
1

Limited Preemptive Scheduling
for Real-Time Systems: a Survey

Giorgio C. Buttazzo,Fellow Member, IEEE,Marko Bertogna,Senior Member, IEEE,and Gang Yao

Abstract—The question whether preemptive algorithms are
better than non-preemptive ones for scheduling a set of real-time
tasks has been debated for a long time in the research community.
In fact, especially under fixed priority systems, each approach
has advantages and disadvantages, and no one dominates the
other when both predictability and efficiency have to be taken
into account in the system design. Recently, limited preemption
models have been proposed as a viable alternative between
the two extreme cases of fully preemptive and non-preemptive
scheduling. This paper presents a survey of the existing approaches
for reducing preemptions and compares them under different
metrics, providing both qualitative and quantitative performance
evaluations.

Index Terms—Real-time systems, Non-preemptive regions,
Limited-preemptive scheduling.

I. I NTRODUCTION

PREEMPTION is a key factor in real-time scheduling, since
it allows the operating system to immediately allocate the

processor to incoming tasks requiring urgent service. In fully
preemptive systems, the running task can be interrupted at any
time by another task with higher priority, and be resumed
to continue when all higher priority tasks have completed.
In other systems, preemption may be disabled for certain
intervals of time during the execution of critical operations
(e.g., interrupt service routines, critical sections, etc.). In other
situations, preemption can be completely forbidden to avoid
unpredictable interference among tasks and achieve a higher
degree of predictability (although higher blocking times).

The question whether enabling or disabling preemption dur-
ing task execution has been investigated by many authors
under several points of view and it is not trivial to answer.
A general disadvantage of the non-preemptive discipline isthat
it introduces additional blocking time in higher priority tasks,
so reducing schedulability. On the other hand, there are several
advantages to be considered when adopting a non-preemptive
scheduler. In particular, the following issues have to be taken
into account when comparing the two approaches:

• In many practical situations, such as I/O scheduling or
communication in a shared medium, either preemption is
impossible or prohibitively expensive [1].

Giorgio C. Buttazzo is with the Scuola Superiore Sant’Anna,Pisa, Italy.
E-mail: g.buttazzo@sssup.it.

Marko Bertogna is with the University of Modena and Reggio Emilia, Italy.
E-mail: marko.bertogna@unimore.it

Gang Yao is with the University of Illinois at Urbana Champaign. E-mail:
gangyao@illinois.edu.

Copyright (c) 2009 IEEE. Personal use of this material is permitted. However,
permission to use this material for any other purposes must be obtained from
the IEEE by sending a request to pubs-permissions@ieee.org.

• Preemption destroys program locality, increasing the run-
time overhead due to cache misses and pre-fetch mech-
anisms. As a consequence, worst-case execution times
(WCETs) are more difficult to characterize and predict [2],
[3], [4], [5].

• Mutual exclusion is trivial in non-preemptive schedul-
ing, which naturally guarantees the exclusive access to
shared resources. On the contrary, to avoid unbounded
priority inversion [6], preemptive scheduling requires the
implementation of specific concurrency control protocols
for accessing shared resources [6], [7], which introduce
additional overhead and complexity.

• In control applications, the input-output delay and jitter
are minimized for all tasks when using a non-preemptive
scheduling discipline, since the interval between start time
and finishing time is always equal to the task computation
time [8]. This simplifies control techniques for delay
compensation at design time.

• Non-preemptive execution allows using stack sharing tech-
niques [7] to save memory space in small embedded
systems with stringent memory constraints [9], [10].

In summary, arbitrary preemptions can introduce a significant
runtime overhead and may cause high fluctuations in task exe-
cution times, so degrading system predictability. In particular, at
least four different types of costs need to be taken into account
at each preemption:

1) Scheduling cost. It is the time taken by the scheduling
algorithm to suspend the running task, insert it into the
ready queue, switch the context, and dispatch the new
incoming task.

2) Pipeline cost. It accounts for the time taken to flush the
processor pipeline when the task is interrupted and the
time taken to refill the pipeline when the task is resumed.

3) Cache-related cost. It is the time taken to reload the
cache lines evicted by the preempting task. Bui et al.
[11] showed that on a PowerPC MPC7410 with 2 MByte
two-way associative L2 cache the WCET increment due
to cache interference can be as large as33% of the WCET
measured in non-preemptive mode.

4) Bus-related cost. It is the extra bus interference for
accessing the RAM due to the additional cache misses
caused by preemption.

The cumulative execution overhead due to the combination
of these effects is referred to asArchitecture related cost.
Unfortunately, this cost is characterized by a high variance and
depends on the specific point in the task code where preemption
takes place [12], [13], [14].

The total increase of the worst-case execution time of a task
τi is also a function of the total number of preemptions experi-



2

enced byτi, which in turn depends on the task set parameters,
on the activation pattern of higher priority tasks, and on the
specific scheduling algorithm. Such a circular dependency of
WCET and number of preemptions makes the problem not easy
to be solved.

The major contribution of this paper is to provide a detailed
comparison of the various limited preemptive approaches pro-
posed in the literature, with respect to fully preemptive and
non-preemptive schemes. Schedulability tests for each method
are reported for completeness, and simulation experimentsare
carried out to evaluate the impact of the algorithms on the num-
ber of preemptions and the overall system schedulability. The
results reported here can be used to select the most appropriate
scheduling scheme to increase the efficiency of time-critical
embedded systems without sacrificing predictability.

The rest of the paper is organized as follows. Section II
describes three different approaches proposed in the literature to
handle limited preemptive scheduling. Section III describes the
task model and the terminology adopted in the paper. SectionIV
presents the schedulability analysis for the non-preemptive
task model. The preemption thresholds model is analyzed in
Section V. Section VI details the deferred preemption model,
while the method of fixed preemption points is analyzed in
Section VII. Considerations regarding the differences between
the various models are presented in Section VIII. Section IX
reports and discusses some simulation results and Section X
states our conclusions.

II. L IMITED PREEMPTIVE APPROACHES

Often, preemption is considered a pre-requisite to meet
timing requirement in real-time system design; however, inmost
cases, a fully preemptive scheduler produces many unnecessary
preemptions.

To reduce the runtime overhead due to preemptions and
still preserve the schedulability of the task set, the following
approaches have been proposed in the literature:

• Preemption Thresholds Scheduling (PTS). This approach,
proposed by Wang and Saksena [15], allows a task to
disable preemption up to a specified priority level, called
preemption threshold. Thus, each task is assigned a regular
priority and a preemption threshold, and the preemption is
allowed to take place only when the priority of the arriving
task is higher than the threshold of the running task.

• Deferred Preemptions Scheduling (DPS). According to this
method, first introduced by Baruah [16] under EDF, each
taskτi specifies the longest intervalqi that can be executed
non-preemptively. For the sake of clarity, it is worth noting
that the terminology is not consistent in the literature, since
other authors (e.g., Burns [17] and Bril et al. [18]) used
the termDeferred Preemptionsto actually denoteFixed
Preemption Points. However, we believe the termDeferred
is more appropriate in this case, because preemption is
postponed for a given amount of time, rather than moved
to a specific position in the code. Depending on how non-
preemptive regions are implemented, this model can come
in two slightly different versions:

1) Floating model. In this model, non-preemptive re-
gions are defined by the programmer by inserting

specific primitives in the task code that disable and
enable preemption. However, since the start time
of each region is not specified in the model, non-
preemptive regions cannot be identified off-line and,
for the sake of the analysis, they are considered to be
“floating” in the code, with a duration not exceeding
qi.

