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Abstract

In applications of item response theory, assessment of model fit is a critical issue. Recently,
limited-information goodness-of-fit testing has received increased attention in the psychometrics
literature. In contrast to full-information test statistics such as Pearson’s X2 or the likelihood ratio
G2, these limited-information tests utilise lower order marginal tables rather than the full
contingency table. A notable example is Maydeu-Olivares and colleagues’ M2 family of statistics
based on univariate and bivariate margins. When the contingency table is sparse, tests based on
M2 retain better Type I error rate control than the full-information tests and can be more powerful.
While in principle the M2 statistic can be extended to test hierarchical multidimensional item
factor models (e.g., bifactor and testlet models), the computation is non-trivial. To obtain M2, a
researcher often has to obtain (many thousands of) marginal probabilities, derivatives, and
weights. Each of these must be approximated with high-dimensional numerical integration. We
propose a dimension reduction method that can take advantage of the hierarchical factor structure
so that the integrals can be approximated far more efficiently. We also propose a new test statistic
that can be substantially better calibrated and more powerful than the original M2 statistic when
the test is long and the items are polytomous. We use simulations to demonstrate the performance
of our new methods and illustrate their effectiveness with applications to real data.
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1 Introduction

In this paper we consider the application of limited-information tests (e.g., Bartholomew &
Leung, 2002, Cai, Maydeu-Olivares, Coffman, & Thissen, 2006; Maydeu-Olivares & Joe,
2005) to the case of hierarchical multidimensional item response theory (IRT) models (e.g.,
Cai, 2010b; Cai, Yang, & Hansen, 2011; Gibbons & Hedeker, 1992; Wainer, Bradlow, &
Wang, 2007). In the context of IRT, limited-information goodness-of-fit test statistics have
been suggested as a potential solution to the problem of extreme sparseness of the
underlying multinominal table upon which the IRT model is defined (see, e.g., Bartholomew
& Tzamourani, 1999). In contrast to the usual full-information test statistics (e.g., Pearson’s
statistic) that depend on probabilities of the full set of cells in the table (hence full-
information), the limited-information statistics use only the lower-order marginal
probabilities. While the idea of limited-information estimation is not new (e.g.,
Christoffersson, 1975; Muthén, 1978; Jöreskog & Moustaki, 2001) and the seeds of limited-
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information testing have been planted earlier in the psychometric literature (e.g., Reiser,
1996), the theory of limited-information goodness-of-fit tests has seen major new
development in recent years largely thanks to a theoretical breakthrough made by Maydeu-
Olivares and Joe (2005). We now have a comprehensive set of test statistics that have far
better calibrated Type I error rates than their full-information counterparts under sparseness.
We also understand that limited-information tests can be more powerful than full-
information tests. They work for a variety of IRT models, full- and sub-tables alike
(Maydeu-Olivares & Joe, 2006), and statistics not restricted to marginal tables have also
been developed (Joe & Maydeu-Olivares, 2010).

At the same time, large-scale data collection efforts in both health outcomes research (e.g.,
PROMIS; Reeve et al., 2007) and educational surveys (e.g., PISA; Adams & Wu, 2002)
have resulted in item response data for which hierarchical item factor models prove to be
natural. In these contexts, unidimensionality is often violated either because of the
complexity of the domain under consideration or because of the assembly of the
measurement instruments. A prime example of the former is described in detail by Gibbons
et al. (2007), who considered a quality-of-life scale for mental health patients that is made
up of questions from a multitude of subdomains, such as family, health, finance, social,
leisure, etc. These subdomains contribute to the measurement of quality-of-life, but they also
introduce additional nuisance dimensions above and beyond the general quality-of-life
dimension. Gibbons et al. (2007) fitted a bifactor model to the data to not only account for
the local dependence due to the subdomains but also to reflect the essential goal of the
measurement endeavour, which is to derive an estimate of the patient’s quality-of-life. In
educational testing, it is routine to organise several test items around a common stimulus,
such as the questions following a passage in a reading comprehension test. The existence of
these so-called “testlets” significantly alters the latent dimensionality of the tests. To obtain
correct estimates of ability as well as standard errors of measurement, testlet response theory
models have been proposed (Wainer et al., 2007). As an alternative, Cai, Yang, and Hansen
(2011) also considered bifactor models for large-scale educational survey data.

In both bifactor and testlet response theory models, there is a general dimension on which all
items load. In addition, there may be S group-specific dimensions that are mutually
orthogonal, and orthogonal to the general dimension. As a critical feature, an item is allowed
to load on at most one group-specific dimension. This is in contrast to standard item factor
models (e.g., Reckase, 2009) wherein the factors may be correlated and items may load on
more than two factors. Historically, Holzinger and Swineford’s (1937) bifactor analysis and
Thurstone’s (1947) multiple factor analysis reflect two somewhat different intellectual
leanings in factor analysis, with the former being a derivative of Spearman’s (1904) one-
factor model. In an attempt to merge the two types of multidimensional IRT models, Cai
(2010b) proposed a two-tier model in which an item can load on P potentially correlated
primary dimensions, as in Reckase’s (2009) models, and at the same time, is only permitted
to load on a single group-specific dimension, as in the bifactor model.

From a computational perspective, these hierarchical item factor models are highly attractive
because maximum marginal likelihood estimation for these models requires at most P + 1
dimensional numerical integration as opposed to the full P + S dimensional integration (Cai,
2010b; Gibbons & Hedeker, 1992; Rijmen, 2009). When P is (most often) equal to 1, the
computational burden of obtaining the maximum likelihood solution does not increase
exponentially as the number of group-specific dimensions increases. The standard
(correlated factors) multidimensional models do not enjoy such freedom from the “curse of
dimensionality.” In some applications, the number of group-specific dimensions in the
model may be quite large (Cai, 2010b, for example, presented an analysis of educational test
data in which the fitted model included 12 group-specific factors), but dimension reduction
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guarantees that the item parameters can still be estimated efficiently using maximum
likelihood.

It would seem from the growing awareness and importance of limited-information
goodness-of-fit testing and hierarchical item factor models that it is only natural to assess the
fit of bifactor or testlet or two-tier models using limited-information test statistics – the best
of both worlds. Yet to our knowledge, no researcher has attempted the limited-information
testing of hierarchical item factor models.

