(�). However, as discussed by Muthén
(1993), verifying this hypothesis is only meaningful if the distributional hypothesis of di-
chotomized multivariate normality is correct, but a test of this hypothesis is only currently
available for triplets of binary variables (Muthén & Hofacker, 1988).

Rather than employing this approach, we propose testing directly H0 : �̃2 = �̃2(�). By a
Taylor series expansion

�̃2(�̂)
a= �̃2(�)+ ∂�̃2

∂� ′
(�̂ − �) = �̃2 + �̃�(�̂ − �).

Hence, by (24) and (26)

√
N (�̃2(�̂)− �̃2)

a= �̃�H�̃−1
√

N (p̃2 − �̃2). (31)

Now, since

√
N (p̃2 − �̃2(�̂)) =

√
N (p̃2 − �̃2)−

√
N (�̃2(�̂)− �̃2)

a=√N (I− �̃�H�̃−1)(p̃2 − �̃2),

we obtain from (23)

√
N ˆ̃e : = √N (p̃2 − �̃2(�̂))

d→ N (0, M̃) (32)

M̃ = (I− �̃�H�̃−1)
(I− �̃�H�̃−1)′. (33)

Consider now the test statistic T̃ = N ˆ̃e′ ˆ̃e. Since T̃
d→∑r

i=1 α̃iχ
2
i , where the α̃i ’s are the r nonnull

eigenvalues of M̃ (Box, 1954, Theorem 2.1). To test H0 : �̃2 = �̃2(�), following Satorra and
Bentler (1994), we propose scaling T̃ by its mean or adjusting it by its mean and variance so that
it approximates a chi-square distribution using

T̃s = r

Tr[M̃] T̃ T̃a = Tr[M̃]
Tr[M̃2] T̃ . (34)

T̃s is to be referred to a chi-square distribution with r degrees of freedom, whereas T̃a is to be

referred to a chi-square distribution with d̃ = (Tr[M̃])2
Tr[M̃2] degrees of freedom.
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It is interesting to point out that in the case of the Case III, Case V and UT models, the
reduced form parameters of the model 	 can be expressed as a linear function of the model
parameters, say 	 = �� + c. As a result, for these models (22) has a closed form solution

�̂ = (�′Ŵ�)−1�′Ŵ(	̂ − c) (35)

Should an improper solution arise in these models with closed form solutions since zero el-
ements in � are admissible, a boundary solution can be obtained by sequentially employing (35),
setting the smallest improper ρi i ′ equal to its boundary value until a proper solution is obtained.
This is equivalent to the method of successive averaging (e.g., Hubert & Arabie, 1995) and it is
more efficient computationally than employing reparameterization techniques (e.g., McDonald,
1980). Note, however, that standard errors and goodness of fit tests obtained in boundary solu-
tions would be incorrect (Shapiro, 1985, 1988). Perhaps these could be obtained along the lines
of Shapiro (1985, 1988) or employing resampling methods as suggested by Dijkstra (1992).

In closing this section, it should be pointed out that when a model assigns zero probabilities
to some binary patterns (as in the case of models with localized intransitivities, or in the case of
ranking data), the degrees of freedom available for testing will be reduced. Let Y• be a t × ñ
matrix (t ≤ 2ñ) containing all binary patterns with nonzero model probabilities. Then, following
Maydeu-Olivares (1999, Appendix 2) the number of mathematically independent elements in �̃2

(and hence in 	) equals the rank of T =
(

T1
T2

)
, where T1 = Y•′, and the kth row of T2 is given

by

t′k = y•′l � y•′l ′ , l = 2, . . . , ñ; l ′ = 1, . . . , l − 1 (36)

where y•l denotes the lth column of Y•, and � denotes an elementwise (Hadamard) product.
Hence the number of degrees of freedom available for testing models with localized intransitivi-
ties equals rank(T)− q .