2) Activation-triggered model. In this model, non-
preemptive regions are triggered by the arrival of
a higher priority task and programmed by a timer
to last exactly forqi units of time (unless the task
finishes earlier), after which preemption is enabled.
Once a timer is set at timet, additional activations
arriving before the timeout (t+ qi) do not postpone
the preemption any further. Once a preemption takes
place, a new high-priority arrival can trigger another
non-preemptive region.

• Fixed Preemption Points (FPP). According to this ap-
proach, proposed by Burns [17], a task implicitly exe-
cutes in non-preemptive mode and preemption is allowed
only at predefined locations inside the task code, called
preemption points. In this way, a task is divided into a
number of non-preemptive chunks (also called subjobs).
If a higher priority task arrives between two preemption
points of the running task, preemption is postponed until
the next preemption point. This approach is also referred
to asCooperative scheduling, because tasks cooperate to
offer suitable preemption points to improve schedulability.

III. T ERMINOLOGY AND NOTATION

Let us consider a set ofn periodic or sporadic real-time tasks
that need to be scheduled on a single processor. Each taskτi
is characterized by a worst-case execution time (WCET)Ci,
a relative deadlineDi, and a period (or minimum inter-arrival
time) Ti. A constrained deadline model is adopted, soDi is
assumed to be less than or equal toTi. Each task is assigned a
fixed priority Pi, used to select the running task among those
tasks ready to execute (a higher value ofPi corresponds to a
higher priority). Notice that task activation times are notknown
a priori and the actual execution time of a task can be less
than or equal to its worst-case valueCi. Tasks are indexed by
decreasing priority, i.e.,∀i | 1 ≤ i < n : Pi > Pi+1. Additional
terminology will be introduced below for each specific method.

A. Integer time model

In real-time operating systems, time instants and interval
durations are measured by counting the number of clock cycles
generated by a real-time clock, hence all timing values havea
resolution equal to one clock cycle. Therefore, to use analytical
results in a real embedded system, all timing parameters are
assumed to be non-negative integer values. To comply with such
a convention, all cited results derived under the domain of real
numbers have been adapted to the integer time model.

B. Critical instant

The maximum response time of each task is derived under the
worst-case arrival pattern that leads to the largest interference on



3

the considered task. Such a particular scenario is often referred
to as thecritical instant. For fully preemptive fixed priority
systems, Liu and Layland [19] proved that the critical instant
for a task occurs when it arrives synchronously with all higher
priority tasks, and all task instances are released as soon as
possible, i.e., in a strictly periodic fashion.

In the presence of non-preemptive regions, however, the
additional blocking from lower priority tasks has to be taken
into account, hence the critical instant for a taskτi occurs when
it is released synchronously and periodically with all higher
priority tasks, while the lower priority task that is responsible
of the largest blocking time ofτi is released one unit of time
beforeτi [20]. However, the largest response time of a task is
not necessarily due to the first job after a critical instant,but
might be due to later jobs, as explained later on.

All schedulability tests hereafter presented have been derived
by computing the worst-case response time of a task under the
above described notion of critical instant.

C. Motivating example

To better appreciate the importance of limited preemptive
scheduling and to better understand the difference among the
limited preemptive approaches presented in this survey, Table I
reports a sample task set that will be used as a common example
throughout this paper, because it results to be unschedulable by
Deadline Monotonic [21], both in fully preemptive and in fully
non-preemptive mode, but it can be schedulable by all limited
preemptive approaches.

Ci Ti Di

τ1 1 6 4
τ2 3 10 9
τ3 6 18 12

TABLE I
PARAMETERS OF A SAMPLE TASK SET.

Figure 1 illustrates the schedule produced by Deadline Mono-
tonic in fully preemptive mode. As clear from the figure, the
task set is not feasible, since taskτ3 misses its deadline.

0 2 4 6 8 10 12 14 16 18 20

3

6

1

deadline miss

τ1

τ2

τ3

Fig. 1. Schedule produced by Deadline Monotonic (in fully preemptive mode)
on the task set of Table I.

IV. N ON-PREEMPTIVE SCHEDULING(NPS)

The most effective way to reduce preemption cost is to
disable preemptions completely. In this condition, however,
each taskτi can experience a blocking timeBi equal to the
longest computation time among the tasks with lower priority.
That is,

Bi = max
j:Pj<Pi

{Cj − 1} (1)

where the maximum of an empty set is assumed to be zero.
Notice that one unit of time is subtracted from the computation
time of the blocking task to consider that, to blockτi, it must

start at least one unit before the critical instant. Such a blocking
term introduces an additional delay before task execution,which
could jeopardize schedulability. High priority tasks are those
that are most affected by such a blocking delay, since the
maximum in Equation (1) is computed over a larger set of
tasks. Figure 2 illustrates the schedule generated by Deadline
Monotonic on the task set of Table I when preemptions are
disabled. With respect to the schedule shown in Figure 1, notice
thatτ3 is now able to complete before its deadline, but the task
set is still not schedulable, since nowτ1 misses its deadline.

0 2 4 6 8 10 12 14 16 18 20

3

6

1

deadline miss

τ1

τ2

τ3

Fig. 2. Schedule produced by non-preemptive Deadline Monotonic on the task
set of Table I.

Unfortunately, under non-preemptive scheduling, the least
upper bounds of both Rate Monotonic (RM) [19] and Earliest
Deadline First (EDF) [19] drop to zero! This means that there
exist task sets with arbitrary low utilization that cannot be
scheduled by RM and EDF when preemptions are disabled.

A. Feasibility analysis

The feasibility analysis of non-preemptive task sets is more
complex than under fully preemptive scheduling. Davis et
al. [22] showed that in non-preemptive scheduling the largest
response time of a task does not necessarily occur in the first
job, after the critical instant. An example of such a situation is
illustrated in Figure 3, where the worst-case response timeof
τ3 occurs in its second instance. Such a scheduling anomaly,
identified asself-pushing phenomenon, occurs because the high
priority jobs activated during the non-preemptive execution of
τi’s first instance are pushed ahead to successive jobs, which
then may experience a higher interference.

deadline miss

(Ci, Ti)

τ1 (3,8)

τ2 (3,9)

τ3 (3,12)

τ4 (2,100)

Fig. 3. An example of self-pushing phenomenon occurring on task τ3.

The presence of the self-pushing phenomenon in non-
preemptive scheduling implies that the response time analysis
for a task τi cannot be limited to its first job, activated at
the critical instant, as done in preemptive scheduling, butit
must be performed for multiple jobs, until the processor finishes
executing tasks with priority higher than or equal toPi. Hence,



4

the response time of a taskτi needs to be computed within the
longest Level-i Active Period, defined as follows [20]:

Definition 1. The Level-i pending workloadW p
i (t) at time t

is the amount of processing that still needs to be performed
at time t due to jobs with priority higher than or equal toPi

released strictly beforet.