Theoretically, existing results on limited-information goodness-of-fit testing can be
straightforwardly extended to the case of multidimensional IRT. However, a major
computational stumbling block remains. The limited-information statistics for a realistic
psychological or educational test depend on the calculation of hundreds or sometimes
thousands of model-implied probabilities and derivatives, all of which must be
approximated by numerical integration. If P + S dimensional integration is required, when S
is 10 or more, the computation burden may render limited-information goodness-of-fit
testing practically useless for hierarchical item factor models. This dilemma is similar to the
state of affairs in IRT parameter estimation prior to Gibbons and Hedeker’s (1992)
discovery of the bifactor dimension reduction method.

Our main purpose in this paper is to extend the dimension reduction technique, already used
in parameter estimation, to limited-information goodness-of-fit testing. We show that the
dimensionality of integration problem can be directly tackled in the same manner as in item
parameter estimation. For example, for a bifactor model, where P is equal to 1, the
probabilities and derivatives involved in limited-information goodness-of-fit test statistics
require at most 2 dimensional numerical integration, regardless of the number of factors in
the model. As such, we are now able to test much larger models with much larger latent
dimensionality than what was practically available previously.

As a secondary goal, we consider a new quadratic form test statistic, which we call , that
is based on the general limited-information testing principles proposed by Joe and Maydeu-
Olivares (2010). The statistic is best understood as a further reduction (or concentration) of
the univariate and bivariate marginal tables. The residuals used in the quadratic form are
linear functions of the multinomial cell residuals, but they are are not marginal moments.
Maydeu-Olivares, Cai, and Hernandez (2011) proposed a similar (but not identical) statistic
in the context of unidimensional graded IRT models.

We propose this new test statistic in response to a phenomenon well-known in limited-
information estimation, but relatively obscure in limited-information goodness-of-fit testing.
That is, when the items are polytomous, even the bivariate marginal tables can become too
sparse. Consider the following example. For the quality-of-life of life scale analysed by
Gibbons et al. (2007) and described above, respondents rate their satisfaction with respect to
various aspects of their lives using a seven-point scale. Accordingly, each bivariate marginal
table has 49 cells. Because all the items are intended to measure the same primary construct,
we expect that the responses for any two items would generally have a positive relationship.
Moreover, some response combinations (e.g., a high rating for one item, low for the other)
would be rather uncommon or unexpected, especially for items belonging to the same
subdomain.

To illustrate the situation, we fit a unidimensional logistic graded IRT model to data from
586 respondents to the quality-of-life scale and obtained marginal maximum likelihood item
parameter estimates. We focus our attention on items 4 and 5, which belong to the “family”
subdomain and are fairly strongly related to the underlying dimension (with standardised
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factor loadings of .65 and .68, respectively). The parameter estimates for each item were
used to generate univariate category response curves. For each of the 49 possible rating
combinations, we took the product of the category response curve for item 4, the response
curve for item 5, and the assumed (standard normal, in this example) population distribution.
These distributions were then appropriately normalised to obtain the posterior of the
particular rating combination. The posteriors of all combinations (i.e., all cells in the
bivariate marginal table for this item pair) and the corresponding model-implied cell
probabilities are shown in Figure 1. Not surprisingly, the cells with the highest model-
implied probabilities and greatest posterior densities are along the main diagonal, where
ratings for the two items are the same or within one or two points of each other. Cells in the
bottom-left and upper-right corners, where the differences between the two ratings are most
different, have rather low expected probabilities. In other words, we observe sparseness even
in the second order marginal table.

Recall that the primary reason why limited-information test statistics have better chi-square
approximations than the full-information test statistics is that the lower-order marginal tables
are better filled. However, as we have seen, this central tenet in support of limited-
information goodness-of-fit testing can be invalid when models for polytomous items are
used. Again, as in full-information testing, the sparseness in the marginal tables leads to
inadequate chi-square approximations. We will subsequently show that the distribution of
limited-information test statistics as originally described by Maydeu-Olivares and Joe
(2006) are often stochastically smaller than their theoretical limiting chi-square distributions
for tests made up of polytomous items. This leads to severely mis-calibrated Type I error
rates and significant loss of power to detect misspecification. On the other hand, by further
condensing the marginal tables, the new test statistic has a much improved chi-square
approximation and higher power than the original M2. The new test statistic reduces to the
original M2 when all items are dichotomous.

The remainder of this paper will be organised in the following manner. In Section 2, we
present some technical details related to the computation of the original M2 statistic and the
proposed alternative. We describe in detail the dimension reduction strategy that may be
utilised in the case of hierarchical item factor models to improve the efficiency of computing
M2. In Section 3, we apply the limited-information test statistics to simulated data. First, we
illustrate the improvement in computational efficiency achieved through dimension
reduction. Then, we examine the distribution of the two M2 statistics across a wide range of
conditions, with and without model misspecification. Section 4 presents an analysis of an
empirical dataset. We conclude in Section 5 with a brief discussion of this work,
summarising our findings and highlighting directions for further research.

2 Technical Details

2.1 An Item Bifactor Analysis Model

Let there be n polytomously scored items so that the dichotomous responses become a
special case. Let the ith response pattern be yi = (yi1, …, yin), where yij = 0, …, Kj − 1,
where the number of categories Kj for item j can vary. The total number of possible response

patterns is . Let there be a simple random (calibration) sample of size N. Without
loss of generality, let us consider the logistic version of the graded item bifactor model (Cai,
Yang, & Hansen, 2011) as a representative hierarchical item factor analysis model. Other
models such as the two-tier model (Cai, 2010b) follow the derivations naturally, but we do
not address them here due to space constraints. In the graded bifactor model, the cumulative
response probabilities (i.e., the probability of a response in category k and above) are
expressed as
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where the latent variable η0 is the general dimension with slope βj0, and ηs is the sth group-
specific dimension with slope βjs. Note that item j is permitted to load on at most one group-
specific dimension s. For an item with Kj categories, there are also Kj − 1 intercepts (the
α’s). The item parameters are components of the parameter vector θ ∈ Θ, where Θ is the
parameter space. Denote the dimensionality of Θ as ν. This is equal to the number of
unconstrained parameters in the model.

Taken together, the category response probability can be written as the difference:

(1)

where η = (η0, η1, …, ηs, …, ηS)′. For any generic item j, we may use

(2)

to denote the conditional density of the observed item response yij on the latent variables η,
where χk(yij) is an indicator function that takes on a value of 1 if and only if yij = k, and 0
otherwise. The formulation in Equation (2) is especially flexible because if yij is not among
the legitimate response categories (e.g., missing data), it does not affect the estimation of θ.

