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CONTINGENCY TABLES

ALBERT MAYDEU-OLIVARES

UNIVERSITY OF BARCELONA AND INSTITUTO DE EMPRESA BUSINESS SCHOOL

HARRY JOE

UNIVERSITY OF BRITISH COLUMBIA

We introduce a family of goodness-of-fit statistics for testing composite null hypotheses in multi-
dimensional contingency tables. These statistics are quadratic forms in marginal residuals up to order r .
They are asymptotically chi-square under the null hypothesis when parameters are estimated using any
asymptotically normal consistent estimator. For a widely used item response model, when r is small and
multidimensional tables are sparse, the proposed statistics have accurate empirical Type I errors, unlike
Pearson’s X2. For this model in nonsparse situations, the proposed statistics are also more powerful than
X2. In addition, the proposed statistics are asymptotically chi-square when applied to subtables, and can be
used for a piecewise goodness-of-fit assessment to determine the source of misfit in poorly fitting models.

Key words: multivariate discrete data, categorical data analysis, multivariate multinomial distribution,
composite likelihood, item response theory, Lisrel.

1. Introduction

Consider the problem of modeling N independent and identically distributed observations
on n discrete random variables consisting, respectively, of K1, . . . , Kn categories. This type of
data arises, for ingfstance, in surveys, educational tests, or social science questionnaires when
the number of choices is not constant over items. The observed data can be gathered in an
n-dimensional contingency table with C = ∏n

i Ki cells.
Now, consider a parametric model, π (θ), where π is the C-dimensional vector of cell

probabilities, which depends on a q-dimensional parameter vector θ which is typically estimated
from the data. For assessing the fit of the model, consider a composite null hypothesis H0 :
π = π(θ ) for some θ versus H1 : π �= π (θ) for any θ . Researchers confronted with testing such
a composite hypothesis face two problems. First, how to assess the overall goodness of fit of
the hypothesized model and, second, how to determine the source of the misfit in poorly fitting
models.

The two most commonly used goodness-of-fit statistics for testing the overall goodness of fit
of a parametric model in multivariate categorical data analysis are Pearson’s X2 = 2N

∑C
c=1(pc −

πc)2/πc, and the likelihood ratio statistic G2 = 2N
∑C

c=1 pc ln(pc/πc). When the model holds,
the two statistics are asymptotically equivalent. Under H0, they are asymptotically distributed as
chi-square with C − q − 1 degrees of freedom. However, it is well known that in sparse tables
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the empirical Type I error rates of the X2 and G2 test statistics do not match their expected rates
under their asymptotic distribution. Of the two statistics, X2 is less adversely affected by the
sparseness of the contingency table than G2 (Koehler & Larntz, 1980).

One reason for the poor empirical performance of X2 is that the empirical variance of X2

and its variance under its reference asymptotic distribution differ by a term that depends on
the inverse of the cell probabilities (Cochran, 1952). When the cell probabilities become small
the discrepancy between the empirical and asymptotic variances of X2 can be large and the
Type I error for X2 will be larger than the α level based on its asymptotic critical value. Thus, the
accuracy of the Type I errors will depend on the model being fitted to the table (as it determines
the cell probabilities), but also on the size of the contingency table. This is because when the size of
the contingency table is large, the cell probabilities must be small (Bartholomew & Tzamourani,
1999). However, for C and π (θ) fixed the accuracy of the asymptotic p-values for X2 also depends
on sample size, N . As N becomes smaller some of the cell proportions increasingly become more
poorly estimated (their estimates will be zero) and the empirical Type I errors of X2 will become
inaccurate. The degree of sparseness N/C summarizes the relationship between sample size and
model size. Thus, the accuracy of the asymptotic p-values for X2 depends on the model and the
degree of sparseness of the contingency table.

Three alternative strategies have been proposed for obtaining Type I errors when the accuracy
of the asymptotic p-values of X2 is suspect: (a) pooling cells; (b) resampling methods; and
(c) limited information methods. Our new statistical procedures are in category (c); below we
point out the advantages of (c) over (a) and (b).

Regarding (a), pooling cells before the model is fitted is a useful approach as it reduces the size
of the contingency table, and thus the degree of sparseness. However, there is a limit in the amount
of pooling that can be performed without distorting the purpose of the analysis. Also, pooling cells
ad hoc after the model has been fitted may result in a test statistic with an unknown asymptotic
null sampling distribution. Regarding (b), generating the empirical sampling distribution of the
goodness-of-fit statistic using a resampling method such as the parametric bootstrap method
(e.g., Collins, Fidler, Wugalter, & Long, 1993; Bartholomew & Tzamourani, 1999) may result in
trustworthy p-values (but see Tollenaar & Mooijaart, 2003). However, resampling methods may
be very time-consuming if the researcher is interested in comparing the fit of several models. On
the other hand, limited information methods use only the information contained in the low-order
marginals of the contingency table to assess the model, and amounts to pooling cells a priori.
The cells are pooled in a systematic way, so that the resulting statistics have a known asymptotic
null distribution. These procedures are computationally much more efficient than resampling
methods.

There have been several proposals in Psychometrics to use low-order marginals in goodness-
of-fit assessment of binary contingency tables, most notably Christoffersson (1975), Reiser
(1996), Bartholomew and Leung (2002); see also Cai, Maydeu-Olivares, Coffman, and Thissen
(2006), Maydeu-Olivares (2001a, 2001b), and Maydeu-Olivares and Joe (2005). Limited infor-
mation statistics appear as a viable framework to assess the overall goodness of fit of models for
multidimensional contingency tables as they have more accurate empirical Type I errors and may
be asymptotically more powerful than full information statistics such as X2 (Maydeu-Olivares &
Joe, 2005).

A second challenge a researcher must confront when modeling multivariate categorical
data is to identify the source of the misfit when the overall test suggests significant misfit. The
inspection of cell residuals is often not very useful to this aim. It is difficult to find trends in
inspecting these residuals, and even for moderate n the number of residuals to be inspected is too
large. Perhaps, most importantly, Bartholomew and Tzamourani (1999) point out that because the
cell frequencies are integers and the expected frequencies in large tables must be very small, the
resulting residuals will be either very small or very large. To overcome this challenge, numerous
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authors have advocated examining residuals from the two- and three-way margins to assess the
goodness of fit in binary contingency tables. Some key references in this literature are Reiser
(1996), Reiser and Lin (1999), Reiser and VandenBerg (1994), Bartholomew and Tzamourani
(1999), Bartholomew and Leung (2002), and Maydeu-Olivares and Joe (2005). However, when
the observed variables are not binary, the number of marginal residuals grows very rapidly as the
number of categories and variables increases, and it may be difficult to draw useful information
by inspecting individual marginal residuals. To overcome this problem, it has been suggested
(Drasgow, Levine, Tsien, Williams, & Mead, 1995) to compute X2 for single variables, pairs,
and triplets. However, X2 applied to subtables is not asymptotically chi-square under the null
hypothesis even for the maximum likelihood estimator (MLE).

In this paper, the main ideas and results of Maydeu-Olivares and Joe (2005) for the binary
case (Ki = 2 for all i) are extended in two directions. First, we provide goodness-of-fit test
statistics for multidimensional contingency tables of arbitrary dimensions. The statistics are
quadratic forms in the residuals of marginal tables up to order r , for small r . These test statistics
are asymptotically chi-square for any

√
N -consistent and asymptotically normal estimator. The

extension is straightforward but the computational implementation is more cumbersome. Second,
we provide statistics for assessing the goodness of fit in r-dimensional subtables. These statistics
are also asymptotically chi-square under the same conditions than the statistics to assess the
overall goodness of fit and they can be useful to identify the source of the misfit in poorly fitting
models.