Definition 2. A Level-i Active PeriodLi is an interval [a, b)
such that the Level-i pending workloadW p

i (t) is positive for
all t ∈ (a, b) and null in a and b.

The longest Level-i Active Period can be computed by the
following recurrent relation:











L
(0)
i = Bi + Ci

L
(s)
i = Bi +

∑

h:Ph≥Pi

⌈

L
(s−1)
i

Th

⌉

Ch.
(2)

In particular,Li is the smallest value for whichL(s)
i = L

(s−1)
i .

This means that the response time of taskτi must be computed
for all jobs τi,k, with k ∈ [1,Ki], where:

Ki =

⌈

Li

Ti

⌉

. (3)

For a generic jobτi,k, the start timesi,k can then be computed
considering the blocking timeBi, the computation time of the
preceding (k − 1) jobs and the interference of the tasks with
priority higher thanPi. Hence,si,k can be computed with the
following recurrent relation:


















s
(0)
i,k = Bi +

∑

h:Ph>Pi

Ch

s
(ℓ)
i,k = Bi + (k−1)Ci +

∑

h:Ph>Pi

(⌊

s
(ℓ−1)
i,k

Th

⌋

+1

)

Ch.
(4)

Note that the original result derived in [20] adopted two differ-
ent expressions: one for then-th task, that does not experience
any blocking, and one for the remaining tasks. Instead, using
an integer time model and computing the blocking term with
Equation (1), it is possible to simplify the analysis, usinga
homogeneous formulation for all tasks.

Since, once started, the task cannot be preempted, the finish-
ing time fi,k can be computed as

fi,k = si,k + Ci. (5)

Hence, the response time of taskτi is given by
Ri = max

k∈[1,Ki]
{fi,k − (k − 1)Ti}. (6)

Once the response time of each task is computed, the task set
is feasible if and only if

∀i = 1, . . . , n Ri ≤ Di. (7)

Yao, Buttazzo, and Bertogna [23] showed that the analysis of
non-preemptive tasks can be reduced to analyzing a single job,
under specific (but not too restrictive) conditions. The following
theorem, originally stated for the fixed preemption model, is
presented here for the non-preemptive scheduling model, which
is a special case of the fixed preemption model.

Theorem 1(from [23]). The worst-case response time of a non-
preemptive task occurs in the first job after its critical instant

if the following two conditions are both satisfied:

1) the task set is feasible under preemptive scheduling;
2) relative deadlines are less than or equal to periods.

Under these conditions, the longest relative start timeSi of task
τi is equal tosi,1 and can be computed from Equation (4) for
k = 1:



















S
(0)
i = Bi +

∑

h:Ph>Pi

Ch

S
(ℓ)
i = Bi +

∑

h:Ph>Pi

(⌊

S
(ℓ−1)
i

Th

⌋

+ 1

)

Ch.
(8)

Hence, the response timeRi is simply:

Ri = Si + Ci. (9)

V. PREEMPTION THRESHOLDS SCHEDULING(PTS)

According to this model, proposed by Wang and Saksena
[15], each taskτi is assigned a nominal priorityPi (used to
enqueue the task into the ready queue and to preempt) and a
preemption thresholdθi ≥ Pi (used for task execution). Then,
τi can be preempted byτh only if Ph > θi. At the activation
time ri,k, the priority of τi is set to its nominal valuePi, so
it can preempt all the tasksτj with thresholdθj < Pi. The
nominal priority is maintained as long as the task is kept in
the ready queue. During this interval,τi can be delayed by all
tasksτh with priority Ph > Pi and by at most one lower priority
task τl with thresholdθl ≥ Pi. When all such tasks complete
(at timesi,k), τi is dispatched for execution and its priority is
raised at its threshold levelθi until the task terminates (at time
fi,k). During this interval,τi can be preempted by all tasksτh
with priority Ph > θi. Notice that, whenτi is preempted, its
priority is kept to its threshold level.

Preemption threshold can be considered as a trade-off be-
tween fully preemptive and fully non-preemptive scheduling.
Indeed, if each threshold priority is set equal to the task nominal
priority, the scheduler behaves like a fully preemptive scheduler;
whereas, if all thresholds are set to the maximum priority, the
scheduler runs in a non-preemptive fashion. Wang and Saksena
also showed that, by appropriately setting the thresholds,the
system can improve the schedulability compared with fully
preemptive and fully non-preemptive scheduling.

For example, if priorities are assigned asP1 = 3, P2 = 2,
and P3 = 1, and thresholds asθ1 = 3, θ2 = 3, and θ3 =
2, the task set of Table I results to be schedulable, and the
schedule produced in the synchronous periodic arrival pattern
is illustrated in Figure 4.

Notice that, att = 6, τ1 can preemptτ3 sinceP1 > θ3.
However, att = 10, τ2 cannot preemptτ3, being P2 = θ3.
Similarly, at t = 12, τ1 cannot preemptτ2, beingP1 = θ2.

A. Feasibility analysis

Under fixed priorities, the feasibility analysis of a task set
with preemption thresholds can be performed by the test derived
by Keskin et al. [24].1 First of all, a taskτi can be blocked only
by lower priority tasks that cannot be preempted by it, that is,

1The original analysis by Wang and Saksena [15] has been corrected by
Regehr [25], which in its turn has been improved by Keskin et al. [24].



5

0 2 4 6 8 10 12 14 16 18 20

3

6

1

τ1

τ2

τ3

Fig. 4. Schedule produced by Deadline Monotonic on the task set in Table I
with priorities P1 = 3, P2 = 2, andP3 = 1, and thresholdsθ1 = 3, θ2 = 3,
andθ3 = 2.

by tasksτj with Pj < Pi and θj ≥ Pi. Hence, a taskτi can
experience a blocking time equal to the longest computation
time among the tasks with priority lower thanPi and threshold
higher than or equal toPi. That is,

Bi = max
j

{Cj − 1 | Pj < Pi ≤ θj} (10)

where the maximum of an empty set is assumed to be zero.
Then, the response timeRi of task τi is computed by con-
sidering the blocking timeBi, the interference before its start
time (due to the tasks with priority higher thanPi), and the
interference after its start time (due to tasks with priority higher
than θi). The analysis must be carried out within the longest
Level-i active periodLi defined in Equation (2). This means
that the response time of taskτi must be computed for all the
jobsτi,k with k ∈ [1,Ki], whereKi is defined in Equation (3).

For a generic jobτi,k, the start timesi,k can be computed
considering the blocking timeBi, the computation time of the
preceding (k − 1) jobs, and the interference of the tasks with
priority higher thanPi. Hence,si,k can be computed using
Equation (4). The finishing timefi,k can be computed by
summing to the start timesi,k the computation time of jobτi,k,
and the interference of the tasks that can preemptτi,k (those
with priority higher thanθi). That is,














f
(0)
i,k = si,k+Ci

f
(ℓ)
i,k = si,k+Ci+

∑

h:Ph>θi

(⌈

f
(ℓ−1)
i,k

Th

⌉

−

(⌊

si,k
Th

⌋

+1

)

)

Ch.
(11)

Again, the integer time model adopted in this paper, along with
the convention on the blocking term given by Equation (10),
allow simplifying the analysis with respect to [24], without
needing to use two different expressions for the cases with and
without blocking.

The response time of taskτi can then be computed using
Equation (6), and the task set is feasible if and only if Condi-
tion (7) is satisfied.