The item bifactor model has S + 1 latent variables. As with any IRT model, the response
pattern probability πi(θ) = π(θ|yi) is obtained by integrating over the latent variables,

(3)

where h(η) is the assumed (prior) distribution of the latent variables, typically taken as
standard multivariate normal (see Cai, Yang, & Hansen, 2011).

2.2 Some Asymptotic Distribution Theory

As with any other IRT model, the item bifactor model is defined on an underlying n-way
contingency table made up of the full list of C cross-classifications of the response patterns.
Let the C (unstructured) multinomial cell probabilities be π = (π1, …, πi, …, πC)′. The
corresponding observed cell proportions based on a sample of size N are p = (p1, …, pi, …,

pC)′. The restrictions  and  are implicit. Following standard results in
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Bishop, Fienberg, and Holland (1975), the asymptotic distribution of p − π is C-variate
normal with zero means and limiting covariance matrix Ξ = diag(π) − ππ′, i.e.,

(4)

The bifactor model imposes the following structure on the multinomial cell probabilities:
π(θ) = [π1(θ), …, πi(θ), …, πC(θ)]′. The log-likelihood is

(5)

Fitting this model to the observed proportions by maximum likelihood yields the solution θ̂.
Standard estimation algorithms such as the Bock-Aitkin EM algorithm (Bock & Aitkin,
1981) can be used to optimise the log-likelihood.

It is once again a standard discrete multivariate analysis result (see, e.g., Maydeu-Olivares &
Joe, 2005 for a derivation) that the cell residual vector e = p − π(θ̂) is also asymptotically
normally distributed with zero means and limiting covariance matrix Ω(θ) = Ξ(θ) − Δ(θ)[ 
(θ)]−1Δ(θ)′, i.e.,

(6)

where Δ(θ) = ∂π(θ)/∂θ is the C × ν Jacobian matrix containing all first order partial
derivatives of the model-implied probabilities with respect to the parameters, and (θ) is the
Fisher information matrix (θ) = Δ(θ)′diag[π(θ)]−1Δ(θ).

Testing the goodness-of-fit of the model under maximum likelihood estimation involves the
following composite hypothesis H0 : there exists some θ ∈ Θ such that π = π(θ). The null is
tested against the alternative HA : π ≠ π(θ) for any θ ∈ Θ. While algorithms developed by
Gibbons and Hedeker (1992) and extended by Cai, Yang, and Hansen (2011) have made
parameter estimation for item bifactor analysis practical in routine applications, testing the
goodness-of-fit of the models is not straightforward when n is relatively large. This issue is
well-known in categorical data analysis. The number of cells increases exponentially as the
number of items increases, which will quickly exceed any conceivable sample size in
psychological and educational measurement. For more than a dozen or so items, the
underlying contingency table is extremely sparse, with many cells having near zero expected

probabilities. Under sparseness, the Pearson test statistic , or its

large-sample equivalent, the likelihood ratio test statistic , can no
long achieve the limiting central chi-square distribution with C − ν − 1 degrees-of-freedom
under the null hypothesis. As documented extensively in the literature, both Type I error
rates and power are adversely affected when the contingency table is sparse (see, e.g.,
Bartholomew & Leung, 2002).

2.3 Limited-information Goodness-of-fit Testing

To resolve the sparseness issue, limited-information tests have been suggested, most notably
by Maydeu-Olivares and Joe (2005). In limited-information goodness-of-fit tests, marginal
sub-tables are used. A number of authors, including Maydeu-Olivares and Joe (2005) and
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Cai et al. (2006), consider marginal residuals up to order 2, i.e., first and second order
margins. The marginal residuals are obtained via operator matrices, e.g.,

(7)

where L2 is a particular d × C fixed matrix of 0s and 1s that can collapse the cell residuals
into first and second order marginal residuals (see, e.g., Maydeu-Olivares & Joe, 2006). Let
us elaborate a little more on the dimensionality of the various matrices.

As Maydeu-Olivares and Joe (2006) explained, the number of linearly independent first

order marginal residuals is equal to . The number of linearly independent

second order marginal residuals is equal to . Thus, taken
together, d = d1 + d2. In partitioned form, we may also write

(8)

where L̇1 is a d1 × C operator matrix that collapses the cell proportions and model-implied
cell probabilities into d1 first order marginal proportions ṗ1 = L ̇

1p and marginal
probabilities π̇1(θ̂) = L ̇

1π(θ̂), and L̇2 is a d2 × C operator matrix that collapses the cell
proportions and probabilities into d2 second order marginal proportions ṗ2 = L ̇

2p and
marginal probabilities π̇2(θ̂) = L ̇

2π(θ̂). It is also clear that e2 is made up of the first and
second order marginal residuals ė1 and ė2.

For convenience, let us order the first order marginal probabilities by item number, i.e., j =
1, …, n. Similarly, let us order the second order marginal probabilities by unique item pairs,
i.e., (l, m) = (2, 1), (3, 1), (3, 2), …, (n, n − 1). There are n(n − 1)/2 such unique pairs. As
mentioned above, for any item j, there are Kj cells in the first order marginal table, but there
are only Kj − 1 linearly independent marginal probabilities because the Kj cells must sum to
1. These can be conveniently obtained by removing cells that correspond to the first
category, the 0 category. By similar reasoning, while there are KlKm cells in each bivariate
table, there are only (Kl − 1)(Km − 1) linearly independent marginal probabilities. Removing
the cells that correspond to the 0 category for both item l and item m would leave the
linearly independent probabilities. Let us denote a generic first order marginal probability as
π̇1,j,k(θ̂). It can be interpreted as the model-implied probability of responses in category k
for item j. Let a generic second order marginal probability be π̇2,l,m,klkm (θ̂). It is interpreted
as the model-implied joint probability of responses in category kl for item l, and in category
km for item m.

The following is an example of obtaining first order marginal probabilities for a test with 3
items. The first two items have 3 categories, and the 3rd one has 2 categories:
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(9)

where the subscripts in parentheses for the 18 × 1 vector above indicate a particular (reverse
lexicographical) ordering of the C = 18 response patterns created by the 3 items. There are 2
+ 2 + 1 = 5 linearly independent first order marginal probabilities. In particular, this may be
verified from the fact that L ̇

1 has full row rank. To obtain the (3 − 1)(3 − 1) + (3 − 1)(2 − 1)
+ (3 − 1)(2 − 1) = 8 second order marginal probabilities, consider the following:
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(10)

The observed marginal proportions can be obtained similarly. We shall denote ṗ1,j,k as the
observed first order marginal proportion for item j in category k. The observed second order
marginal proportion for item l in category kl and item m in category km is ṗ2,l,m,klkm.