8. Simulation Study

The asymptotically optimal WLS estimator has been repeatedly shown to behave poorly
in small samples, particularly in large models (e.g., Muthén, 1993, Reboussin & Liang, 1998).
Thus, recently, interest has turned to estimators such as DWLS with Ŵ = diag(�̂)−1 (Muthén,
du Toit & Spisic, in press), and ULS with Ŵ = I (Muthén, 1993), which do not require the
inversion of the large symmetric matrix Ŵ = �̂−1.

No published study has compared the actual performance of the DWLS and ULS ap-
proaches. We shall therefore perform here a small simulation study to compare these approaches
in estimating an unrestricted Thurstonian model for paired comparisons data. The simulation
study will also allow us to investigate the small sample behavior of the overall goodness of fit
tests just introduced.

Two models will be considered, a small and a medium size model with n = 4 and n = 7
objects respectively. The parameters used to generate the data were

n = 4 objects

µt =




0.5
0

−0.5
0


 Pt =




1
0.8 1
0.7 0.6 1
0.8 0.7 0.6 1



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n = 7 objects

µt =




0.5
0

−0.5
0

0.5
−0.5

0




Pt =




1
0.8 1
0.7 0.6 1
0.8 0.7 0.6 1
0.8 0.7 0.6 0.8 1
0.7 0.6 0.8 0.7 0.6 1
0.8 0.7 0.6 0.8 0.7 0.6 1




Two sample sizes will be considered, N = 300 and N = 100. 1000 replicates were used in
each experimental cell. To increase the comparability of the results the same starting seed was
used within each cell. The parameter estimates and estimated standard errors for the small model
are shown in Table 1, and the goodness of fit statistics are shown in Tables 2 and 3.

For this model, we also show the results obtained using the full WLS estimator. In this case,
we used a generalized inverse of the weight matrix whenever this was found to be singular.

We shall define estimation bias as
x
θ̂
−θ0
θ0

, standard error bias as
x SE(θ̂)−sd

θ̂

sd
θ̂

, and coverage rate

as the percentage of estimated 95% confidence intervals (θ̂ ± 1.96 SE(θ̂)) that included the true
parameter. We note in Table 1 that both the DWLS and WLS correlation parameter estimates
show a downward bias. This increases in the smaller sample size and it is larger for WLS than
for DWLS. We also note that the estimated standard errors are largest for ULS, followed by
DWLS, and then by WLS. The estimator that shows the smallest standard error bias is ULS.
However, the estimation and standard error biases for DWLS are small. Turning to the results
for the tests of the structural restrictions shown in Table 2, we see that both the mean (Ts) and
mean and variance (Ta) corrected statistics perform reasonably at N = 300, but when N = 100,
Ta clearly outperforms Ts , the latter being too optimistic. This is true for both ULS and DWLS
estimation. The test statistic associated with WLS, N F̂ , is too optimistic at N = 300 and clearly
inadequate at N = 100. Finally, we see in Table 3 that the overall T̃a statistic works well for
all three estimators even at N = 100, whereas the T̃s is too liberal. In sum, we conclude that
even with the small model considered here, WLS is clearly inadequate at the small sample sizes
considered: Its parameter estimates and standard errors for the correlation structure show a large
downward bias. The differences obtained when using DWLS and ULS are small. ULS parameter
estimates, however, do not show the consistent downward bias of DWLS parameter estimates,
and its standard errors show a smaller bias.

Tables 4 and 5 summarize the results corresponding to the larger model (7 objects). Here the
number of parameters is rather large and the results shown in Table 4 are pooled across parameter
estimates having the same true value. Again, we observe that both the DWLS and ULS estimators
work well even when N = 100, and that the ULS estimator shows a better performance than the
DWLS estimator, as the DWLS correlation parameter estimates show a downward bias, whereas
the ULS correlation estimates show almost no bias. Furthermore, the standard error bias for the
correlation parameters is smaller for ULS than for DWLS. We also observe in Table 5 than it is
inappropriate to use the Ts and T̃s statistics for this medium size model. On the other hand, the
Ta and T̃a statistics work well in all cases.