The feasibility analysis under preemption thresholds can
also be simplified under the conditions of Theorem 1. In this
case, we have that the worst-case start time is computed using
Equation (8), and the worst-case response time of taskτi can

be computed as


















R
(0)
i = Si + Ci +

∑

h:Ph>θi

Ch

R
(ℓ)
i = Si + Ci +

∑

h:Ph>θi

(⌈

R
(ℓ−1)
i

Th

⌉

−

(⌊

Si

Th

⌋

+1

)

)

Ch.

(12)

B. Selecting preemption thresholds

The example illustrated in Figure 4 shows that a task set
unfeasible under both preemptive and non-preemptive schedul-
ing can be feasible under preemption thresholds, for a suitable
setting of threshold levels.

Given a task set that is feasible under preemptive scheduling,
an interesting problem is to determine the thresholds that
limit preemption as much as possible, without jeopardizingthe
schedulability of the task set. Saksena and Wang [26] proposed
an algorithm to increase the threshold of each task up to the
level after which the schedule would become infeasible. The
algorithm considers one task at the time, starting from the
highest priority task.

VI. D EFERRED PREEMPTIONS SCHEDULING(DPS)

According to this method, each taskτi defines a maximum
interval of time qi in which it can execute non-preemptively.
Depending on the specific implementation, the non-preemptive
interval can start after the invocation of a system call inserted
at the beginning of a non-preemptive region (floating model),
or can be triggered by the arrival of a higher priority task
(activation-triggered model).

Under the floating model, preemption is resumed by another
system call, inserted at the end of the region (at mostqi units
long); whereas, under the activation-triggered model, preemp-
tion is enabled by a timer interrupt after exactlyqi units (unless
the task completes earlier). For example, considering the same
task set of Table I, assigningq2 = 2 andq3 = 1, the schedule
produced by Deadline Monotonic with deferred preemptions
under the activation-triggered model is feasible, as illustrated
in Figure 5. Dark regions represent intervals executed in non-
preemptive mode, triggered by the arrival of higher priority
tasks.

0 2 4 6 8 10 12 14 16 18 20

3

6

1

τ1

τ2

τ3

Fig. 5. Schedule produced by Deadline Monotonic with deferred preemptions
for the task set reported in Table I, withq2 = 2 andq3 = 1.

A. Feasibility analysis

In the presence of non-preemptive intervals, a task can be
blocked when, at its arrival, a lower priority task is running in



6

non-preemptive mode. Since each task can be blocked at most
once by a single lower priority task,Bi is equal to the longest
non-preemptive interval belonging to tasks with lower priority.
In particular, the blocking factor can be computed as

Bi = max
j:Pj<Pi

{qj − 1}. (13)

Note that, under the floating model, one unit of time must be
subtracted fromqj to allow the non-preemptive region to start
beforeτi. Under the activation-triggered model, however, there
is no need to subtract one unit of time fromqj , since the non-
preemptive interval is programmed to be exactlyqj from the
arrival time of a higher priority task.

In both the floating and activation-triggered cases, the start
times of non-preemptive intervals are assumed to be unknown
a priori. Therefore, non-preemptive regions cannot be identified
off-line and, for the sake of the analysis, they are considered
to occur in the worst possible time (in the sense of schedula-
bility). Then, schedulability can be checked through the classic
response time analysis:

Ri = Bi +
∑

h:Ph≥Pi

⌈

Ri

Th

⌉

Ch. (14)

Note that, under the floating model, the analysis does not need
to be carried out within the longest Level-i active period. In
fact, the worst-case interference onτi occurs in the first instance
assuming thatτi could be preempted one time-unit before its
completion.

On the other hand, the analysis is more pessimistic under the
activation-triggered model, where non-preemptive intervals are
exactly equal toqi units and can last until the end of the task.
In this case, the analysis does not take advantage of the fact
that τi cannot be preempted when higher periodic tasks arrive
qi units (or less) before its completion. The advantage of sucha
pessimism, however, is that the analysis is much simpler andcan
be limited to the first job of each task. Under these assumptions,
a task set is feasible with deferred preemptions only if the task
set is feasible preemptively. The analysis of periodic tasks with
floating non-preemptive regions has also been developed under
EDF [27], [28].

B. Longest non-preemptive interval

When using the deferred preemption method, an interesting
problem is to find the longest non-preemptive intervalQi for
each taskτi that can still preserve the task set schedulability.
More precisely, the problem can be stated as follows:

Given a set ofn periodic tasks that is feasible
under preemptive scheduling, find the longest non-
preemptive interval of lengthQi for each taskτi,
so that τi can continue to execute forQi units of
time in non-preemptive mode, without violating the
schedulability of the original task set.

This problem has been solved under EDF by Bertogna and
Baruah [27], and under fixed priorities by Yao et al. [29]. The
solution is based on the concept ofblocking toleranceβi, for
a taskτi, defined as follows:

Definition 3. The blocking toleranceβi of a task τi is the
maximum amount of blockingτi can tolerate without missing
any of its deadlines.

When deadlines are equal to periods, a simple way to
compute a lower bound on the blocking tolerance is from the
Liu and Layland test [19], which, in the presence of blocking
factors, becomes:

∀i = 1, . . . , n
∑

h:Ph≥Pi

Ch

Th
+

Bi

Ti
≤ Ulub(i)

whereUlub(i) = i(21/i − 1). Isolating the blocking factor, the
test can also be rewritten as:

Bi ≤ Ti



Ulub(i)−
∑

h:Ph≥Pi

Ch

Th



 .

Hence, considering integer computations, we have:

βi =







Ti



Ulub(i)−
∑

h:Ph≥Pi

Ch

Th











 . (15)

When deadlines are less than or equal to periods, an exact bound
for βi can instead be achieved by using the schedulability test
presented in [30], so that a task set is schedulable with deferred
preemptions if and only if for each taskτi:

∃t ∈ T S(τi) : Bi +
∑

h:Ph≥Pi

⌈

t

Th

⌉

Ch ≤ t, (16)

where
T S(τi)

def
= Pi−1(Di) (17)

andPi(t) is defined by the following recurrent expression:
{

P0(t) = {t}

Pi(t) = Pi−1

(⌊

t
Ti

⌋

Ti

)

∪ Pi−1(t).
(18)

This leads to the following result [29]:

Bi ≤ max
t∈T S(τi)







t−
∑

h:Ph≥Pi

⌈

t

Th

⌉

Ch







.

βi = max
t∈T S(τi)







t−
∑

h:Ph≥Pi

⌈

t

Th

⌉

Ch







. (19)

Given the blocking tolerance, the feasibility test can alsobe
expressed as follows:

∀i = 1, . . . , n Bi ≤ βi

and, by Equation (13), we can write:

∀i = 1, . . . , n max
j:Pj<Pi

{qj − 1} ≤ βi.

This implies that, to achieve feasibility, we must have:

∀i = 1, . . . , n qi ≤ min
k:Pk>Pi

{βk + 1}

Hence, the longest non-preemptive intervalQi that preserves
feasibility for each taskτi is:

Qi = min
k:Pk>Pi

{βk + 1}. (20)

TheQi terms can also be computed more efficiently, starting
from the highest priority task (τ1) and proceeding with decreas-
ing priority order, according to the following theorem:



7

Theorem 2 (from [29]). The longest non-preemptive interval
Qi of taskτi that preserves feasibility can be computed as

Qi = min{Qi−1, βi−1 + 1} (21)

whereQ1 = ∞ andβ1 = D1 − C1.