From the above derivations, it is clear that e2 = p2 − π2(θ̂) is a linear combination of e. The
rank of L2 is equal to d. As such, the marginal residual moments are asymptotically d-
variate normally distributed with zero means and limiting covariance matrix Ω2(θ) = Ξ2(θ)
− Δ2(θ)[ (θ)]−1Δ2(θ)′,

(11)

where  is d × d, and the Jacobian Δ2(θ) = L2Δ(θ) = ∂π2(θ)/∂θ is d × ν
containing all first order partial derivatives of the marginal probabilities with respect to the
parameters of the model.

Maydeu-Olivares and Joe (2005) noted that if the model is locally identified from the
marginal moments, i.e., when Δ2(θ) has full column rank, then there exists a d × (d − ν)
orthogonal complement Δ̄2(θ) such that Δ̄2(θ)′Δ2(θ) is zero. By implication, Δ̄2(θ̂)′e2 is (d
− ν)-variate normal with zero means and limiting covariance matrix Δ̄2(θ)′Ξ2(θ)Δ̄2(θ), i.e.,

(12)

Consequently, by arguments in Maydeu-Olivares and Joe (2005), the statistic

(13)
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is asymptotically chi-square distributed with d − ν degrees-of-freedom under the null
hypothesis that the model fits exactly.

2.4 A New Test Statistic

As discussed in Section 1, a potential problem with the original M2 statistic as given in
Equation (13) when the test items are polytomous is the sparseness of the bivariate marginal
tables. We adopt the strategies endorsed by Joe and Maydeu-Olivares (2010) and Maydeu-
Olivares et al. (2011) in a new test statistic that is based on a further reduction or
concentration of the cells in the marginal tables. Specifically, let ė1,j,k = ṗ1,j,k − π̇1,j,k(θ̂)
denote a first order marginal residual for item j in category k. We sum across the categories
such that

(14)

is the reduced first order marginal residual for item j, where Ṫ1,j is a 1 × (Kj − 1) vector and
ė1,j = (e1,j,1, …, e1,j,Kj−1)′ is the vector of all linearly independent first order marginal
residuals for item j. Let ε̇1 = (ε̇1,1, …, ε̇1,n)′ be the n × 1 vector of reduced first order
marginal residuals for all n items. We may represent ε̇1 using matrices

(15)

From Equation (15) and Equation (8), it is clear that ε̇1 = Ṫ1ė1 = Ṫ1L̇1e, which shows that
the reduced first order marginal residual vector ε 1 is a linear function of the multinomial
cell residuals. Furthermore, it is clear that Ṫ1 is an n × d1 matrix that has full row rank.
Therefore, the product Ṫ1L̇1 has full row rank.

Moving on to the second order residuals. Let ė2,l,m,klkm = ṗ2,l,m,klkm − π2,l,m,kl,km (θ̂) be a
second order marginal residual for item pair l and m in categories kl and km, respectively.
We define the reduced marginal residual for item pair l and m as a product moment:
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(16)

where Ṫ2,l,m is 1 × (Kl − 1)(Km − 1), formed by a direct product of Ṫ1,l with Ṫ1,m, and ė2,l,m
is the vector of all linearly independent second order marginal residuals for item pair (l, m).
Let ε̇2 = (ε̇2,2,1, …, ε̇2,n,n−1)′ be the n(n − 1)/2 × 1 vector of reduced second order marginal
residuals for all n(n − 1)/2 unique item pairs. We may represent ε̇2 using matrices

(17)

It is clear that the reduced second order marginal residual vector ε̇2 is a linear function of the
multinomial cell residuals. Again, because Ṫ2 is an n(n − 1)/2 × d2 matrix that has full row
rank, Ṫ2L̇2 has full row rank as well.

Given the foregoing development, let the n + n(n − 1)/2 = n(n + 1)/2 = κ reduced first and
second order marginal residuals be

(18)

From Equation (18), we have

(19)

where . Rewrite  as Ψ2(θ)
and T2Δ2(θ) as Γ2(θ). We see that Φ(θ) = Ψ2(θ) − Γ2(θ)[ (θ)]−1Γ2(θ)′ has a similar
structure as Ω2(θ) in Equation (19). In particular, if the κ × ν reduced marginal Jacobian
Γ2(θ) has full column rank, i.e., when the model is locally identified from the reduced first
and second order marginal residuals, there exists a κ × (κ − ν) orthogonal complement
Γ̄2(θ) such that Γ̄

2(θ)′Γ2(θ) is zero. Therefore, Γ̄2(θ̂)′ε2 is (κ − ν)-variate normal with zero
means and limiting covariance matrix Γ̄2(θ)′Ψ2(θ)Γ̄2(θ), i.e.,
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(20)

and we now present the new test statistic:

(21)

which is asymptotically chi-square distributed with κ − ν degrees-of-freedom under the null

hypothesis that the model fits exactly. Again, M2 and  are numerically equivalent when
all items are dichotomous because then the matrix T2 is going to be an identity matrix.

The further reduction in  is akin to using means and product moments for model fit
testing. We will show using simulations that the new statistic has well calibrated Type I
error rates and significantly higher power than the original M2 when the test is made up of
polytomous items. When the test items are dichotomous, T2 becomes an identity matrix,

implying that  is equivalent to M2. A critical requirement of  is that the model must be
locally identified from the set of reduced marginals so that the degrees-of-freedom is
positive. For graded response bifactor models, the minimum number of items to achieve
local identification is typically not excessive. If all test items are dichotomous, at least 6
items are needed. If the number of categories is equal to 5 for all items, the minimum is 12
items.

2.5 Computing the Marginals with Dimension Reduction

The observed marginal proportions are easy to tabulate from the observed data univariate
and bivariate frequencies. On the other hand, while the model-implied marginal probabilities
and elements of Δ2 are defined as linear combinations of elements of π and Δ, their
computation need not involve the L matrices at all. The L matrices are mostly useful as
theoretical devices for studying the asymptotic distributions of the marginal residuals. The
number of columns in L is same as C, the total number of response patterns. Multiplications
of dense matrices with dimension C quickly become infeasible as the number of items n
increases.