The remainder of the paper is organized as follows. In Section 2 we provide a convenient
representation of multivariate categorical data which are a random sample from a multivariate
multinomial (MVM) distribution, and we also provide the asymptotic distribution of multivariate
marginal residuals for different estimators. In Section 3 we consider extensions of the family of
limited information statistics Mr proposed by Maydeu-Olivares and Joe (2005). These statistics
can be used with nominal categorical variables as they are invariant to arbitrary relabeling of
the categories. Section 3 also includes a small simulation study to illustrate the small sample
distributions of Mr (for small r) and X2. In Section 4 we consider the use of marginal residuals
and Mr statistics on r-dimensional subtables to identify the source of the misfit. Section 5 contains
two examples to illustrate our results. Finally, Section 6 has a discussion of the different limited
information approaches that have been proposed, as well as directions for further research.

For completeness, we also discuss in an Appendix goodness-of-fit testing of simple null
hypotheses under MVM assumptions as a straightforward extension of the results of Maydeu-
Olivares and Joe (2005) for multivariate Bernoulli assumptions. Computational details for esti-
mation, evaluation of Mr , and simulations are also given in the Appendix.

2. Multivariate Multinomial Distributions and Asymptotic Distribution of Marginal Residuals

In this section we define the notation used in the remainder of this paper and we give two
representations of the MVM distribution. One of them uses the cell probabilities, while the other
uses a set of multivariate marginal probabilities. There is a one-to-one linear map between the
two representations. We also provide the asymptotic distribution of cell residuals and of marginal
residuals for MVM models where the parameters have been estimated using a

√
N -consistent

and asymptotically normal estimator (including limited information estimators).

2.1. Representation of the MVM Distribution

By an MVM distribution, we mean a multivariate distribution with univariate margins
that are multinomial. If the ith (1 ≤ i ≤ n) variable consists of Ki ≥ 2 categories labeled as
0, 1, . . . , Ki − 1, with respective probabilities pi0, . . . , pi,Ki−1, then one observation of the ith
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variable Yi has a Multinomial(1; pi0, . . . , pi,Ki−1) distribution. Using indicator functions, we give
a representation of the MVM distribution. In the case where each Ki = 2, the representation is
the same as that of Teugels (1990).

With the notation Yi = j meaning that Yi has category j , we define the following indicator
variables for Y1, . . . , Yn:

Iij = I (Yi = j ), j = 1, . . . , Ki − 1, i = 1, . . . , n. (2. 1)

The univariate moments are E (Iij ), j = 1, . . . , Ki − 1, i = 1, . . . , n; the bivariate moments are
E [Ii1j1Ii2j2 ] = Pr(Yi1 = j1, Yi2 = j2), j1 = 1, . . . , Ki1 − 1, j2 = 1, . . . , Ki2 − 1, 1 ≤ i1 < i2 ≤
n. The trivariate up to n-dimensional moments can be defined in a similar way. Note that these
moments consist of all joint and marginal probabilities of Y1, . . . , Yn that do not involve category
0 for any variables.

The distribution is characterized by all the moments involving the Iij up to the nth moments,
since all joint probabilities, including those involving the 0 categories, can be deduced from these
moments. This follows by letting Ii0 = 1 − Ii1 − · · · − IiKi

; then

Pr(Y1 = j1, . . . , Yn = jn) = E [I1j1 · · · Injp
],

and after expanding out any term with ji = 0, this is a linear combination of the moments not
involving any category of 0.

Consider the set Ar of expectations or moments that come from products of 1 to r indicators
in (2.1). Then all probabilities up to the rth-dimensional margins can be obtained from the set Ar .
There are no redundant moments in Ar in that no moment can be obtained as a linear combination
of other moments in Ar . The cardinality of Ar is equal to

s(r)
def=

r∑

j=1

∑

1≤i1<···<ij ≤n

j∏

�=1

(Ki� − 1), (2. 2)

where the middle sum is over the combinations of size j from n indices; this is smaller than the
number

∑
1≤i1<···<ir≤n

∏r
�=1 Ki� of rth-order marginal probabilities. For example, if Ki = K for

i = 1, . . . , n, then the number of rth-order marginal probabilities is
(
n

r

)
Kr which is larger than

s(r) = ∑r
j=1

(
n

j

)
(K − 1)j , the cardinality of Ar . Note that s(n) = C − 1, with C = ∏n

i=1 Ki .
In the next section we will be constructing quadratic form statistics based on residuals

corresponding to the moments in Ar . Because of the relationships mentioned above, the quadratic
form statistics can also be expressed in terms of the residuals associated with all rth-order marginal
probabilities. It is an advantage computationally to work with the set Ar so that we can deal with
smaller matrices in the quadratic form statistics. Note that even the cardinality of Ar increases
rapidly as Ki and n increase. Also, for any goodness-of-fit statistic defined based on the moments
up to order r , it is necessary to check/prove that the statistic is invariant to the labeling of the
categories, since it is generally arbitrary which category is labeled as category 0.

Further insight into the relationship between the multivariate moment and the cell rep-
resentation is obtained by using a notation analogous to that employed in Maydeu-Olivares
and Joe (2005). In what follows we assume for notational ease that Ki = K for all i. Con-
sider an n-dimensional random vector Y = (Y1, . . . , Yn)′ of K-category random variables, with
πi(j ) = Pr(Yi = j ), i = 1, . . . , n, and joint distribution:

πy = Pr(Yi = yi, i = 1, . . . , n), y = (y1, . . . , yn), yi ∈ {0, . . . , K − 1}.
When we consider a parametric model with parameter vector θ , we write πy(θ) for an individual
probability and π(θ ) for the vector of Kn joint probabilities. Also, we write ·π1 for the n(K − 1)
vector of univariate marginal probabilities. Similarly, we write ·π2 for the

(
n

2

)
(K − 1)2 vector
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of bivariate marginal probabilities, and so forth up to ·πn, the
(
n

n

)
(K − 1)n vector of nth way

probabilities. Finally, let ·π ′ = ( ·π ′
1,

·π ′
2, . . . ,

·π ′
n)′. Then, we can write ·π = Tπ , where T is a

(Kn − 1) × Kn matrix of 1s and 0s, of full row rank (if Ki is not constant, then T is (C − 1) × C).
T can be partitioned according to the partitioning of ·π ,

⎛

⎜
⎜
⎝

·π1
·π2
...
·πn

⎞

⎟
⎟
⎠ =

⎛

⎜
⎜
⎝

Tn1

Tn2
...

Tnn

⎞

⎟
⎟
⎠ π .

The vector of multivariate moments up to order r (r ≤ n), denoted by π r = ( ·π ′
1, . . . ,

·π ′
r )′, can be

written as

π r = Trπ ,

where Tr = (T′
n1, . . . , T′

nr )′. Note that by definition πn = ·π . That is, Tr is the mapping of the
C-dimensional vector of cell probabilities to the moments in Ar .

2.2. Asymptotic Distribution of Marginal Residuals

In this section we state the main results on the asymptotic distribution of marginal residuals
which are needed in deriving the statistics in the next section. The results are essentially those
given in Maydeu-Olivares and Joe (2005) for the binary case.

First, consider an MVM parametric model π (θ) for a fixed a priori vector θ of dimension
q. For a random sample of size N from this model, let p and ·p denote the C-dimensional vector
of cell proportions, and the (C − 1)-dimensional vector of sample joint moments, respectively.
Then,

√
N ( ·p − ·π (θ))

d−→ N (0,�(θ)), �(θ ) = T�(θ)T′,

where �(θ) = D(θ ) − π(θ )π ′(θ ), and D(θ ) = diag (π(θ)). Hence,
√

N (pr − π r (θ))
d−→ N

(
0,�r (θ )

)
, �r (θ) = Tr�(θ )T′

r , (2. 3)

where pr be the vector of sample moments up to order r; it has dimension s(r) as given in (2.2).
In practice, in most applications for multivariate categorical data, one is interested in compar-

ing one or more MVM models where θ is estimated from the data. Let θ̂ be a
√

N -consistent and
asymptotically normal estimator. We assume that the usual regularity conditions on the model are
satisfied so as to fulfill the consistency and asymptotic normality of the estimates. In particular,
we assume that θ̂ satisfies

√
N (θ̂ − θ ) = H

√
N (p − π (θ)) + op(1) (2. 4)

for some q × C matrix H. This includes minimum variance (or best asymptotically normal
(BAN)) estimators such as the MLE or the minimum chi-square estimator. For BAN estimators
H = III−1�′D−1, whereIII = �′D−1� is the Fisher information matrix, and � = ∂π(θ)/∂θ ′. Also,
the limited information estimators considered by Christoffersson (1975), Jöreskog (1994); see
also Maydeu-Olivares (2006), Jöreskog and Moustaki (2001), Lee, Poon, and Bentler (1995),
Maydeu-Olivares (2001b), and Muthén (1978, 1984, 1993) are special cases of this framework.