Note that, in order to apply Theorem 2,Qi is not constrained
to be less than or equal toCi, but a value ofQi greater thanCi

means thatτi can be fully executed in non-preemptive mode.

VII. F IXED PREEMPTIONPOINTS (FPP)

According to this model, each taskτi is split into mi non-
preemptive chunks (subjobs), obtained by insertingmi − 1
preemption points in the code. Thus, preemptions can only
occur at the subjobs boundaries. All the jobs generated by one
task have the same subjob division. Thekth subjob has a worst-
case execution timeqi,k, henceCi =

∑mi

k=1 qi,k.
Among all the parameters describing the subjobs of a task,

two values are of particular importance for achieving a tight
schedulability result:

{

qmax
i = max

k∈[1,mi]
{qi,k}

qlasti = qi,mi

(22)

In fact, the feasibility of a high priority taskτk is affected by
the sizeqmax

j of the longest subjob of each taskτj with priority
Pj < Pk. Moreover, the lengthqlasti of the final subjob ofτi
directly affects its response time. In fact, all higher priority jobs
arriving during the execution ofτi’s final subjob do not cause
a preemption, since their execution is postponed at the end of
τi. Therefore, in this model, each task will be characterized by
the following 5-tuple:

{Ci, Di, Ti, q
max
i , qlasti }.

For example, consider the same task set of Table I, and suppose
that τ2 is split into two subjobs of 2 and 1 unit, andτ3 is split
into two subjobs of 4 and 2 units. The schedule produced by
Deadline Monotonic with such a splitting is feasible and it is
illustrated in Figure 6.

0 2 4 6 8 10 12 14 16 18 20

2+1

4+2

1

τ1

τ2

τ3

Fig. 6. Schedule produced by Deadline Monotonic for the taskset reported
in Table I, whenτ2 is split into two subjobs of 2 and 1 unit, andτ3 is split
into two subjobs of 4 and 2 units, respectively.

A. Feasibility analysis

Feasibility analysis for tasks with fixed preemption points
can be carried out in a very similar way as the non-preemptive
case, with the following differences:

• The blocking factorBi to be considered for each taskτi is
equal to the length of longest subjob (instead of the longest
task) among those with lower priority:

Bi = max
j:Pj<Pi

{qmax
j − 1}. (23)

• The last non-preemptive chunk ofτi is equal to qlasti

(instead ofCi).

The response time analysis for a taskτi has to consider all
the jobs within the longest Level-i Active Period, defined in
Equation (2). This means that the response time ofτi must be
computed for all jobsτi,k with k ∈ [1,Ki], whereKi is defined
in Equation (3).

For a generic jobτi,k, the start timesi,k of the last subjob can
be computed considering the blocking timeBi, the computation
time of the preceding (k−1) jobs, the subjobs ofτi,k preceding
the last one (Ci − qlasti ), and the interference of the tasks with
priority higher thanPi. Hence,si,k can be computed with the
following recurrent relation:


















s
(0)
i,k = Bi+Ci−qlasti +

∑

h:Ph>Pi

Ch

s
(ℓ)
i,k = Bi+kCi−qlasti +

∑

h:Ph>Pi

(⌊

s
(ℓ−1)
i,k

Th

⌋

+ 1

)

Ch.
(24)

Also in this case, the original result reported by Bril et al.[20]
adopted a more complex expression, separating the lowest prior-
ity task from the higher priority ones. The expression presented
here has been simplified thanks to the integer time model,
provided the blocking term is computed using Equation (23).

Since, once started, the last subjob cannot be preempted, the
finishing timefi,k can be computed as

fi,k = si,k + qlasti . (25)

The response time of taskτi can then be computed using Equa-
tion (6), and the task set is feasible if and only if Condition(7)
is satisfied.

B. Longest non-preemptive interval

As done in Section VI-B under deferred preemptions, it is
interesting to compute, also under task splitting, the longest
non-preemptive intervalQi for each taskτi that can guarantee
the schedulability. It is worth observing that splitting tasks into
subjobs allows achieving a largerQi, because a taskτi cannot
be preempted during the execution of the lastqlasti units of time.
As shown by Bertogna et al. [31], there are cases in whichQi

can be computed even when the task set is not preemptively
feasible, because the last non-preemptive region allows reducing
the interference from higher priority tasks.

Definingβi,k as the blocking tolerance of thek-th job of τi
after a critical instant, the schedulability of such a job can be
checked using the following condition [31]:

∃t ∈ Πi,k : Bi ≤ t− kCi + qlasti −
∑

h:Ph>Pi

(⌊

t

Th

⌋

+ 1

)

Ch,

(26)
where
Πi,k

def
=
(

(k − 1)Ti, (k − 1)Ti +Di − qlasti

]

∩

{hTj − 1, ∀h ∈ N, j ≤ i} ∪
{

(k − 1)Ti +Di − qlasti

}

.

Hence, the blocking toleranceβi,k becomes

βi,k = max
t∈Πi,k

{

t−kCi+qlasti −
∑

h:Ph>Pi

(⌊

t

Th

⌋

+1

)

Ch

}

. (27)



8

The blocking tolerance of taskτi can be computed as the
minimum blocking tolerance among the firstKi jobs of τi in
the longest Level-i Active Period:

βi = min
k∈[1,Ki]

βi,k, (28)

whereKi is defined in Equation (3).
From Equation (27), it is easy to see that the blocking

tolerancesβi,k do not depend onBi, which can be set to
βi,1 without affecting the analysis. The longest non-preemptive
intervalQi that guarantees the feasibility for each taskτi can
then be computed by Theorem 2, using the blocking tolerances
given by Equation (28).

As previously mentioned, the maximum length of the non-
preemptive chunk under fixed preemption points is larger than
in the case of deferred preemptions. It is worth pointing outthat
the value ofQi for taskτi only depends on theβk of the higher
priority tasks, as expressed in Equation (20), and the blocking
toleranceβi is a function ofqlasti , as clear from Equation (28).
Note that when tasks are assumed to be preemptively feasible,
the analysis can be limited to the first job of each task. In this
case, the blocking toleranceβi of task τi is:

βi = βi,1. (29)

VIII. A SSESSMENT OF THE APPROACHES

The limited preemption methods presented in this paper can
be compared under several aspects, such as: implementation
complexity, predictability in estimating the preemption cost,
effectiveness in improving schedulability and in reducingthe
number of preemptions.

A. Implementation issues

The preemption threshold mechanism can be implemented
by raising the execution priority of the task, as soon as it
starts running. The mechanism can be easily implemented at
the application level by calling, at the beginning of the task, a
system call that increases the priority of the task at its threshold
level. The mechanism can also be fully implemented at the
operating system level, without modifying the applicationtasks.
To do that, the kernel has to increase the priority of a task at
the level of its threshold when the task is scheduled for the
first time. In this way, at its first activation, a task is inserted
in the ready queue using its nominal priority. Then, when the
task is scheduled for execution, its priority becomes equalto its
threshold, until completion. Note that, if a task is preempted,
its priority remains at its threshold level.