2.5.1 The First and Second Order Marginal Probabilities—In reality, the marginal
probabilities are computed directly, as integrals over the latent variable distribution. The
integrals nominally have dimensionality equal to S + 1, and they must be numerically
approximated using quadrature. For instance, the first order marginal probability π̇1,j,k(θ̂)
can be computed as

(22)

where Xq0, …, XqS denotes a set of (direct product) quadrature nodes, with Q points per
dimension, and W(·) denotes the corresponding quadrature weights, e.g., Gauss-Hermite
nodes and weights (Abramowitz & Stegun, 1964). Similarly the second order marginal
probability π̇2,l,m,klkm (θ̂) is equal to
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(23)

Clearly, when S is large, numerical approximation suffers from the curse of dimensionality
since there must be QS+1 function evaluations per marginal probability.

Just as in parameter estimation, we may use the item bifactor model’s special feature (that
each item loads on at most one group-specific dimension) to analytically reduce the
dimensionality of the integrals. For the first order marginal probability, this is simple to
accomplish. Assume for the moment that item j loads on group-specific dimension s. We
have:

(24)

To go from the first to the second line in (24), we simply need to realise that besides the
general dimension η0, out of all the group-specific dimensions η1, …, ηs, …, ηS, item j is
only influenced by ηs. For the second order marginal probability, we have to consider two
distinct possibilities. When items l and m both load on the same group-specific dimension s,
we have:

(25)

When item l loads on group-specific dimension s and item m loads on group-specific
dimension t, we have instead of Equation (25):

(26)

In either case, the dimensionality of integration is equal to 2. More generally, regardless of
the number of factors in the model, we can compute the marginal probabilities with (P + 1)-
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dimensional quadrature, as long as the model is a bifactor (P = 1), testlet (P = 1), or two-tier
(P ≥1) type of hierarchical item factor model. The resulting computational savings in the
calculation of goodness-of-fit has been previously unavailable to researchers.

2.5.2 The Elements of the Jacobian—As to the elements of the Jacobian, they are also
integrals that can be approximated by the same quadrature rule as for the marginal
probabilities. The dimensionality of integration can be reduced by the same line of
reasoning. Consider a generic element θ in θ. Assuming that item j loads on group-specific
dimension s, the derivative of the first order marginal probability π̇1,j,k(θ) with respect to θ,
when evaluated at θ̂, can be numerically approximated as the following 2-dimensional
integral:

(27)

For the derivative of second order marginal probabilities, we find after some algebra

provided that both item l and item m load on the same group-specific dimension s. As as the
case in Equation (26), when item l loads on group-specific dimension s and item m loads on
group-specific dimension t, the derivative can be numerically approximated as:

We can see that the amount of computation required for the Jacobian elements is equal to a
constant multiple of Q2 function evaluations, after dimension reduction. For two-tier
models, the number of function evaluations is equal to QP+1, when P is relatively small, as
opposed to the full QP+S function evaluations without dimension reduction.

2.5.3 The Elements of the Weight Matrix—Dropping reference to θ for the moment,

the weight matrix Ξ2 can be written as
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(28)

In the last expression, the second part involves the first and second order marginal
probabilities in π2, which are already computed following results in Section 2.5.1. The first

part  involves second, third, and fourth order marginal probabilities. We
may gain a clearer understanding of what it takes to compute the elements of Σ from a
partitioning of L2, as in Equation (8):

Consider the upper-left block . As is clear from Equation (9), each row of
L̇

1 can be understood as a set of binary logical conditions that whether each of the C
response patterns contributes to a particular first order marginal. Suppose row r of L ̇

1

corresponds to the first-order marginal for item l in category kl. And further let row c of L̇1
corresponds to the first-order marginal for item m in category km. We realise that the (r, c)
element of Σ11 is equal to the second order marginal probability π2,l,m,klkm, if l ≠ m. If l =
m, the entry is zero.

Now consider the lower-left block . Suppose row r of L̇2 corresponds to
the second-order marginal wherein item l is in category kl and item m is in category km. Let

row c of L̇1 correspond to the first-order marginal for item l′ in category . Then the (r, c)

element of Σ21 is equal to a third order marginal probability , i.e., indicating the

joint probability of item l in category kl, item m in category km, and item l′ in category , if
l, m, and l′ are distinct. Recall that l and m are always distinct due to the construction of L̇

2

(see Equation 10). If l′ is equal to either l or m and at the same time if  is equal to either kl
or km, then the (r, c) element of Σ21 is equal to the second order marginal probability
π̇2,l,m,klkm. Otherwise the (r, c) element of Σ21 is equal to zero. Thus, we must be able to
compute π̇3,l,m,j,klkm,kj, in addition to the pre-computed second order marginals.

Finally, consider the lower-right block . Let row r of L̇2 correspond to the
second-order marginal wherein item l is in category kl and item m is in category km. And let

row c of L̇2 correspond to the second-order marginal wherein item l′ is in category  and

item m′ is in category . If l, m, l′, and k′ are distinct, the (r, c) element of Σ22 is equal to

the fourth order marginal . If l′ is equal to either l or m and at the same

time if  is equal to either kl or km, the (r, c) element of Σ22 is equal to the third order

marginal , or zero otherwise. If m′ is equal to either l or m and at the same

time if  is equal to either kl or km, the (r, c) element of Σ22 is equal to the third order

marginal , or zero otherwise. If l = l′ and m = m′ and at the same time  and

, the (r, c) element of Σ22 is equal to the second order marginal π̇2,l,m,klkm, or zero
otherwise.
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We note here that the third and fourth order marginal probabilities can be computed with
dimension reduction as well, so that the actual dimension of integration is equal to 2 for
bifactor/testlet models and P + 1 for two-tier models with P primary dimensions. The
computational details are lengthy and are relegated to the Appendix. The numeric engine of

IRTPRO (Cai, Thissen, & du Toit, 2011) contains an implementation of M2 and  used in
the remainder of this paper.

3 Applications to Simulated Data

3.1 The Efficiency of Dimension Reduction

In order illustrate the computational efficiency achieved through the strategy described
above, we conducted a simple timing experiment. Data were simulated from a graded item
bifactor model with 15 items in 2, 3, 4, or 5 categories. Three items loaded on each group-
specific factor (in addition to the general dimension), and the number of group-specific
factors (S) ranged from 2 to 5. The total number of dimensions (S + 1) thus ranged from 3 to
6. For each condition, the generating model was fit to the simulated data, and we recorded
the time (in seconds) required to calculate M2 with and without dimension reduction. Nine
quadrature points spread evenly from −4 to 4 standard deviation units were used in
approximating the marginal probabilities. This relatively small number is necessary to allow
us to obtain results in the high-dimensional cases where we do not utilise dimension
reduction. However, with dimension reduction, a larger number of quadrature points can and
should be used, in order to obtain the best possible approximations of the marginal
probabilities. The results for Maydeu-Olivares and Joe’s (2005) M2 test statistic based on
the full first- and second-order marginal tables (Equation 13) are presented in Table 1.
Without implementing dimension reduction, the time required to obtain the test statistic
increases with both the number of categories and the number of dimensions. In contrast,
when dimension reduction is used, the computing time remains relatively constant for
models with a given number of response categories, regardless of the number of group-
specific dimensions. Though not presented here, a similar pattern of results was observed for

the alternative  statistic based on further reduced residuals.