Using (2.4), the asymptotic distribution of the vector of cell residuals ê = p − π(θ̂ ) is√
N ê

d−→ N (0,�) with asymptotic covariance matrix

� = (I − �H)�(I − �H)′. (2. 5)
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For the marginal residuals, êr = pr − π r (θ̂) = Tr ê,
√

N êr
d−→ N (0,�r ), where

�r = Tr�T′
r = (Tr − �rH)�(Tr − �rH)′

= �r − �rH�T′
r − Tr�H′�′

r + �r [H�H′]�′
r , (2. 6)

where H�H′ is the asymptotic covariance matrix of
√

N θ̂ , and �r = ∂π r (θ)/∂θ ′ is an s(r) × q

matrix. In the special case of BAN estimators such as the MLE, equations (2.5) and (2.6) reduce
to � = � − �III−1

�′, and �r = �r − �rIII−1
�′

r , respectively.

3. Overall Goodness-of-Fit Testing Using Marginal Residuals

In this section we consider testing a composite null hypothesis using quadratic forms in
the marginal residuals. That is, we consider the hypothesis H0 : π = π (θ) for some θ versus
H1 : π �= π(θ ) for any θ , when parameters are estimated using a method that yields

√
N -

consistent and asymptotically normal estimates. Let r0 be the smallest integer r such that the
model is (locally) identified from the marginal residuals up to order r . Then, for r ≥ r0, the
matrix �r is of full column rank q. Also, we assume that s(r) > q so as to exclude the case
s(r) = q. Finally, we assume that H0 : π = π(θ) does not imply linear dependencies among the
marginal moments in Ar , so that �r has full rank s(r).

3.1. The Family of Test Statistics Mr

In the special case Ki = 2, Maydeu-Olivares and Joe (2005) introduced the family of
statistics Mr for testing composite null hypotheses for multivariate binary models. Their results
readily extend to MVM models for contingency tables of arbitrary dimensions. The notation is
basically the same but the dimension of the matrices is larger, and numerical computations are
harder.

Consider an s(r) × (s(r) − q) orthogonal complement to �r , say �(c)
r , such that [�(c)

r ]′�r =
0. Let

Cr = Cr (θ) = �(c)
r

(
[�(c)

r ]′�r�
(c)
r

)−1
[�(c)

r ]′ = �−1
r − �−1

r �r

(
�′

r�
−1
r �r

)−1
�′

r�
−1
r . (3.1)

Note that Cr is invariant to the choice of orthogonal complement (if �(c)
r is a full rank orthogonal

complement, then so is �(c)
r A for a nonsingular matrix A), and the last equality in (3.1) follows

from a result in Rao (1973, p. 77).
The limited information statistic Mr of order r is given by

Mr = Mr (θ̂) = N
(
pr − π r (θ̂)

)′
Ĉr

(
pr − π r (θ̂ )

)
. (3.2)

In (3.2), Ĉr denotes Cr (θ̂) and other matrices are also evaluated at θ̂ . It is straightforward to verify

that Cr = Cr�rCr , that is, �r is a generalized inverse of Cr . Now, Mr
d−→ χ2

s(r)−q, where the
degrees of freedom are obtained from a result in Rao (1973, p. 30) using the fact that �(c)

r is of
full column rank s(r) − q and hence Cr is also of rank s(r) − q. Note that (3.2) does not use the
generalized inverse of �r because this may be numerically unstable with a small singular value.
Also computation of Cr , which depends on �r and �r , is much easier than that of �r , which
depends also on H�T′

r and H�H′ (or III in the case of the MLE).
{Mr} is a family of test statistics based on residuals up to r-variate margins whose members

are {M1, . . . ,Mn}. M1 is defined only if s(1) > q, that is, for models that do not have many
parameters; for example, it is not defined for the item response model that we use later in this
paper. M1 is a quadratic form in univariate residuals, whereas M2 is a quadratic form in univariate
and bivariate residuals, and so forth, up to Mn which is a full information test statistic. Mn can
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be written as

Mn = N
( ·p − ·π (θ̂)

)′
Ĉn

( ·p − ·π(θ̂ )
)

(3.3)

with Ĉn = Cn(θ̂ ). Since C = s(n) + 1 is the number of possible cells in the contingency table,
the full information test statistic Mn = Mn(θ̂) is asymptotically χ2

C−1−q for this large class of
consistent estimators. Maydeu-Olivares and Joe (2005) show that this statistic can be alternatively
written as a quadratic form in the cell residuals as

Mn = N
(
p − π(θ̂ )

)′
Û

(
p − π (θ̂)

)

with Û = U(θ̂), where U(θ) = D−1 − D−1�(�′D−1�)−1�′D−1. Note that with X2(θ̂ ) represent-
ing the X2 statistic based on θ̂ , the results in the Appendix of Maydeu-Olivares and Joe (2005)
imply that Mn(θ̂ ) ≤ X2(θ̂ ). That is, for a consistent estimator that is not the MLE, the asymptotic
null distribution of X2(θ̂) is stochastically larger than χ2

C−1−q . Also, Mn = X2 when θ̂ is the
MLE. But for other minimum variance asymptotically normal estimators, Mn ≤ X2 and Mn and
X2 are equivalent only asymptotically.

Also with a proof very similar to that in the Appendix of Maydeu-Olivares and Joe (2005),
Mr is invariant to the labeling of the categories, assuming that with permuted categories θ → θ�,
a permuted vector, and θ̂ is an equivariant estimator.

Maydeu-Olivares and Joe (2005) pointed out that the asymptotic variance of Mr is influenced
by the smallest marginal probability of dimension min{2r, n}. Therefore, the asymptotic null
distribution of Mr can be acceptable if the rth-order margins are not sparse, and larger sample sizes
are needed as r increases for the null asymptotics to be valid. This was illustrated using a simulation
study where a two-parameter logistic model (Lord & Novick, 1968) was estimated by the MLE.
For the less sparse situations, the small sample behavior of Mn = X2 was close to its asymptotic
reference distribution. But as sparseness increased the empirical Type I errors of X2 first—and
with increased sparseness M3 as well—departed from its expected rates. Only the empirical Type
I errors of M2 remained accurate throughout the different sparseness conditions considered in
their study. In the next subsection we extend their simulation results by: (a) considering an item
response theory (IRT) model for variables where Ki > 2; (b) considering much larger contingency
tables; and (c) investigating the behavior of the test statistics for a limited information estimator.

3.2. Small Sample Performance of Mr

For an illustration of the small sample performance of Mr consider a unidimensional item
response model (e.g., van der Linden & Hambleton, 1997)

Pr

[
n⋂

i=1

{Yi = yi}
]

=
∫ ∞

−∞

n∏

i=1

Pr(Yi = yi | η)f (η) dη, yi ∈ {0, . . . , K − 1}, (3.4)

where f (η) denotes the density of a continuous unobserved variable (i.e, a latent trait). Note
that under this family of models, the probabilities conditional on the latent trait are assumed to
be independent. For ordered categorical variables, Samejima (1969) proposed letting f (η) be a
standard normal density function and

Pr(Yi = j | η) =
⎧
⎨

⎩

1 − G(αi,1 + βiη) if j = 0,

G(αi,j + βiη) − G(αi,j+1 + βiη) if 0 < j < K − 1,

G(αi,K−1 + βiη) if j = K − 1,

(3.5)

where G(z) equals either the standard logistic distribution function

	(z) = [1 + exp{−z}]−1 (3.6)
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or the standard normal distribution function


(z) =
∫ z

−∞

1√
2π

exp{−x2/2} dx. (3.7)

Thus, in this model, for each item there is one slope parameter βi and K − 1 intercept parameters
αi,j ; αi,j is decreasing in j for each i. Samejima (1969) referred to the model specified by
equations (3.4)–(3.7) as the (logistic or normal) graded model. Bartholomew and Knott (1999)
refer to these models as the logit-normit and normit-normit models, respectively. The family of
models (3.4) are random effects members of the larger generalized linear mixed model (GLMM)
family (see Agresti (2002, Chap. 12)).