9. Application

We investigated compact car preferences among college students. Using a multiple judg-
ment paired comparisons design, 289 subjects were asked which car they would buy if they
could afford one. In this example we shall analyze their responses to these four cars {Opel Corsa,
Renault Clio, Seat Ibiza, Volkswagen Polo}. With four objects, there are 26 = 64 possible paired
comparisons patterns, of which 4! = 24 are transitive patterns. However, only 41 distinct patterns
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TABLE 2.
Tests of the structural restrictions for an unrestricted model for 4 objects

N = 300 N = 100

H0 : 	 = 	(�) ULS DWLS WLS ULS DWLS WLS

stat Ts Ta Ts Ta N F Ts Ta Ts Ta N F

Mean 12.2 9.58 12.2 10.3 13.2 12.9 9.1 12.9 9.7 16.0
Var. 29.5 18.03 27.9 19.5 32.5 41.9 20.1 33.9 18.3 60.7

1% 2.5 1.6 2.0 1.4 2.6 3.5 1.4 2.7 1.4 10.3
Nominal 5% 5.7 4.0 5.2 4.2 8.6 9.4 5.8 8.8 6.0 21.3
Rates 10% 11.1 8.7 11.0 8.9 16.1 14.2 11.6 15.6 12.9 30.3

20% 21.8 20.1 22.2 21.1 27.1 24.7 22.9 25.3 23.8 43.5

Notes: 1000 replications; 6 binary variables are modeled; 12 df.

TABLE 3.
Overall limited information tests for an unrestricted model for 4 objects

N = 300 N = 100

H0 : �̃2 = �̃2(�) ULS DWLS WLS ULS DWLS WLS

stat T̃s T̃a T̃s T̃a T̃s T̃a T̃s T̃a T̃s T̃a T̃s T̃a

Mean 12.3 4.0 11.9 3.9 12.1 4.3 12.5 4.0 12.1 3.8 13.5 5.2
Var. 74.1 8.0 70.0 7.6 65.9 8.4 79.8 8.0 74.6 7.6 80.5 12.0

1% 7.5 1.2 7.2 1.0 6.5 1.2 8.7 1.3 7.3 1.0 9.5 1.9
Nominal 5% 13.8 5.7 12.8 5.2 13.2 5.2 14.2 6.1 13.0 5.3 16.0 8.4
Rates 10% 18.7 10.6 17.7 9.6 17.2 10.0 19.2 11.2 17.9 10.4 21.2 13.9

20% 26.5 20.0 24.4 18.9 25.9 18.6 26.1 19.8 24.2 19.3 30.1 23.2

Notes: 1000 replications; 6 binary variables are modeled; 12 df.

were observed in this sample, as 267 subjects (92% of the sample) yielded transitive patterns (all
transitive patterns were observed). The paired comparisons patterns and their observed frequen-
cies in this sample are given in Table 6.

It was shown in the previous section that the results obtained using the ULS or DWLS were
very similar, whereas it is inappropriate to use full WLS. For all the models estimated here, the
parameter estimates, estimated standard errors and p-values associated with the goodness of fit
tests obtained using ULS and DWLS agree at least to two significant digits. Hence, since we
have seen in the previous section that the ULS estimator has a slight better performance than the
DWLS estimator, only the ULS results will be reported here.

The ULS parameter estimates and estimated asymptotic standard errors for the unrestricted
model are shown in Table 7. As can be seen in this table, all elements of � except for ω1 are
significantly equal to zero (or equivalently all elements of Pt but ρ21 are significantly equal to
0.5). This was expected since there are so few intransitive observations in this sample.