3.2 Monte Carlo Simulations

A second simulation study was conducted to evaluate the performance of the test statistics
under repeated sampling. Both Maydeu-Olivares and Joe’s (2005) M2 statistic based on the

full first- and second-order marginal tables (Equation 13) and the alternative version 
(Equation 21) were considered. We generated data in two sample sizes (N = 750 or 1500)
for 15 items from models that varied in their factor structure and the number of response
categories (K = 2, 3, 4, or 5).

The factor structures of the generating models in this study can be broadly characterised
according to their “major” and “minor” factor domains (see, e.g., Tucker, Koopman, &
Linn, 1969; MacCallum & Tucker, 1991). For each condition, the major domain consisted of
either a single dimension or 4 dimensions with a bifactor structure (1 general dimension and
3 orthogonal group-specific dimensions). In some conditions, a minor factor domain was
added to the generating model, utilizing a variation of the Tucker, Koopman, and Linn
(1969) procedure (TKL). This minor domain consisted of 50 additional common factors that
(1) were orthogonal to one another and to the dimension(s) in the major domain and (2)
collectively accounted for some fixed proportion of variance not accounted for by the
common factor(s) in the major domain.

The TKL procedure has been utilised in numerous simulation studies of principal
components and factor analytic methods (see, e.g., MacCallum & Tucker, 1991; Hong,
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1999; Briggs & MacCallum, 2003; Timmerman & Lorenzo-Seva, 2011). To our knowledge,
this may be the first application to simulation studies in IRT, though Davey, Nering, and
Thompson (1997) implemented an approach based on Tucker et al.’s (1969) logic. The key
benefit of the TKL procedure, as articulated by Tucker et al. (1969), lies in its realism. The
minor factors cannot, in principle, be represented parsimoniously in any item factor model.
As such, the minor dimensions result in a kind of model misspecification that is likely to be
quite pervasive in analyses of real data. Such misspecification is not tied to the omission of
just one or a few parameters from the generating model to the fitted model, as in most other
simulation studies.

In all, there were 6 different factor structures obtained by crossing the major and minor
domain structures. Specifically, the generating models consisted of, first, either a
unidimensional or 4-dimensional bifactor structure as the major domain and, second,
additional minor common factors accounting for 0% (i.e., no additional minor factors), 10%
(TKL10), or 30% (TKL30) of variance. For the conditions with no minor factors, an exactly
correctly specified model does exist; it is either the unidimensional model or the bifactor
model (depending on the major domain factor structure). These represent the null
conditions. For TKL10 and TKL30, the unidimensional or bifactor models will be mildly
misspecified (accounting for most influential dimensions while ignoring the minor ones).

The simulation procedure started with the major domain. The generating item slope
parameters for the major domain factors were randomly drawn from a log-normal
distribution with a mean of 0 and standard deviation of 0.2. A total of 30 slope parameters
were drawn, 15 for the general dimension (also used in the unidimensional conditions) and
15 for the group-specific factors. Threshold values were randomly drawn from uniform
distributions with ranges that varied according to the number of response categories. For
each item, these values were then multiplied by the negative of the corresponding general
dimension slope parameters; these products were used as intercept parameters. For
simplicity, the same intercepts were used for all conditions with a given number of response
categories, regardless of the factor structure. The generating item parameters for the
unidimensional and bifactor model conditions (with no additional minor domain factors) are
summarised in Table 2.

In order to obtain slopes for the minor domain factors, the slope parameters for the major
domain factors in Table 2 were first transformed to standardised factor loadings. Next, factor
loadings were randomly drawn using the TKL procedure for the 50 minor factors such that
(1) successive minor factors would have diminishing influence on the item responses, and
(2) the total variance explained by the minor factors would equal the intended value (either
10% or 30%). The loadings were then transformed back to the metric of logistic slopes. The
item response data for the TKL10 and TKL30 conditions were then simulated from this
(highly) multidimensional IRT model, with 51 total factors when the major domain
consisted of a single factor and 54 total factors when the major domain had a bifactor
structure.

For each condition, 1000 datasets were generated. After generating data, item parameters
were estimated by fitting either a unidimensional or bifactor model using the Bock-Aitkin
EM algorithm (Bock & Aitkin, 1981). Details concerning item bifactor model estimation are
provided in Cai, Yang, and Hansen (2011). The number of quadrature points was Q = 19,
and convergence was declared if maximum absolute inter-cycle parameter change dropped
below 10−4. In all cases, the fitted model corresponded to the structure of the “major” factor
domain of the data generating model; minor domain factors were ignored, if present. This
allowed us to test goodness-of-fit in both the null case and under what we consider to be
rather mild model misspecification. Given the data and item parameter estimates, we
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computed both M2 and  test statistics for each replication. The dimension reduction
strategy described in Section 2.5 was used for all bifactor conditions. Results from
unconverged replications or in cases where numerical instability was evident were identified
and omitted from subsequent analyses. Across all conditions, the minimum number of
replications reported is 922.

3.2.1 Type I Error Rates—In Tables 3 and 4, we present simulation study results for the
unidimensional and item bi-factor models, respectively, under the null condition, in which
the fitted and generating models were the same. Here, we are concerned with whether the
test statistics follow their asymptotic distribution and the extent to which the empirical
model rejection rates match their nominal alpha levels. The results for the unidimensional
and bifactor models are quite similar. For both models, it appears that the original M2 test
statistic is well-calibrated for dichotomous (K = 2) response data. However, as the number
of response categories increases (K > 2), it appears that this M2 statistic becomes
stochastically smaller than the expected chi-square distribution. This is seen in the smaller
mean value and in the empirical rejection rates, which fall well below the corresponding
alpha levels, starting with 3 categories for the unidimensional model and 4 categories for the

item bifactor model. In contrast, the  statistic based on the reduced marginal tables
appears to be fairly well-calibrated for the conditions we tested. As Maydeu-Olivares et al.
(2011), we calculated Root Mean Square Error of Approximation (RM-SEA; Browne &

Cudeck, 1993) values from the M2 and  statistics. Mean RMSEA and a 90% confidence
interval (based on the the observed 5th and 95th percentiles across replications) are reported.
The means ranged from .001 to .007. For all conditions, the lower limit of the 90%
confidence interval was 0; the highest upper limit was .024.