Note that for model (3.4)–(3.6), the number of parameters is q = nK so that Mr in (3.2)
is defined only for r ≥ 2 since s(1) = n(K − 1) < q. M3 would be useful to compute only if
s(3)/N is large enough. For most IRT applications M2 is the statistic of choice in the Mr family.

To illustrate the small sample behavior of M2 for maximum likelihood (ML) estimation,
we generated data according to Samejima’s logistic model for many different parameter vectors.
We summarize some representative results in Table 1 , which has three cases of (K, n) : (3, 5)
with C = 243 cells; (5, 5) with C = 3125 cells; and (5, 10) with C = 9765625 ≈ 107 cells. The
sample sizes are N = 300, 1000, and 3000. The procedure used to generate the data is explained
in the Appendix subsection on computing notes. For K = 3, α = (−1, 1) for all items, and
for K = 5, α = (−1,−0.5, 0.5, 1) for all items. For n = 5, β = (1, 1.5, 2, 1.5, 1), whereas for
n = 10, β = (1, 1.5, 2, 1.5, 1, 1, 1.5, 2, 1.5, 1).

A small model with K = 3 and n = 5 was chosen to show that the empirical rejection rates
of M2 are similar to those of X2 when the latter are accurate. The other cases with larger C were
chosen to show that the empirical rejection rates of M2 remain accurate, unlike those of X2, even

TABLE 1.
Small sample distribution for X2 and M2 with ML estimation. Mean, variance, and exceedances of asymptotic upper
0.2, 0.1, 0.05, 0.01 quantiles.

n K N Statistic df Mean Var. α = .2 α = .1 α = .05 α = .01

5 3 300 X2 227 227.4 460.8 0.21 0.11 0.058 0.011
M2 35 35.1 67.1 0.20 0.10 0.051 0.009

5 3 1000 X2 227 227.5 487.4 0.21 0.12 0.066 0.015
M2 35 34.9 71.8 0.21 0.11 0.045 0.006

5 3 3000 X2 227 227.1 470.5 0.19 0.10 0.056 0.011
M2 35 35.1 70.4 0.22 0.11 0.050 0.005

5 5 300 X2 3099 3094 75200 0.35 0.31 0.27 0.21
M2 155 155 300 0.20 0.10 0.042 0.005

5 5 1000 X2 3099 3097 23675 0.30 0.24 0.19 0.11
M2 155 155 311 0.20 0.10 0.053 0.010

5 5 3000 X2 3099 3097 12108 0.26 0.16 0.10 0.04
M2 155 155 301 0.20 0.09 0.042 0.012

10 5 300 X2 9765574 9.68 × 106 6.07 × 1012 0.37 0.37 0.37 0.36
M2 710 711 1482 0.21 0.11 0.064 0.011

10 5 1000 X2 9765574 9.73 × 106 1.13 × 1012 0.42 0.42 0.42 0.41
M2 710 710 1339 0.18 0.10 0.055 0.008

10 5 3000 X2 9765574 9.77 × 106 3.60 × 1011 0.48 0.48 0.48 0.48
M2 710 708 1315 0.19 0.08 0.039 0.008

Note: 1000 replications. MVM model given in (3.4)–(3.6).
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TABLE 2.
Small sample distribution for M2 with BCL estimator. Mean, variance, and exceedances of asymptotic upper 0.2,
0.1, 0.05, 0.01 quantiles.

n K N Statistic df Mean Var. α = .2 α = .1 α = .05 α = .01

5 3 300 M2 35 35.1 67.0 0.20 0.10 0.050 0.008
5 3 1000 M2 35 34.9 71.7 0.21 0.10 0.045 0.006
5 3 3000 M2 35 35.1 70.4 0.22 0.11 0.049 0.005

5 5 300 M2 155 155 299 0.20 0.10 0.041 0.005
5 5 1000 M2 155 155 309 0.19 0.10 0.050 0.009
5 5 3000 M2 155 155 301 0.20 0.09 0.041 0.013

10 5 300 M2 710 711 1435 0.20 0.11 0.056 0.009
10 5 1000 M2 710 710 1327 0.18 0.10 0.051 0.007
10 5 3000 M2 710 708 1310 0.19 0.09 0.036 0.009

Note: 1000 replications. MVM model given in (3.4–3.6).

for extremely sparse tables. As can be seen in Table 1, the empirical Type I errors for M2 remain
close to their nominal levels even at the highest degree of sparseness considered, whereas those
of X2 are only accurate in the small model with K = 3, n = 5.

Also, we use a bivariate composite likelihood (BCL) estimator (Zhao & Joe, 2005) under
the same conditions as above to illustrate the behavior of M2 for estimators that are not BAN. The
results are shown in Table 2. The BCL estimator is the maximum of the sum of the

(
n

2

)
bivariate

marginal log-likelihood, rather than the maximum of the joint n-dimensional log-likelihood.
In one special setting, Jöreskog and Moustaki (2001) refer to this as the underlying bivariate
normal (UBN) approach. If the trivariate margins are not sparse, one could consider the trivariate
composite likelihood (TCL) estimator. The asymptotic analysis of this estimator can be done
using the theory of estimating equations (Godambe, 1991) and the asymptotic covariance matrix
of the BCL estimator is an inverse Godambe information matrix, which can be compared with the
inverse Fisher information matrix. We were able to compute both of these for different parameter
vectors for (3.5), and look at ratios of the diagonals of these two matrices. For all cases that we
computed for n ≤ 10 and 2 ≤ K ≤ 5, the asymptotic relative efficiency of any component of the
BCL estimator is over 0.98; the average efficiency tends to slowly decrease as n increases.

As can be seen in Table 2, the finite sample null distribution of the M2 statistic with the
BCL estimator behaves very similarly to M2 with the MLE. Although we have only studied the
small sample performance for one (commonly used) model for item response categorical data,
we expect the behavior to be similar for other models, for the MLE, and for other

√
N -consistent

estimators.

3.3. Power Comparison of X2 and Mr when Data Are Not Sparse

For the binary case, Maydeu-Olivares and Joe (2005) have an asymptotic power comparison
under a sequence of local alternatives for model (3.4)–(3.6). They report that M2 and M3 typically
had more power asymptotically than X2 for the null hypothesis of a common slope parameter.

For Ki = K > 2, we have done some simulations that show a similar behavior for M2 for
finite sample sizes. A finite sample power comparison of X2 and Mr is meaningful only in the
nonsparse cases where X2 can be used with chi-square critical values. Consequently, Table 3 has
some summaries for representative cases for small sample power comparison for n = 5,K = 3,
using model (3.4)–(3.6) with constant βi = β as the null nested model.
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TABLE 3.
Small sample power for M2 vs. X2 with MLE estimator; MVM model given in (3.4)–(3.6) with a common slope parameter
for the null hypothesis. Exceedances of asymptotic upper 0.2, 0.1, 0.05, 0.01 quantiles based on 1000 replications.