Note that preemption threshold scheduling is already used
in the ThreadX real-time operating system by Express Logic
Inc. and in the Erika Enterprise real time kernel by Evidence,
and it represents an example of a great success of transferring
research results to industrial applications.

In deferred preemption (floating model), non-preemptive
regions can be implemented by proper kernel primitives that
disable and enable preemption at the beginning and at the end
of the region, respectively. As an alternative, preemptioncan be
disabled by increasing the priority of the task at its maximum
value, and can be enabled by restoring the nominal task priority.
In the activation-triggered mode, non-preemptive regionscan be
realized by setting a timer to enforce the maximum interval in

which preemption is disabled. Initially, all tasks start executing
in non-preemptive mode. Whenτi is running and a task with
priority higher thanPi is activated, a timer is set by the kernel
(inside the activation primitive) to interruptτi after qi units
of time. Until then,τi continues executing in non-preemptive
mode. The interrupt handler associated to the timer must then
call the scheduler to allow the higher priority task to preempt
τi. Notice that, once a timer has been set, other additional
activations before the timeout will not prolong the timeoutany
further.

Finally, cooperative scheduling does not need special kernel
support, but it requires the programmer to insert in each
preemption point a primitive that calls the scheduler, so enabling
pending high-priority tasks to preempt the running task. Asa
last remark, note that the fixed preemption point model can also
be adopted to model electrical loads of a distributed smart grid,
where power appliances can be interrupted only at pre-defined
points [32].

B. Predictability

As observed in Section I, the runtime overhead introduced by
the preemption mechanism depends on the specific point where
the preemption takes place. Therefore, a method that allows
predicting where a task is going to be preempted simplifies the
estimation of preemption costs, permitting a tighter estimation
of task WCETs.

Unfortunately, under preemption thresholds, the specific pre-
emption points depend on the actual execution of the running
task and on the arrival time of high priority tasks, hence it is
practically impossible to predict the exact location wherea task
is going to be preempted.

Under deferred preemptions (floating model), the position of
non-preemptive regions is not specified in the model, thus they
are considered to be unknown. In the activation-triggered model,
instead, the time at which the running task will be preemptedis
setqi units of time after the arrival time of a higher priority task.
Hence, the preemption position depends on the actual execution
of the running task and on the arrival time of the higher priority
task. Therefore, it can hardly be predicted off-line.

On the contrary, under fixed preemption points, the locations
where preemptions may occur are explicitly defined by the
programmer at design time, hence the corresponding overhead
can be estimated more precisely by timing analysis tools. For
instance, Bertogna et al. [33] presented an algorithm for select-
ing the preemption points that minimize the overall preemption
cost without compromising the feasibility of the task set.

C. Effectiveness

The effectiveness of an algorithm that limits preemptions
can be evaluated either in terms of schedulability or by the
number of preemptions. As long as schedulability is concerned,
all the limited preemptive methods (under fixed priorities)
dominate both fully preemptive scheduling and non-preemptive
scheduling, even when preemption cost is neglected. Such a
behavior has been clearly illustrated by showing how the sample
task set in Table I cannot be scheduled by fully preemptive and
non-preemptive Deadline Monotonic, whereas it is schedulable
using any limited preemptive algorithm. This property willbe



9

also evaluated by simulation in the next section, using more
quantitative data.

The number of preemptions each task can experience depends
of different parameters. Under preemption thresholds, a task τi
can only be preempted by tasks with priority greater than its
thresholdθi. Hence, if preemption cost is neglected, an upper
boundνi on the number of preemptionsτi can experience can
be computed by counting the number of activations of tasks
with priority higher thanθi occurring in[0, Ri] that is:

νi =
∑

h:Ph>θi

⌈

Ri

Th

⌉

. (30)

This is an upper bound because each higher priority arrival is
counted as a different preemption, even when multiple arrivals
cause a single preemption.

Under deferred preemption, the number of preemptions oc-
curring onτi can be upper bounded using the non-preemptive
intervalqi specified for the task. If preemption cost is neglected,
we simply have:

νi =

⌈

Ci

qi

⌉

− 1.

This is a pessimistic estimation since a taskτi is assumed to be
preempted after every interval of lengthqi, even in the absence
of higher priority jobs. In this case, a better upper bound can
be derived from Equation (30), by replacingθi with Pi. Note
that when preemption cost is not negligible, the derived upper
bounds are not applicable, since task computation times also
depend on the number of preemptions, leading to a circular
dependency, as shown by Yao et al. [34].

Under cooperative scheduling, the number of preemptions
can be easily upper bounded by the minimum between the
number of effective preemption points inserted in the task code
and the number of higher priority jobs activated during the
response time of the considered task.

IX. SIMULATION EXPERIMENTS

This section presents a set of simulation results performedon
randomly generated task sets, with the objective of evaluating
the effects of the different scheduling approaches on the number
of preemptions and the system schedulability. Specific tests
have been carried out to evaluate how schedulability is affected
by the size of non-preemptive regions and by the preemption
cost. The aforementioned algorithms have been considered in
the comparison, all executed under the Deadline Monotonic
priority assignment.

Each task set was generated as follows. The UUniFast [35]
algorithm was used to generate a set ofn periodic tasks with
total utilization equal to a desired valueU . Then, for each task
τi, its computation timeCi was generated as a random integer
uniformly distributed in the interval [100, 500], and its period
Ti was computed asTi = Ci/Ui. The relative deadlineDi was
generated as a random integer uniformly distributed in the range
[Ci + α · (Ti − Ci), Ti], with α = 0.5.

To reduce preemptions as mush as possible, in the PTS
algorithm, threshold priorities were set at the highest possible
value using the method described in Section V-B. Similarly,in
both DPS and FPP, the length of non-preemptive regions was set
at the highest possible value to keep the task set feasible, using

the methods illustrated in Section VI-B and Section VII-B,
respectively.

In the rest of this section, three sets of experiments are
presented: the first set is aimed at evaluating how the number
of preemptions is affected by different parameters; the second
set evaluates the schedulability level in the ideal case of zero
peremption cost, whereas the third set compares the feasibility
level in the presence of non-negligible cost.

A. Number of preemptions

The first set of experiments was carried out to monitor
the total number of preemptions generated by the different
algorithms on a periodic task set within a simulation windowof
5·107 units of time. In particular, each value shown in the graphs
plots the average over 1,000 runs. To make the comparison
fair, only preemptively feasible task sets were consideredand
the preemption cost was assumed to be zero. In this set of
experiments, the non-preemptive scheduling algorithm (NPS)
is not reported, since the number of preemptions is always
zero, for any utilization. Such a great performance of NPS,
however, is compensated by a poor schedulability level, which
is better evaluated in the second set of experiments. The curve
for deferred preemption scheduling (DPS) corresponds to the
activation-triggered model. We did not include the floating
model because in this model no information is provided on the
minimum length and position of the non-preemptive regions.
The number of preemptions is therefore the same as in the
fully preemptive case (FPS).