The goodness of fit statistics for this model are shown in Table 8. In this table, the usefulness
of the proposed test of the model to the first and second order marginals of the contingency table
is readily apparent. The statistics for testing the restrictions introduced by the UT model on the
reduced form parameters (thresholds and tetrachoric correlations) suggests that the UT model
fits very well these data. Yet, these statistics are misleading. The T̃s and T̃a statistics reveal that
the UT model does not fit well the first and second order marginals of the contingency table.
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TABLE 5.
Goodness of fit tests for an unrestricted model for 7 objects

N = 300 N = 100

ULS DWLS ULS DWLS

stat Ts Ta Ts Ta Ts Ta Ts Ta

H0 : 	 = 	(�) Mean 208.3 84.0 211.9 90.3 216.5 46.9 223.9 52.2
Var. 658.2 104.1 670.9 116.4 1019.8 49.6 1016.3 56.8

1% 12.1 0.7 16.1 0.9 22.3 0.7 30.1 0.5
Nominal 5% 55.8 2.9 62.3 4.1 63.1 3.8 73.5 3.9
Rates 10% 55.8 7.2 62.3 10.3 63.1 7.3 73.5 11.7

20% 55.8 18.6 62.3 24.0 63.1 20.5 73.5 28.8

H0 : �̃2 = �̃2(�) Mean 208.5 23.9 205.7 23.7 209.2 20.3 206.5 20.2
Var. 3347.3 45.11 3289.8 44.2 3406.0 32.2 3325.6 31.9

1% 27.8 1.0 26.3 0.7 28.0 1.1 26.2 1.2
Nominal 5% 48.1 6.4 45.9 6.2 49.6 4.2 47.5 3.6
Rates 10% 48.1 11.0 45.9 9.9 49.6 9.3 47.5 8.5

20% 48.1 22.3 45.9 20.6 49.6 19.3 47.5 18.0

Notes: 1000 replications; 21 binary variables are modeled; 204 df.

For this small model, we also calculated a full information X2 statistic where the expected
probabilities for each paired comparison pattern were computed using the IRT formulation of the
model. It remains to be shown that a X2 statistic has an asymptotic chi-square distribution with
2ñ−q−1 degrees of freedom when model parameters are estimated using the limited information
procedures employed here. Therefore, the degrees of freedom and associated p-value for the X2

statistic reported in Table 8 are provided for illustrative purposes only. Under the assumption
that they are asymptotically correct, they would suggest that the UT model does not fit the paired
comparisons patterns adequately. An examination of the expected frequencies shown in Table 6
reveals that the model reproduces adequately all the observed patterns except for the intransitive
patterns 30 and 54. According to the model, these patterns are very unlikely to be observed, but
had a single occurrence in this sample. The standardized residuals for these patterns are 4.306
and 5.560, respectively, and thus these two observations account for over 60% of the value of the
X2 statistic.

It may be that the responses of these two subjects were due to carelessness during the ex-
perimental procedure. For illustrative purposes we shall remove these two observations from the
data and re-estimate the model as when they are removed an improper solution is obtained. We
obtained a boundary solution by applying (35) sequentially, setting the smallest improper ρi i ′
equal to 1

2 until a proper solution was obtained. The parameter estimates and standard errors for
this boundary solution are also shown in Tables 7 and 8. The standard errors and goodness of fit
tests are incorrect and are only shown for illustrative purposes. Not surprisingly, the parameter
estimates for the boundary solution are almost identical to those obtained from the complete data,
but now the overall limited information statistic and the full information statistic suggest that the
model fits well these data after the two outlier observations are removed.

Alternatively, given the parameter estimates and standard errors for the unrestricted model,
one may consider fitting a model with these restrictions {µ4 = 0;µ3 = µ2; ρ31 = ρ32 = ρ41 =
ρ42 = ρ43 = 1

2 }. It turns out that this is a model with localized intransitivities as ω1 > 0 and Py∗
is of deficient rank (its rank equals 4). According to this model, 28 of the intransitive patterns
have zero probability. However, seven of these patterns {6, 9, 24, 30, 41, 50, 54}were observed in
the complete data, each having a single occurrence. In other words according to the model these
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TABLE 6.
Observed and expected frequencies of paired comparisons patterns for the compact cars data

no. pattern obs. unrestrict. restrict. no. pattern obs. unrestrict. restrict.