α β (altern.) N Stat. α = .2 α = .1 α = .05 α = .01

1 − 1, 1 −1, 1 − 1, 1 − 1, 1 − 1 1 1 1 .5 .5 500 X2 0.37 0.21 0.12 0.04
M2 0.60 0.42 0.31 0.14

1 − 1, 1 − 1, 1 − 1, 1 − 1, 1 −1 1 1 1 1 .5 500 X2 0.36 0.20 0.13 0.03
M2 0.56 0.40 0.29 0.11

1 − 1, 1 − 1, 1 − 1, 1 − 1, 1 − 1 1 .9 .8 .9 .8 1200 X2 0.24 0.11 0.05 0.03
M2 0.26 0.14 0.09 0.02

1 − 1, 1 − 1, 1 − 1, .5 −.5, .5 −.5 1 1 1 1 .5 500 X2 0.31 0.18 0.09 0.03
M2 0.54 0.37 0.26 0.11

3.4. Remarks on Hypotheses of Specified Marginal Distributions

In this paper we focus on testing the null hypothesis H0 : π = π (θ) for some θ versus the
alternative H1 : π �= π (θ). These are full information hypotheses. The asymptotic distribution
of the family {Mr : 2 ≤ r ≤ n} is derived under this null hypothesis. It is not derived under a
marginal null of the type H ′

0 : π r = π r (θ). In fact, under the latter, Mr is not defined, because the
matrix of the quadratic form involves marginal probabilities of order up to r2 = min{2r, n}. For
H ′

0 : π r = π r (θ), only r-dimensional marginal distributions are assumed, higher-order margins
are left unspecified, and a statistic other than Mr would have to be used. A suitable statistic for H ′

0
is M ′

r introduced by Maydeu-Olivares and Joe (2005). M ′
r differs from Mr in that the marginal

probabilities up to r2 are consistently evaluated using sample proportions rather than estimated
probabilities as in Mr .

In applications one typically has a completely specified probability model in mind. Also,
one cannot arbitrarily come up with π r (θ). The only sure way of specifying a well-defined π r (θ )
or π r2 (θ ) is from marginalizing an n-dimensional distribution π (θ).

We use limited information statistics to assess full information hypotheses. Mr can be used
when sample r-dimensional margins are not sparse and higher-dimensional margins are sparse.
However, limited information tests based on marginal moments up to order r have no power to
distinguish among models with the same margins up to order r but different higher-order margins.
Also, hypothesis testing based on limited information is somewhat unbalanced, as if we fail to
reject the full information null hypothesis using margins up to order r , we are unable to detect if
the model does not fit well higher-order margins.

4. Using Marginal Residuals To Assess the Source of Misfit

When the Mr statistic suggests a model misfit, the vector of standardized marginal residuals
can be inspected. This is N [pr − π r (θ̂ )], the differences of observed and model expected counts
or moments for margins, divided by the square root of diag (�(θ̂)). Note that this vector includes
only those categories for which no category index is 0. The remaining residuals can be obtained
based on zero sum constraints or by computing the residuals from inverse coded categories (the
Mr statistic is invariant to the inverse coding). In large models, particularly when the number of
categories for some variables is large, there will be a large number of marginal residuals involved
and it may be difficult to draw useful information. Furthermore, the standardized residuals may
be difficult to compute in large models.
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A more fruitful avenue to assess the source of misfit might be to examine the rth-dimensional
marginal tables. Note that this is like multiple testing after a jointly significant result. An anal-
ogy is Fisher’s least significant difference following a significant F-ratio in ANOVA. In other
words, we recommend assessing the source of misfit by computing M (b)

r (θ̂) for each subset b of
{1, . . . , n} with cardinality r . For a submodel for r-dimensional margins, with Cr (b) = ∏

i∈b Ki

cells depending on qr (b) parameters, M (b)
r (θ̂) has an asymptotic null chi-square distribution

with Cr (b) − qr (b) − 1 degrees of freedom, provided the submodel is identified, the estimator is
consistent and asymptotically normal, and Cr (b) − 1 > qr (b). When r = 2, we write M

(ij )
2 for

1 ≤ i < j ≤ n. Also if Ki = K for all i, then C2(b) = K2.
Consider Mr applied to the r-variate subset b. Let the vector of sample and model moments

for this subset be denoted as ·prb and ·π rb(θ̂b), respectively, both of dimension Cr (b) − 1. Typically,
θb is a subset of the vector θ . Let qr (b) be the dimension of θb. Using (3.3), we can write Mr in
this case as

M (b)
r (θ̂ ) = M (b)

r (θ̂b) = N ( ·prb − ·π rb(θ̂b))′Ĉrb( ·prb − ·π rb(θ̂b))

for some
√

N -consistent and asymptotically normal estimator θ̂ . We assume that �rb = ∂ ·π rb(θb)/
∂θ ′

b is of full rank qr (b), so that the submodel is (locally) identified. Also, we assume that
Cr (b) − 1 − qr (b) > 0. The matrix of the above quadratic form is

Ĉrb = Crb(θ̂b) = �
(c)
rb

(
[�(c)

rb ]′�rb�
(c)
rb

)−1
[�(c)

rb ]′

evaluated at θ̂b, where �
(c)
rb is an orthogonal complement to �rb, and �rb is N times the asymptotic

covariance matrix of ·prb − ·π rb(θb). Now, ( ·prb − ·π rb(θ̂b)) = Trb(p − π(θ̂ )) for some (Cr (b) −
1) × C matrix Trb. Thus, using (2.5), the asymptotic covariance matrix of

√
N ( ·prb − ·π rb(θ̂b)) is

�rb = Trb(I − �H)�(I − �H)′T′
rb = (Trb − �rbH)�(Trb − �rbH)′.

A necessary and sufficient condition for M (b)
r to be asymptotically distributed (under H0) as

a chi-square with ν degrees of freedom in this setup is (Schott, 1997, Theorem 9.10)

�rbCrb�rbCrb�rb = �rbCrb�rb for any θ , (3.8)

where ν = tr (Crb�rb). Since �rb = Trb�T′
rb, it can be readily verified that Crb = Crb�rbCrb.

That is, �rb is a generalized inverse for Crb. So, (4.1) is satisfied. Also, the degrees of freedom
are obtained using the fact that �

(c)
rb is of full column rank Cr (b) − 1 − qr (b) > 0 and hence

Crb is also of rank Cr (b) − 1 − qr (b). Thus, the null distribution of M (b)
r (θ̂b) is asymptotically

chi-square with degrees of freedom Cr (b) − 1 − qr (b).
On the other hand, Pearson’s X2 is not asymptotically chi-square under H0 when applied

to subsets of variables even for BAN estimators. To see this, from the Appendix of Maydeu-
Olivares and Joe (2005), X2 applied to the r-variate subset b can be written as X2

b = N ( ·pb −
·πb(θ̂b))′�−1

rb ( ·pb − ·πb(θ̂b)). Now, using (2.5), the asymptotic covariance matrix of
√

N ( ·pb −
·πb(θ̂b)) for BAN estimators such as the MLE is �rb = Trb(� − �III−1

�′)T′
rb =

�rb − �rbIII−1�′
rb = �rb − A, where A = �rbIII−1�′

rb is symmetric. For this �rb, it can be read-
ily verified that �rb�

−1
rb �rb = �rb − 2A + A�−1

rb A and �rb�
−1
rb �rb�

−1
rb �rb = �rb − 3A +

3A�−1
rb A − A�−1

rb A�−1
rb A, so that �rb�

−1
rb �rb�

−1
rb �rb �= �rb�

−1
rb �rb in general. To get a null

asymptotic distribution that is chi-square, a BAN estimator based on the variables in the subset b

must be used.
In closing this section note that from the results in Section 3.1, (incorrectly) using X2

instead of M (b)
r (θ̂b) with a chi-square with degrees of freedom Cr (b) − 1 − qr (b) reference

distribution would result in an undue impression of poor fit as X2 is stochastically larger than
M (b)

r (θ̂b).
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5. Data Examples

In this section we provide two numerical data examples to illustrate our results. In these
examples we used Samejima’s (1969) graded logistic model to fit questionnaire data using the
MLE. In the first example a small model is considered, C = 35 = 243, where the contingency
table is not very sparse. In the second example we fit a larger model, C = 510 ≈ 107, to illustrate
a highly sparse situation.