Figure 7 shows how the performance of the various al-
gorithms varies as a function of the task set utilization, for
task sets composed ofn = 10 tasks. As clear from the
graphs, the use of non-preemptive regions, either fixed (FPP)
or not (DPS), allows achieving a higher reduction with respect
to preemption thresholds, especially for task set utilizations
greater than 70%. Note that in all the graphs related to this
experiment, DPS performs slightly better than FPP. This can
be explained considering that, when preemption points are
fixed, high priority jobs arriving slightly before and aftera
preemption point generate two distinct preemptions (although
deferred), whereas under DPS the first arrival always triggers
a non-preemptive interval of lengthQ, which prevents other
subsequent arrivals to generate additional preemptions. In most
practical cases, however, such a performance difference isquite
negligible, hence FPP is still to be preferred against DPS for
the reasons expressed in the previous sections.

Figure 8 shows the average number of preemptions as a
function of the number of tasks, whenU = 0.9. Note that
preemptions rapidly decrease withn for all the algorithms. This
is due to the fact that, for a given utilization, large task sets are
characterized by tasks with smaller computation times, which
have less chance to be preempted. For task sets withn < 20,
however, both FPP and DPS lead to a significant reduction with
respect to PTS.

B. Schedulability with zero preemption cost

The second set of experiments was carried out to test the
impact of the various algorithms on the task set schedulability,
which has been verified using the feasibility tests reportedin
this paper, assuming zero preemption cost. The performanceof



10

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

2

4

6

8

10

12

14
x 10

4

Total Utilization

Av
er

ag
e 

N
um

be
r o

f P
re

em
pt

io
ns

 

 
FPS
PTS
FPP
DPS

Fig. 7. Average number of preemptions versus utilization whenn = 10.

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Number of Tasks

Av
er

ag
e 

N
um

be
r o

f P
re

em
pt

io
ns

 

 

FPS
PTS
FPP
DPS

Fig. 8. Average number of preemptions versus number of taskswhenU = 0.9.

the algorithms was evaluated by comparing the feasible ratio,
calculated as the number of feasible task sets divided by the
total number of generated sets. In each experiment, 5.000 task
sets were randomly generated for each parameter configuration.
The assumption on preemptive feasibility was removed and the
percentage of feasible task sets was monitored as a functionof
different parameters.

In this set of experiments, DPS is not shown, since its
performance is the same as FPS, as mentioned in Section VI-A.
On the other hand, fully preemptive Earliest Deadline First
(EDF) [19] has been included in the graphs to evaluate the
difference with respect to an optimal solution.

Figure 9 shows the performance of the various algorithms as
a function of the task set utilization, whenn = 10. It is worth
observing that both FPP and PTS improve the schedulability
level with respect to FPS, but FPP is able to achieve a larger
improvement, especially for higher utilizations (U > 0.85). For
example, FPP is able to schedule 30% more task sets than FPS
for U around 0.9.

A second experiment has been carried out to test how
schedulability is affected by the number of tasks. Here, thetotal
system utilization was set toU = 0.9 and the number of tasks
was varied from 4 to 40. The results are reported in Figure 10.

Note that FPP always outperforms all the other fixed priority
algorithms, although the improvement decreases for largertask
sets. This can be explained observing that a large task set
is more likely to have smaller blocking tolerances, due to
the higher number of generated deadlines. This phenomenon

0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total Utilization

R
at

io
 o

f F
ea

si
bl

e 
ta

sk
 s

et
s

 

 

EDF
FPP
PTS
FPS
NPS

Fig. 9. Feasible ratio versus utilization whenn = 10.

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of Tasks

R
at

io
 o

f F
ea

si
bl

e 
ta

sk
 s

et
s

 

 

EDF
FPP
PTS
FPS
NPS

Fig. 10. Feasible ratio as a function ofn, whenU = 0.9.

limits the length of non-preemptive regions of lower priority
tasks, hence FPP has less chance to improve schedulability for
large task sets. On the other hand, the performance of NPS
increases withn, because larger task sets tend to have smaller
computation times, which introduce smaller blocking timesin
higher priority tasks.

C. Schedulability with preemption cost

Considering that FPP is the algorithm that exhibits the best
performance with respect to the other fixed priority schemes, a
final experiment was carried out to evaluate how the feasibility
ratio of FPP is affected by the preemption cost. In this case,
however, existing feasibility tests that take preemption costs into
account are quite pessimistic, since they count a preemption
for each high priority job arrival. For this reason, in this set of
experiments, an approximated feasibility ratio was computed
by simulation, considering a task set schedulable if no deadline
miss occurred during the entire simulation interval. Even if such
a simulation represents just a necessary condition for feasibil-
ity, it allows giving a rough estimation of the schedulability
performance when preemption cost is taken into account.

Preemption cost has been incorporated into response time
analysis by Altmeyer et al. [36] to obtain tight bounds on
feasibility. However, the approach requires detailed information
on the task structure and cache usage, which is not in the scope
of this paper.

In the experiment, the lengthq of the non-preemptive regions
in each task was varied from 0 toCmax, (i.e., the longest



11

computation time among the tasks), through a parameterλ
varying in [0,1], such thatq = λCmax. In this way, FPS and
NPS result to be two special cases of FPP, obtained withλ = 0
andλ = 1, respectively. Note that, ifq ≥ Ci, taskτi is entirely
executed in non-preemptive mode. The sameq value is used
for all tasks in the system in order to vary the length of the
non-preemptive regions in a uniform way for the whole task
set. However, a much better schedulability performance could
be obtained adopting a differentqi value for each taskτi, as
explained in Section VII. The preemption cost, denoted byγ,
was assumed to be a fixed value for each task.

Figure 11 shows the feasibility ratio achieved by FPP as a
function of the task set utilization, for different values of λ in
[0,1]. Here, the task set hasn = 10 tasks and the preemption
cost is γ = 30. Note that different curves intersect each
other, meaning that the relative performance depends on the
task set utilization. In particular, using smaller non-preemptive
regions is more efficient for small task set utilizations, when
there are less preemptions due to the reduced workload. On
the other hand, when the total utilization increases, having
longer non-preemptive regions might help reducing the number
of preemptions, reducing the overhead experienced. In the
considered configuration, the curve forλ = 0.2 (i.e., for
q = Cmax ·0.2 = 100) has the best performance untilU = 0.8,
while the curve forλ = 0.4 (i.e., for q = Cmax · 0.4 = 200)
has a better performance for larger utilizations. It is interesting
to note that the curve for fully preemptive scheduling (λ = 0)
has a rapid performance degradation, being the highest one for
U < 0.7 and the lowest one whenU > 0.85.

Finally, Figure 12 shows how the overall system feasibility,
computed for all the task sets generated within the utilization
range [0.05, 0.95], varies as a function ofλ, from the fully
preemptive case (λ = 0), to the non-preemptive case (λ = 1).

Different curves are plotted for different preemption costs
ranging from 0 to 50 units of time, with a step of 10. It is worth
noting that the highest feasibility ratio is not achieved under
fully preemptive scheduling (λ = 0), even for low preemption
costs. Also note that increasing the preemption cost the highest
feasibility ratio is achieved for longer non-preemptive regions
(higher λ). This confirms that limited preemptive scheduling
dominates fully preemptive and non-preemptive scheduling,
even when preemption cost is negligible, and becomes more
effective for larger preemption costs. Also note that, whenλ
increases, each task has less chances to be preempted, hence
the cost is less relevant and the gap between lines reduces.
Eventually, all lines merge at one point, since NPS does suffer
from the preemption cost.