∗ 1 111111 15 15.795 16.676 ∗33 011111 10 11.331 11.567
∗ 2 111110 24 17.520 19.527 ∗34 011110 12 11.793 13.606

3 111101 0 0.657 0 35 011101 0 0.158 0
∗ 4 111100 13 19.438 17.920 36 011100 2 2.401 1.597
∗ 5 111011 12 12.657 13.541 37 011011 1 2.030 1.265

6 111010 1 0.777 0 38 011010 0 0.221 0
∗ 7 111001 10 11.729 13.684 39 011001 0 0.434 0.394
∗ 8 111000 20 16.884 15.424 40 011000 1 0.823 0.415

9 110111 1 0.209 0 41 010111 1 0.440 0
10 110110 1 1.737 1.058 ∗42 010110 6 6.386 7.546
11 110101 0 0.119 0 43 010101 0 0.047 0
∗12 110100 18 17.036 16.164 ∗44 010100 8 10.051 12.333

13 110011 0 0.124 0 45 010011 0 0.062 0
14 110010 0 0.084 0 46 010010 0 0.123 0
15 110001 0 0.708 0 47 010001 0 0.134 0
∗16 110000 19 16.681 14.814 48 010000 2 2.184 1.382

17 101111 1 1.326 0.858 ∗49 001111 6 6.220 5.840
18 101110 0 0.050 0 50 001110 1 0.126 0
19 101101 0 0.109 0 51 001101 0 0.122 0
20 101100 0 0.079 0 52 001100 0 0.319 0
∗21 101011 15 10.702 10.546 ∗53 001011 10 8.817 8.186

22 101010 0 0.013 0 •54 001010 1 0.030 0
∗23 101001 8 10.544 11.183 55 001001 0 1.791 1.087

24 101000 1 0.457 0 56 001000 1 0.191 0
25 100111 0 0.442 0.197 ∗57 000111 4 4.421 3.948
26 100110 0 0.208 0.232 ∗58 000110 3 3.269 4.491
27 100101 0 0.178 0 59 000101 0 0.210 0
28 100100 1 1.066 0.931 ∗60 000100 8 5.199 6.358
29 100011 4 1.539 0.733 ∗61 000011 6 6.010 4.794
•30 100010 1 0.049 0 62 000010 1 0.289 0
∗31 100001 12 12.068 11.776 ∗63 000001 8 8.389 8.347
∗32 100000 13 11.368 13.647 ∗64 000000 7 8.880 9.691

Notes: N = 289; ∗ transitive patterns, • outlier observations deleted when fitting the boundary model

seven observations should not have occurred. Note that the two observations that we removed in
our previous analysis because of their large standardized residuals belong to this set. We fitted
again this model with localized intransitivities to our data without these seven observations. The
resulting parameter estimates and standard errors are also shown in Tables 7 and 8. The standard
errors and goodness of fit indexes for this model are asymptotically correct (Dijkstra, 1992). In
Table 6 we show the expected frequencies for each pattern. Both the limited and full information
test suggest that this model matches very well the data (after removing seven observations). The
rank of T for this model is 19 and therefore the number of degrees of freedom reported for this
model in Table 8 are 19− 3 = 16.