5.1. The Satisfaction with Life Scale Data

The Satisfaction with Life Scale (SWLS) (Diener, Emmons, Larsen, & Griffin, 1985) is a
widely used questionnaire consisting of n = 5 statements intended to obtain a global cognitive
judgment of one’s life. The SWLS is usually completed using a 7-point rating scale. However,
Kramp (2006) investigated experimentally the effects of varying the number of response options
in several rating scales, among them the SWLS. Here we shall fit Samejima’s graded logistic
model to an experimental version of the SWLS where respondents were asked to employ the
following three-point scale: 0 = disagree, 1 = neither agree nor disagree, and 2 = agree. The
sample size is N = 429, so the contingency table is not very sparse (N/C = 1.77). However, even
in this situation, 141 cells have zero counts. As a consequence of these zero observed counts the
full information test statistics X2 and G2 yield very different conclusions: X2 = 310, p = 0.0002
and G2 = 199, p = 0.91, both on 227 degrees of freedom. The M2 statistic, on the other hand,
suggests that the model does not fit well, but not as poorly as X2 : M2 = 57.05 on 35 degrees of
freedom, p = 0.01. Notice that, in this case, since we are using ML estimation, X2 = M5.

As the model does not fit well, we proceed to investigate the source of the misfit. Large
standardized cell residuals were obtained for the patterns (01222), (20122), (00210), (11211),
(02000), (22120), (02200), (00122), (21000), (22102), (10202), (00021), (22010). We cannot
meaningfully extract any trend in these patterns. As an alternative, we computed goodness-of-fit
statistics for bivariate subtables.

Each bivariate table depends on 2(K − 1) intercepts and two slopes. Thus, there are (K2 −
1) − 2(K − 1) − 2 = 2 degrees of freedom when M2 is applied to bivariate subtables. We cannot
assess how well this model fits each item separately using M1 as the univariate submodels are not
identified. There are K − 1 mathematically independent probabilities in each univariate table.
But each univariate table depends on K − 1 intercepts α and one slope β.

We provide in Table 4 the bivariate statistics computed for every pair of variables. As can be
seen in this table, the pairwise M

(ij )
2 statistics suggest that the model does not fit well for item 2.

To verify this conjecture we reestimated the model to each subset of n − 1 = 4 items. The results
are shown in Table 5.

TABLE 4.
M

(ij )
2 statistics applied to bivariate subtables for the SWLS data.

Items 1 2 3 4 5

1 — 0.03 6.00 6.19 0.08
2 0.03 — 1.41 9.13∗ 8.71∗

3 6.00 1.41 — 0.83 0.05
4 6.19 9.13∗ 0.83 — 1.52
5 0.08 8.71∗ 0.05 1.52 —

Note: Statistics significant at the α = 0.05 significance level are
marked with ∗.
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TABLE 5.
Overall goodness-of-fit results for subsets of n − 1 = 4 items for the SWLS
data.

Dropping X2 p M2 p

1 86.98 0.06 24.97 0.20
2 64.59 0.59 22.91 0.29
3 91.93 0.03 35.70 0.02
4 82.20 0.12 36.37 0.01
5 105.36 <0.01 30.06 0.07

Note: X2 = M
(−i)
4 ; there are 68 degrees of freedom for X2 and 20

for M
(−i)
2 (ith item deleted).

The results of this table strongly suggest that the fit of Samejima’s graded logistic model
to these data can be improved by removing item 2, as suggested by the bivariate M

(ij )
2 statistics.

Also notice that in this table there are some discrepancies between X2 = M
(−i)
4 and M

(−i)
2 with

the ith item deleted, which suggests, given our simulation results in Section 3.2, that sparseness
can still have some adverse effects on the small sample behavior of X2 even in such small tables.

5.2. The Negative Problem Orientation Data

Following Drasgow et al. (1995), Maydeu-Olivares (2005) used X2 statistics for single items,
item pairs, and item triplets to compare in a descriptive fashion the fit of several unidimensional
IRT models to each of the five scales of the Social Problem Solving Inventory-Revised (SPSI-R)
(D’Zurilla, Nezu, & Maydeu-Olivares, 2002). The models considered were Samejima’s graded
logistic model, Masters’s (1982) partial credit model, Thissen and Steinberg’s (1986) extension
of the latter, and Bock’s (1972) nominal model. In all scales Samejima’s graded logistic model
yielded the best fit. However, since the statistics employed to compare the models had an unknown
sampling distribution, nothing could be concluded about the absolute fit of the models. In this
example, we shall reanalyze data in Maydeu-Olivares (2005) from one of the SPSI-R scales,
the Negative Problem Orientation (NPO) scale, to investigate whether the best fitting model,
Samejima’s graded logistic model, indeed provides an adequate fit to the data.

The NPO scale consists of 10 items intended to measure individual differences in: (a) view-
ing a problem as a significant threat to well-being; (b) doubting one’s personal ability to solve
problems successfully; and (c) easily becoming frustrated and upset when confronted with prob-
lems in everyday living. Individuals are asked to respond to each item using one of five categories:
“0 = Not at all true of me”; “1 = Slightly true of me”; “2 = Moderately true of me”; “3 = Very
true of me”; “4 = Extremely true of me.” The sample size is N = 1053.

Samejima’s graded logistic model was estimated by ML. The parameter estimates and
standard errors are reported in Table 6. The number of degrees of freedom available for testing
using X2 and G2 is very large, df = 9765574, and each statistic offers a very different picture:
X2 ≈ 6 × 107 � df , G2 ≈ 13000  df . Given the extremely large degree of sparseness of the
data, neither statistic can be trusted and we resort to M2 to assess the overall fit of the model. With
710 degrees of freedom we obtained M2 ≈ 1500, p  .001. Thus, the model fits very poorly.

To assess the source of misfit we used, as in the previous example, pairwise M
(ij )
2 statistics,

each with 14 degrees of freedom. These statistics are shown in Table 7. In this table we used a
Bonferroni adjustment for the M

(ij )
2 statistics. Thus, those statistics that exceed 35.82, the upper

0.05/45 = .0011 quantile of the χ2
14 distribution, are indicated with an asterisk. Even with this

correction, Table 7 reveals that the misfit of the model cannot be attributed to any particular item.
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TABLE 6.
ML estimates and standard errors for the NPO data.

Parameters Estimates Standard errors

α11, . . . , α14 1.97, 0.14, −1.52, −3.16 0.11, 0.09, 0.10, 0.15
α21, . . . , α24 2.05, −0.06, −1.94, −3.99 0.12, 0.10, 0.12, 0.19
α31, . . . , α34 2.29, 0.15, −1.39, −3.28 0.12, 0.09, 0.10, 0.15
α41, . . . , α44 2.15, −0.02, −1.63, −3.52 0.12, 0.09, 0.11, 0.16
α51, . . . , α54 0.89, −0.92, −2.46, −4.22 0.10, 0.10, 0.13, 0.19
α61, . . . , α64 2.92, 0.73, −0.90, −3.05 0.14, 0.10, 0.10, 0.15
α71, . . . , α74 1.65, −0.68, −2.52, −4.51 0.13, 0.11, 0.15, 0.22
α81, . . . , α84 1.63, −0.18, −1.34, −2.76 0.10, 0.09, 0.10, 0.13
α91, . . . , α94 1.12, −0.86, −2.52, −4.65 0.12, 0.12, 0.15, 0.22
α10,1, . . . , α10,4 2.33, −0.37, −2.28, −4.63 0.14, 0.12, 0.15, 0.22

β1, . . . , β5 1.57, 2.06, 1.78, 1.71, 1.74 0.09, 0.11, 0.10, 0.10, 0.10
β6, . . . , β10 2.02, 2.43, 1.51, 2.47, 2.57 0.11, 0.13, 0.09, 0.14, 0.14

Rather, it is widespread. Thus, we conclude that although results in Maydeu-Olivares (2005)
suggest that Samejima’s logistic graded model was the best fitting model for these data among a
set of parametric IRT models, this model does not provide a satisfactory fit to this questionnaire.
An alternative model is needed.

6. Discussion and Conclusions

Applied researchers confronted with the problem of modeling sparse multidimensional
contingency tables are faced with the problem of how to assess the overall goodness of fit of the
model and, should the overall fit be poor, how to identify the source of the misfit. Much attention
has been devoted in recent years to limited information procedures to overcome these problems.

With regard to overall goodness-of-fit assessment, most of the statistics proposed are
quadratic forms in low-order marginal residuals. The statistics differ in that they are based
on different marginal residuals, and/or on the choice of weight matrix. Some of the statis-
tics, such as the overall GFfit statistic proposed by Jöreskog and Moustaki (2001), are used

TABLE 7.
Bivariate subtable M

(ij )
2 for the NPO data.