Observed and expected quantiles of the M2 and  statistics are presented in Figure 2. Two-
sided Kolmogorov-Smirnov tests were performed to compare the observed and expected
distributions; the resulting p-values are shown within each panel of Figure 2. Consistent
with the results in Tables 3 and 4, the observed statistics are smaller than expected for the
original M2 statistic for items with 4 or more categories (3 or more for the unidimensional

model), while the alternative  statistic seems to better follow the expected distribution.

3.2.2 Power to Detect Misspecification—We examined the sensitivity of the test
statistics to model misspecification by fitting models which ignored the common factors in
the minor domain of the data generating model. As described above, those minor domain
factors collectively accounted for 10 or 30% of unique item variance in the TKL10 and
TKL30 conditions, respectively. Table 5 presents results for the unidimensional model;
results for the item bifactor model are shown in Table 6. Null condition results are included
for comparison. The empirical rejection rates for all conditions are presented in a set of
power curves in Figure 3.

Consistent with the results for the null case, the original M2 statistic appears to have less
power than the statistic based on the reduced marginal tables. These differences are most
evident for the TKL10 conditions. It is interesting to note that the RMSEA values are
generally quite small for the conditions examined in the study. The mean RMSEA based on

the alternative  statistic was roughly .02 for TKL10 conditions and .05–.06 for TKL30;
for the bifactor model, the corresponding means were .01 and .03–.04. These relatively
small values are consistent with our intention of simulating data with rather mild
misspecification.
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4 An Application to Empirical Data

Having examined the performance of the test statistics in a range of simulated conditions,
we now present an analysis of real data. A sample of 1042 daily cigarette smokers
responded to 18 items regarding possible consequences of quitting smoking. Each item was
rated on a 5-point ordinal scale. The items were administered within a larger questionnaire
dealing with various attitudes, beliefs, and behaviors related to smoking (see Shadel, Edelen,
& Tucker, 2011). The study was itself part of the development of the National Institute of
Health’s Patient Reported Outcomes Measurement Information System (PROMIS; see, e.g.,
Reeve et al., 2007).

All 18 items dealt with negative consequences of quitting, and it seems plausible that the
items would be influenced by a common dimension. At the same time, there were small
groups of items that dealt with rather similar consequences. Two items asked about potential
difficulty concentrating, three items related to weight control, two items dealt with stress
management, and so on. In total, we identified 7 possible groups among the 18 items. In
similar testing contexts, such item groups with shared content create dependencies that
cannot be fully accounted for by a single common dimension. The bifactor model provides a
way to explicitly model these dependencies, while still assuming a common dimension.
Thus, we consider the unidimensional and bifactor models as competing alternatives. We fit
these models to the data and then used the M2 and M2 − statistics, as well as likelihood-
based criteria, to compare them. The bifactor model used here allows all items to load on a
general dimension. In addition, groups of two or three items load onto one of 7 group-
specific factors, based on shared content. Thus, this model has a total of 8 dimensions. The
results of this model comparison are presented in Table 7.

Based on the log-likelihood and information criteria, it appears that the bifactor model
should be preferred. Because the unidimensional model is nested within the bifactor model,
a likelihood ratio test may be performed. Under appropriate conditions, −2 times the
difference in the log-likelihoods is asymptotically distributed as a central chi-square variable
and provides a test of whether the constraints imposed in the nested model are correct
(Haberman, 1977). In this case, the value of the likelihood ratio test statistic is over 3000,
while the degrees of freedom (equal to the difference in the number of parameters estimated)
is 13. The implication is that the restrictions imposed in going from the bifactor to the
unidimensional model (which amount to fixing all group-specific factor slopes to 0) are not
plausible. Such an assessment of relative fit has been a common approach to IRT model
selection. Among the “appropriate conditions” for using the likelihood ratio test, however, is
that the less constrained model be correctly specified (Maydeu-Olivares & Cai, 2006),
which is a matter of absolute model fit. Here, we use the fit statistics to evaluate how well
this condition is met (i.e., the extent to which the bifactor model fits the data).

We present results for both the original M2 and alternative  statistics. Both the
unidimensional and bifactor models are rejected by either statistic. This is not surprising,
given the sensitivity of these statistics demonstrated in the simulation study. The RMSEA
values provide an assessment of the severity of the model misspecification. Using the
RMSEA computed from the original M2 statistic, both the unidimensional and bifactor
model appear to provide reasonably good fit, at least by standards suggested for linear factor
analysis and structural equation models (e.g., Browne & Cudeck, 1993). Of course, the
applicability of such suggestions to IRT models has not been fully investigated. Perhaps
more importantly, however, we observed in the simulation studies that for polytomous data,
the original M2 statistic was often stochastically smaller than its expected distribution, and
the discrepancy between the observed and expected distributions increased as the number of
response categories increased. For data scored in 5 categories, as we have in this analysis,
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the alternative  statistic, based on the reduction of the marginal tables, was found to have

much better calibration. The RMSEA values based on  – in contrast to the original M2 –
reveal a substantial difference between the fit of the uni-dimensional and bifactor models.
The RMSEA for the unidimensional model is .156 – a value that we consider to be
indicative of rather poor fit (unlike the value of .049 obtained from the original M2).
Meanwhile, the RMSEA for the bifactor model is about .043, which is similar to the values
observed in the simulation study for the TKL30 bifactor model conditions. We conclude that
the 8-dimensional bifactor model fits the smoking data reasonably well. Had we used the
original M2 statistic and the associated RMSEA, we would have perhaps come to the wrong
conclusion that the unidimensional model is reasonable for this data set.

5 Discussion

It is a well-known problem in IRT modelling that full-information tests such as the
likelihood ratio G2 and Pearson’s X2 do not follow their asymptotic distributions due to
spareness in the full contingency table. As a consequence, tests of absolute model fit based
on these statistics may not be trustworthy. Work by Maydeu-Olivares and colleagues has
demonstrated that limited-information statistics based on lower-order margins are a
promising alternative to full-information statistics. The M2 family of statistics is a notable
example. M2 is based on the one- and two-way margins of the contingency table, thus less
susceptible to sparseness. In previous studies (see, e.g., Maydeu-Olivares & Joe, 2006), M2
has been shown to have better calibration than the full-information tests. Moreover, it can be
more powerful to detect model misspecification.