10. Discussion and Conclusions

The method of paired comparisons is most often employed using a multiple judgment
framework. Following Takane’s (1987) seminal ideas, we have discussed how to estimate
Thurstonian models for these data as a mean and correlation structure model with dichoto-
mous indicators. Existing software can be used to estimate some of these models, such as
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TABLE 7.
Estimated parameters and asymptotic standard errors

unrestricted model boundary model restricted model

par. value SE value SE value SE

µ1 0.201 (0.066) 0.205 (0.066) 0.200 (0.067)
µ2 −0.155 (0.068) −0.156 (0.069) −0.144 (0.061)
µ3 −0.112 (0.069) −0.115 (0.068) −0.144 (0.061)
µ4 0 fixed 0 fixed 0 fixed
ρ21 0.658 (0.037) 0.655 (0.040) 0.633 (0.040)
ρ31 0.502 (0.040) 0.5 constrained 0.5 fixed
ρ32 0.556 (0.038) 0.552 (0.041) 0.5 fixed
ρ41 0.561 (0.039) 0.556 (0.044) 0.5 fixed
ρ42 0.503 (0.040) 0.5 constrained 0.5 fixed
ρ43 0.504 (0.040) 0.5 constrained 0.5 fixed
ω1 0.315 (0.073) 0.309 (0.079) 0.267 (0.080)
ω2 0.004 (0.079) 0 constrained 0 fixed
ω3 0.121 (0.078) 0.112 (0.088) 0 fixed
ω4 0.113 (0.076) 0.103 (0.083) 0 fixed
ω5 0.006 (0.080) 0 constrained 0 fixed
ω6 0.009 (0.079) 0 constrained 0 fixed

Notes: N = 289 (unrestricted model), N = 287 (boundary model), N = 282 (restricted model); 1 = Opel Corsa,
2 = Renault Clio, 3 = Seat Ibiza, 4 = Volkswagen Polo; µ4 = 0 for identification purposes; µ2 and µ3 are
constrained to be equal in the restricted model

TABLE 8.
Goodness of fit tests

H0 : 	 = 	(�) H0 : �̃2 = �̃2(�) H0 : � = �(�)

Model Statistic df p statistic df p statistic df p

Unrestricted Ts = 10.13 12 0.61 T̃s = 9.00 12 < 0.01 X2 = 81.65 54 0.01
Ta = 7.82 9.27 0.58 T̃a = 2.39 4.40 0.01

boundary Ts = 4.91 12 0.96 T̃s = 4.51 15 0.06 X2 = 38.02 54 0.95
Ta = 2.92 7.13 0.90 T̃a = 1.56 5.94 0.12

restricted Ts = 14.12 16 0.59 T̃s = 19.70 16 0.23 X2 = 24.12 32 0.84
Ta = 8.08 9.16 0.54 T̃a = 11.27 4.28 0.27

Notes: N = 289 (unrestricted model), N = 287 (boundary model), N = 282 (restricted model); � is used here
to denote the paired comparison pattern probabilities (7); the p-values for the boundary model are incorrect and
are shown only for illustrative purposes.

MPLUS (Muthén & Muthén, 1998) which implements the DWLS estimator. Note however, that
in MPLUS the weight matrix of the reduced form parameters is computed as in Muthén (1984)
instead of as in Muthén (1978) as we do here.

We have seen that when the sample thresholds and tetrachoric correlations can be expressed
as a linear function of the Thurstonian model parameters both the ULS and DWLS estimators
work well even for seven objects (21 dichotomous variables) and with sample sizes down to
one hundred observations. Furthermore, we have proposed methods to assess the goodness of
fit of the models to the first and second order marginals of the contingency table that overcome
the single most serious problem faced when modeling these data, namely, how to assess the
fit of the estimated models. The proposed tests work well under the conditions examined here.
Further work is needed to investigate the behavior of the proposed estimators and tests in fitting
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Thurstonian models that impose non-linear restrictions on the reduced form parameters (e.g.,
factor or ideal point models).

In closing, it should be noted that the ULS estimator employed here is closely related to
the classical least squares procedures proposed for estimating Thurstonian models (see Arbuckle
& Nugent, 1973; Bock & Jones, 1968, and references therein). However, these use first order
information only (i.e., binary choices), which are assumed to be independent. Under multiple
judgment sampling, this assumption is clearly violated. In contrast, the ULS estimator employed
here uses first and second order information and takes into consideration the dependencies among
the sample statistics to obtain asymptotically correct standard errors and goodness of fit tests.
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