Items 1 2 3 4 5 6 7 8 9 10

1 — 48.37∗ 23.35 31.37 12.84 39.73∗ 34.63∗ 26.67 51.11∗ 19.87
2 48.37∗ — 55.31∗ 28.64 19.49 30.13 15.43 21.35 18.31 33.08
3 23.35 55.31∗ — 28.40 24.46 36.47∗ 31.14 27.08 37.92∗ 35.73
4 31.37 28.64 28.40 — 31.67 57.42∗ 29.69 32.32 34.99 49.28∗

5 12.84 19.49 24.46 31.67 — 30.51 32.70 46.82∗ 38.77∗ 27.45
6 39.73∗ 30.13 36.47∗ 57.42∗ 30.51 — 31.43 50.55∗ 50.97∗ 55.49∗

7 34.63 15.43 31.14 29.69 32.70 31.43 — 45.23∗ 58.72∗ 92.67∗

8 26.67 21.35 27.08 32.32 46.82∗ 50.55∗ 45.23∗ — 25.75 29.34
9 51.11∗ 18.31 37.92∗ 34.99 38.77∗ 50.97∗ 58.72∗ 25.75 — 35.89∗

10 19.87 33.08 35.73 49.28∗ 27.45 55.49∗ 92.67∗ 29.34 35.89∗ —

Note: Statistics significant at the α = 0.05/45 = .0011 level are marked with ∗.
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heuristically. Other limited information statistics can be referenced to a chi-square distribution.
To obtain asymptotic p-values for limited information statistics, two procedures have been used.
One approach is to construct a quadratic form statistic that is asymptotically chi-square. This
is the approach taken by Christoffersson (1975), Reiser (1996), and Maydeu-Olivares and Joe
(2005). Another approach is to construct a quadratic form statistic that is asymptotically dis-
tributed as a mixture of independent chi-square variates and approximate its distribution using
a chi-square distribution by matching moments. This is the approach used in Maydeu-Olivares
(2001a, 2001b), Bartholomew and Leung (2002), and Cai et al. (2006).

Christoffersson (1975) proposed a statistic for binary data models that is asymptotically chi-
square for asymptotically efficient estimators based on univariate and bivariate margins. For other
estimators the statistic is not asymptotically chi-square (Maydeu-Olivares & Joe, 2005). Reiser
(1996) proposed another statistic for binary data models which is asymptotically chi-square for
BAN estimators such as the MLE. This statistic uses as weight matrix a generalized inverse of
the asymptotic covariance matrix of the marginal residuals (�r in our notation), which requires
computing the asymptotic covariance matrix of the parameter estimates.

Statistics based on moment corrections also require computing the covariance matrix of
the parameter estimates. Thus, in two separate reports, Maydeu-Olivares (2001a, 2001b) gave
formulas for obtaining p-values for the same statistic for two different estimators for binary
data models. In one case, for models estimated using the three-stage estimation procedure pro-
posed by Muthén (1993) and implemented in Mplus (Muthén & Muthén, 2001) and Lisrel
(Jöreskog & Sörbom, 2001); and in, the second case, for models estimated using the two-stage
estimation procedure implemented in NOHARM (Fraser & McDonald, 1988). Bartholomew
and Leung (2002) proposed another limited information statistic for binary data models esti-
mated with the MLE using moment corrections without computing the covariance matrix of the
ML parameter estimates. Cai et al. (2006) showed that the effect of parameter estimation in
Bartholomew and Leung’s statistic was too large to be ignored and that the computation of the
covariance matrix of the ML parameter estimates is necessary to obtain accurate p-values for that
statistic.

In contrast, the statistics in the Mr family proposed by Maydeu-Olivares and Joe (2005) for
binary data models do not require computing the asymptotic covariance matrix of the parameter
estimates. Furthermore, unlike previous statistics, which are associated with particular estimators,
Mr is asymptotically chi-squared distributed for all members of the class of

√
N -consistent and

asymptotically normal estimators.
In this paper we have extended Maydeu-Olivares and Joe’s (2005) work on limited infor-

mation goodness-of-fit testing of composite hypotheses in multidimensional binary contingency
tables to multidimensional contingency tables of arbitrary dimensions. We have shown that their
Mr family of overall goodness-of-fit statistics extends readily to the general case.

To date only one limited information test statistic had been proposed for multidimensional
contingency tables of arbitrary dimensions (Maydeu-Olivares, 2006). In this statistic, asymptotic
p-values are again obtained by matching moments, and it requires the computation of the asymp-
totic covariance matrix of the parameter estimates. The p-values are only valid when parameters
are estimated using the sequential estimator described in Jöreskog (1994) and implemented in
Lisrel.

An interesting alternative line of research on limited information testing with second-order
moments is that of Glas and co-workers, most notably Glas (1988, 1999) and Glas and Verhelst
(1989). A direction of future research is to compare their approach with ours, for statistical power
and detection of various misfits, in the context of item response models.

With regard to the assessment of the source of misfit, Drasgow et al. (1995) suggested
computing Pearson’s X2 statistic (adjusted for sample size) to univariate, bivariate, and trivari-
ate subtables, particularly in cross-validation samples. Also, Jöreskog and Moustaki (2001)
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heuristically proposed computing X2 statistics for univariate and bivariate subtables (their GFfit
statistic). Here, we have suggested employing the Mr statistic for r-dimensional subtables. Pro-
vided the subtable’s model is identified, the M (b)

r statistics are asymptotically chi-square with
degrees of freedom equal to the number of cells in the subtable minus the number of parameters
involved in the subtable minus one. This result holds for all

√
N -consistent and asymptoti-

cally normal estimators. Furthermore, we have shown that X2 =GFfit applied to subtables is not
asymptotically chi-square even for the MLE. These M (b)

r statistics applied to subtables may be
very useful to identify the source of the misfit in multidimensional contingency tables where the
number of categories is large.

In large and/or sparse contingency tables, Mr for small r (r = 2, 3) should be employed
instead of X2 as the former have more precise empirical Type I errors and may be more powerful
than the latter. In the case of K = 2, for sequences of local alternatives involving the comparison
of the two-parameter logistic IRT model versus the one-parameter (Rasch) model, Maydeu-
Olivares and Joe (2005) showed that asymptotically M2 (and typically also M3) is more powerful
than X2. Here, we have shown that in finite samples with K > 2 and non-sparse data that M2 is
more powerful than X2 for the comparison of the graded model versus a graded model with a
common slope. The comparative power of Mr and X2 for nonsparse data depends on the models
and hypotheses, and we expect that X2 will be more powerful in some cases. When the data are
sparse, the power comparisons based on chi-square critical values are not meaningful as X2 has
inflated empirical Type I error rates. Also, the power comparisons are only meaningful when
the source of misfit is embedded in low-order margins. When testing, using up to r-dimensional
margins, Mr has no power to detect model misfit in margins higher than r .

Also, the family of statistics Mr compares favorably to the use of resampling methods for
overall goodness-of-fit assessment of composite null hypothesis in multidimensional contingency
tables. On the one hand, one can obtain a p-value for the overall fit of the model with considerably
less computing effort than by resampling methods. On the other hand, they provide a way to detect
the source of misfit of the model.

However, there are three obvious limitations to the use of the approach advocated here. First,
the model must be identified from the margins. In practice, most models of interest—such as the
IRT model considered here—can be identified from the bivariate or trivariate margins. The second
limitation stems from the fact that by testing using only margins up to order r there is no power to
detect misfit in higher-order margins. Thus, although the use of limited information may be very
useful to reject a full information null hypothesis, it may not provide enough information when
it fails to reject the null. In practice—as our examples illustrate—as the number of categorical
variables increases, it is not an easy task to find a model that is not rejected even when testing
is performed using only univariate and bivariate margins. The third limitation is computational.
When some of the observed variables have a large number of categories Ki , even computing M2

for n > 15 can be computationally infeasible as the dimension s(2) of the matrices �r and �r

gets too large.
When the categorical data are ordinal, then there exists an alternative set of limited infor-

mation test statistics that are invariant to the set of permissible transformations of the ordinal
data and that can be used with much larger models than those feasible using the Mr family of
test statistics. This alternative approach, suitable only for ordinal variables, will be discussed in
a separate report.