In this research, we considered the application of limited-information goodness-of-fit testing
to hierarchical multidimensional models, which include item bifactor models (Gibbons et
al., 2007; Cai, Yang, & Hansen, 2011), testlet response models (Wainer et al., 2007), and
two-tier models (Cai, 2010b). Extension of M2 to these conditions is non-trivial;
approximating marginal response pattern probabilities, derivatives, and weights can involve
high-dimensional integration. However, for hierarchical IRT models, some of this
complexity can be alleviated. We presented an approach to computing M2 that takes
advantage of the constraints that characterise these models in order to greatly improve the
computational efficiency. This analytical dimension reduction is closely related to the
strategies for estimating hierarchical models (e.g., Gibbons & Hedeker, 1992) that have
contributed to the popularity of these models. After deriving the strategy, we demonstrated
the improved efficiency through a timing experiment with simulated data.

We have also considered the use of M2 with polytomous data. Although limited-information
testing is based on the premise that lower-order margins are better filled than the full
contingency table, we showed that there are circumstances in which even the lower-order
margins can become sparse. This is not to suggest that the limited-information statistics
would be inferior to the full-information statistics in such cases. After all, sparseness at the
lower-order margins guarantees sparseness in higher-order margins and in the full
contingency table. However, the sparseness undermines the ability of the limited-
information statistics to overcome the very problem they were intended to address. This
problem was anticipated by Joe and Maydeu-Olivares (2010) and Maydeu-Olivares et al.
(2011), who suggested that the lower-order margins might be further reduced or

summarised. Following this suggestion, we have proposed a new  statistic for polytomous
data and hierarchical item factor models that is based on a collapsing of the first- and
second-order marginal tables.

In simulation studies, we demonstrated that the original M2 statistic performs well with
dichotomous data for both the unidimensional and bifactor models. However, as the number
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of categories increased, it was shown that the original test statistic was stochastically smaller
than expected, resulting in Type I error rates that were well below the nominal alpha levels.

In contrast, the alternative  demonstrated rejection rates very close to the alpha level,
even as the number of response categories (and, thus, the size of each marginal contingency

table) increases. In addition, the proposed  statistic was more sensitive to model
misspecification, demonstrating higher empirical rejection rates for the conditions of model

misspecification tested. We used the M2 and  statistics to evaluate the fit of two models to
an empirical data set, showing how the ability to assess absolute model fit provides a useful
complement to tests of relative fit.

In both simulation study and our empirical example, RMSEA values were calculated. In the
simulation study, these were found to be rather small by traditional standards (e.g., Browne
& Cudeck, 1993) for the conditions tested. This may be indicative of the fact that ignoring
“minor” factors (present in the data generating models but absent from the fitted models)
constituted only a rather mild level of model misspecification. On the other hand, it is
possible that the suggested guidelines for interpreting RMSEA, based on experience fitting
models for continuous data, may not apply to IRT models. Given the apparent power of the
test statistics to reject misspecified models, further research will be needed in order to
develop guidelines for interpreting RMSEA values (and any other indices we might derive
from the M2 statistics). Such guidelines could suggest what RMSEA values might be
expected for a “good”-fitting model, as well as the values that would suggest only
“acceptable” or even “poor” fit. The analogous guidelines for factor analysis and structural
equation models were based largely on experience – developed over time – of fitting many
models and observing the values of the fit indices. Our hope is that by developing test
statistics for IRT models and by making them available in software, practitioners may begin
to accumulate that sort of experience.

Although we have demonstrated the computation of M2 for hierarchical IRT models, we
have not addressed the challenge of obtaining the test statistic for high-dimensional models
that do not conform to this structure. The strategy we implemented (analytical dimension
reduction) to achieve improved efficiency followed an approach already applied in model
estimation. Accordingly, methods for obtaining fit statistics for general multidimensional
IRT models could perhaps draw upon the strategies developed for estimating those models
(e.g., Cai, 2010a).
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Appendix: Computation of Elements of the Weight Matrix

The computation of third and fourth order moments continues to benefit from dimension
reduction. Let us consider the third order moment π̇3,l,m,j,kl,km,kj as a case in point. When
items l, m, and j all load on the same group-specific dimension s, the marginal probability is
simply

When items l, m load on group-specific dimension s and j on group-specific dimension t, the
marginal probability becomes

Finally, when items l, m, and j each loads on a different group-specific dimension, say, s, t,
and u, the marginal probability π̇3,l,m,j,kl,km,kj becomes
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The case of fourth order moment is completely analogous.
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Figure 1.

Bivariate posterior distributions and expected cell probabilities for items 4 and 5 of a
quality-of-life scale.
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Figure 2.

Q-Q plots of observed M2 and  values and their reference chi-square distributions
(degrees-of-freedom shown in the subscripts of the x-axis labels). Closed grey circles
indicate conditions with sample size N = 1500; open black circles indicate N = 750.
Reported p-values are for a two-tailed Komogorov-Smirnov test.
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Figure 3.

Empirical rejection rates at α = .05 for M2 and  across all simulated conditions. K is the
number of categories.
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Table 1

Timing Comparison Results

#Group-Specific Dimensions Number of Response Categories

2 3 4 5

without dimension reduction

2 0.4 3.1 26.5 147.0

3 3.5 16.7 70.8 262.4

4 32.3 145.3 489.4 1369.5

5 335.2 1459.8 5305.7 13437.5

with dimension reduction

2 0.2 2.0 22.4 141.4

3 0.2 2.2 22.8 145.3

4 0.2 2.2 23.7 146.7

5 0.2 2.2 22.4 142.9

Notes. The entries are time (in seconds) required to compute M2 for a graded item bifactor model with 15 items.
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Table 7

Application to Empirical Data

Unidimensional Model Bifactor Model

number of free parameters, ν 90 103

−2 x log-likelihood 47374.5 44361.0

Akaike Information Criterion (AIC) 47554.5 44567.0

Bayesian Information Criterion (BIC) 47999.9 45076.7

test statistic based on full one- and two-way marginal tables (M2)

M2 8489.4 6541.6

degrees-of-freedom 2430 2417

p 0.0001 0.0001

RMSEA (90% Confidence Interval) 0.049 (0.048,0.050) 0.032 (0.031,0.034)

test statistic based on reduced one- and two-way marginal tables ( )

M2 2131.8 199.3

degrees-of-freedom 81 68

p 0.0001 0.0001

RMSEA (90% Confidence Interval) 0.156 (0.150,0.162) 0.043 (0.036,0.050)
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