In closing, while we have focused on testing composite hypotheses, the common situation
in applications, the general framework discussed here can also be applied to testing simple null
hypotheses. This is discussed in the Appendix. Also, although the applications and simulations in
this paper are focused on item response models, the theory introduced in this paper is completely
general for multivariate discrete data. For example, for multivariate continuous variables with a



ALBERT MAYDEU-OLIVARES AND HARRY JOE 729

copula model (e.g., Joe, 1997) there is no general approach for assessing goodness of fit other
than discretizing the variables. Applying the family of Mr statistics to discretized continuous
variables to assess goodness of fit is another topic for future investigation.

Appendix

Goodness-of-Fit Testing of Simple Null Hypotheses

For testing the overall goodness of fit of a simple null hypotheses H0 : π (θ) for a fixed a
priori vector θ of dimension q, and as an alternative to X2 in sparse tables, Maydeu-Olivares and
Joe (2005) proposed using the family of limited information test statistics

Lr = N (pr − π r )′�−1
r (pr − π r ), r = 1, . . . , n.

The choice of r depends on the sparseness of the contingency table. From (2.3), under H0, the Lr

statistics converge in distribution to a χ2
s(r) distribution as N → ∞. For r = n, Ln = X2.

If the Lr test suggests significant misfit then L(b)
r = X2

b for the r-dimensional subtables can
be obtained to identify the source of the misfit. Under the null hypothesis, these statistics applied
to subtables are asymptotically chi-square; the degrees of freedom for margin b is [

∏
i∈b Ki] − 1.

Some Computing Details

Consider a model, such as that given in (3.4)–(3.6), that has a form that is closed under
margins. Then any probability in the rth-order margin and in �r can be computed directly
without marginalizing the n-dimensional joint distribution. That is, for computations, one can
avoid the large matrix Tr in Section 2.2, where it was presented for notational convenience. Mr

depends on Cr evaluated at θ̂ , which depends on the matrices �r and �r evaluated at θ̂ . The
matrix of partial derivatives �r can be computed at the same time as π r (θ̂ ). The computation
of �r is a bit more involved. �r is the covariance matrix of the vector of sample proportions
of margins of order r or less. A term in �r has the form mc(yc) − ma(ya)mb(yb), where a, b

are subsets of {1, . . . , n} of dimension between 1 and r , c = a ∪ b, and ma,mb,mc are marginal
probabilities. Efficient computation of �r relies on a systematic way of enumerating the marginal
probabilities corresponding to terms in Ar .

Next we discuss computation of the MLE for model (3.4)–(3.6). There are similar consid-
erations for other item response models. With Gauss–Hermite (GH) quadrature for evaluation of
marginal probabilities of (3.4) and its derivatives, we have coded the computation of the MLE
with the Newton–Raphson method. This is an alternative to the expectation-maximization (EM)
algorithm (e.g., Bock & Aitkin, 1981). It has the advantage that the inverse observed Fisher
information matrix, used as the estimated covariance matrix, is computed at the same time. For
the covariance matrix of êr in (2.6), the expected Fisher information matrix is needed. Computing
the information matrix is much harder than computing �r because the former requires summing
through the probabilities in (3.4) for all C = Kn n-dimensional probabilities, and this is essen-
tially only feasible if Kn < 109. With most efficient use of computer memory, Fisher information
III can be computed as

∑
y (∂πy/∂θ )(∂πy/∂θ)′/πy.

The BCL estimator for model (3.4)–(3.6) can also be obtained numerically with Gauss–
Hermite quadrature and the Newton–Raphson method. The computations require the evaluation
of marginal probabilities of (3.4) and its derivatives for dimensions 2, 3, and 4. We next indicate
how to evaluate �2 in (2.6), without any matrices of order C. This technique applies to any√

N -consistent estimator that can be considered as a solution to a set of estimating equations. Let
π

(ij )
k1k2

(θ) = Pr(Yi = k1, Yj = k2) and let p
(ij )
k1k2

be the sample counterpart. Then the BCL estimator
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θ̂ = θ̂BCL maximizes

L2(θ) = N
∑

i<j

∑

k1

∑

k2

p
(ij )
k1k2

log π
(ij )
k1k2

(θ).

From second-order Taylor approximation,

0 = N−1 ∂L2(θ̂ )

∂θ
= N−1 ∂L2(θ)

∂θ
+ N−1 ∂2L2(θ)

∂θ∂θ ′ (θ̂ − θ ) + Op(N−1)

and using the theory of estimating equations (see, e.g., Zhao & Joe, 2005),

θ̂ − θ ≈ W−1N−1 ∂L2(θ)

∂θ
, where W = W(θ) = −N−1E

[
∂2L2(θ )

∂θ∂θ ′

]

.

Note that

N−1 ∂L2(θ)

∂θ
=

∑

i<j

∑

k1

∑

k2

p
(ij )
k1k2

∂π
(ij )
k1k2

(θ)

∂θ

/
π

(ij )
k1k2

(θ)

=
∑

i<j

∑

k1

∑

k2

[
p

(ij )
k1k2

− π
(ij )
k1k2

(θ)
] ∂π

(ij )
k1k2

(θ)

∂θ

/
π

(ij )
k1k2

(θ). (A. 1)

Let π∗
2 be a vector containing all model-based bivariate marginal probabilities (including

those with 0 indices). Also, let p∗
2 be its sample counterpart. From (A.1), there is a matrix K

such that θ̂ − θ ≈ W−1K
(
p∗

2 − π∗
2

)
. From Section 2, each element of π∗

2 is either an element of
π2 or a linear function of elements of π2. Hence p∗

2 − π∗
2 = S(p2 − π2) for a matrix S. Putting

everything together, θ̂ − θ ≈ H2(p2 − π2) where H2 = W−1KS. Since only probabilities in π2

are involved, �2 in (2.6) can be written as

�2 = �2 − �2H2�2 − �2H′
2�

′
2 + �2[H2�2H′

2]�′
2.

For computer implementation in all of the above, a systematic way is needed to convert a
multi-indexed margin to a row or column index in a matrix.

When using Gauss–Hermite quadrature for ML estimation, one must be careful in the
simulation of (3.4)–(3.6) for the assessment of the null distribution of Mr . For a fixed number of
quadrature points nq , the accuracy decreases as the slope parameters increase in absolute value.
This is checked by comparing Romberg integration with Gauss–Hermite quadrature. Hence,
the number of quadrature points needs to increase as the slope parameter increases in order to
achieve a desired accurary; nq = 48 is acceptable provided β values do not exceed 3 in absolute
value.

The null distribution of X2 and M2 depends on the simulation method if the MLE (or
another estimator) is obtained based on Gauss–Hermite quadrature of the model probabilities.
Rather than a standard normal latent random variable Z, Gauss–Hermite calculations with nq

quadrature points implicitly assume that the latent random variable Z′ is discrete with mass wi

at point xi for i = 1, . . . , nq (note that
∑

i wi = 1). Hence, if simulating with Z and estimating
and calculating M2 and X2 with Z′, the resulting “null distribution” of M2 and X2 will be
stochastically larger than the (asymptotic) χ2 distribution if the sample size N is large (relative to
the number of vector categories C). This is because Z is different from Z′ and the goodness-of-fit
statistics can discriminate these two for large N . If estimation is based on Gauss–Hermite with
Z′, then simulation with Z means that a nonnull model that is close to null is used, and the M2

and X2 statistics will tend to be a bit larger than simulation with Z′. A rough calculation shows
that the distribution of Mr in this case is approximately noncentral chi-square with noncentrality
parameter Nδ′

rCrδr where δr is the vector is differences in marginal moments up to order r for
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probabilities based on latent variables Z and Z′. This behavior was readily seen in simulation
results of Z versus Z′.
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