X. CONCLUSIONS

This paper presented a survey of limited preemptive schedul-
ing algorithms, as methods for increasing the predictability
and efficiency of real-time systems. The most relevant result
that clearly emerges from the experiments is that, under fixed
priority scheduling, any of the considered algorithms dominates
both fully preemptive and non-preemptive scheduling, even
when preemption cost is neglected.

As discussed in the previous sections, each specific algorithm
for limiting preemptions has advantages and disadvantages. The

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Total Utilization

R
at

io
 o

f F
ea

si
bl

e 
Ta

sk
 S

et
s

 

 

λ = 0 (FPS)

λ = 0.2

λ = 0.4

λ = 0.6

λ = 0.8

λ = 1 (NPS)

Fig. 11. Feasible ratio versus utilization under differentq values, withn = 10
andγ = 30.

0 0.2 0.4 0.6 0.8 1
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

λ (Ratio of q over C
max

)

R
at

io
 o

f A
ll 

Fe
as

ib
le

 T
as

k 
Se

ts
 w

ith
 U

til
iz

at
io

n 
in

 [0
.0

5,
 0

.9
5]

 

 

γ = 0

γ = 10

γ = 20

γ = 30

γ = 40

γ = 50

Fig. 12. Overall feasible ratio versus length of non-preemptive regions.

preemption threshold mechanism has a simple and intuitive
interface and can be implemented by introducing a low runtime
overhead; however, preemption cost cannot be easily estimated,
since the position of each preemption, as well as the overall
number of preemptions for each task, cannot be determined off-
line. Using deferred preemptions, the number of preemptions
for each task can be better estimated, but still the positionof
each preemption cannot be determined off-line. Fixed preemp-
tion points represents the most predictable solution for estimat-
ing preemption costs, since both the number of preemptions
and their positions are fixed and known from the task code.
Moreover, simulation experiments clearly show that the FPP
algorithm is the one generating less preemptions and higher
schedulability ratios for any task set parameter configurations.
However, FPP requires adding explicit preemption points inthe
program, hence achieving portability of legacy code is still a
challenge for future works.

REFERENCES

[1] M. Grenier and N. Navet, “Fine-tuning MAC-level protocols for optimized
real-time qos,”IEEE Transactions on Industrial Informatics, vol. 4, no. 1,
pp. 6–15, February 2008.

[2] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C. Y. Park,
M. Lee, and C. S. Kim, “Analysis of cache-related preemptiondelay in
fixed-priority preemptive scheduling,”IEEE Transactions on Computers,
vol. 47, no. 6, pp. 700–713, 1998.

[3] H. Ramaprasad and F. Mueller, “Tightening the bounds on feasible
preemption points,” inProceedings of the 27th IEEE Real-Time Systems
Symposium (RTSS 2006), Rio de Janeiro, Brazil, December 5-8, 2006.



12

[4] ——, “Bounding worst-case response time for tasks with non-preemptive
regions,” inProceedings of the Real-Time and Embedded Technology and
Applications Symposium (RTAS 2008), St. Louis, Missouri, USA, April
22-24, 2008.

[5] ——, “Tightening the bounds on feasible preemptions,”ACM Trans-
actions on Embedded Computing Systems, vol. 10, no. 2, pp. 1–34,
December 2010.

[6] L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inheritance protocols: An
approach to real-time synchronization,”IEEE Transactions on Computers,
vol. 39, no. 9, pp. 1175–1185, September 1990.

[7] T. P. Baker, “Stack-based scheduling for realtime processes,”Real-Time
Systems, vol. 3, no. 1, pp. 67–99, April 1991.

[8] G. Buttazzo and A. Cervin, “Comparative assessment and evaluation of
jitter control methods,” inProceedings of the 15th International Con-
ference on Real-Time and Network Systems (RTNS’07), Nancy, France,
March 29-30, 2007.

[9] P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo, “A new kernelapproach
for modular real-time systems development,” inProceedings of the 13th
IEEE Euromicro Conference on Real-Time Systems (ECRTS 2001), Delft,
The Netherlands, June 13-15, 2001.

[10] R. Marau, P. Leite, M. Velasco, P. Marti, L. Almeida, P. Pedreiras, and
J. Fuertes, “Performing flexible control on low-cost microcontrollers using
a minimal real-time kernel,”Industrial Informatics, IEEE Transactions on,
vol. 4, no. 2, pp. 125–133, May 2008.

[11] B. D. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact ofcache
partitioning on multi-tasking real time embedded systems,” in IEEE Pro-
ceedings of the 14th Int. Conf. on Embedded and Real-Time Computing
Systems and Applications (RTCSA 2008), Kaohsiung, Taiwan, August 25-
27, 2008.

[12] S. Altmeyer and G. Gebhard, “WCET analysis for preemptive scheduling,”
in Proc. of the 8th Int. Workshop on Worst-Case Execution Time (WCET)
Analysis, Prague, Czech Republic, July 2008, pp. 105–112.

[13] G. Gebhard and S. Altmeyer, “Optimal task placement to improve cache
performance,” inProc. of the 7th ACM-IEEE Int. Conf. on Embedded
Software (EMSOFT 07), Salzburg, Austria, October 1-3, 2007.

[14] C. Li, C. Ding, and K. Shen, “Quantifying the cost of context switch,” in
Proc. of ACM Workshop on Experimental Computer Science (ExpCS’07),
San Diego, California, June 13-14, 2007.

[15] Y. Wang and M. Saksena, “Scheduling fixed-priority tasks with preemp-
tion threshold,” inProc. of the 6th IEEE Int. Conference on Real-Time
Computing Systems and Applications (RTCSA’99), Hong Kong, China,
December 13-15, 1999.

[16] S. Baruah, “The limited-preemption uniprocessor scheduling of sporadic
task systems,” inProc. of the 17th Euromicro Conf. on Real-Time Systems
(ECRTS’05), Palma de Mallorca, Balearic Islands, Spain, July 6-8, 2005,
pp. 137–144.

[17] A. Burns, “Preemptive priority based scheduling: An appropriate engi-
neering approach,”S. Son, editor, Advances in Real-Time Systems, pp.
225–248, 1994.

[18] R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh, “Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with deferred
preemption revisited,” inProc. of the 19th Euromicro Conf. on Real-Time
Systems (ECRTS’07), Pisa, Italy, July 4-6, 2007, pp. 269–279.

[19] C. Liu and J. Layland, “Scheduling algorithms for multiprogramming in
a hard-real-time environment,”Journal of the Association for Computing
Machinery, vol. 20, no. 1, pp. 46–61, January 1973.

[20] R. Bril, J. Lukkien, and W. Verhaegh, “Worst-case response time analysis
of real-time tasks under fixed-priority scheduling with deferred preemp-
tion,” Real-Time System, vol. 42, no. 1-3, pp. 63–119, 2009.

[21] J. Leung and J. Whitehead, “On the complexity of fixed-priority schedul-
ing of periodic real-time tasks,”Performance Evaluation, vol. 2, no. 4,
pp. 237–250, 1982.

[22] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Controller area
network (CAN) schedulability analysis: Refuted, revisited and revised,”
Real-Time System, vol. 35, no. 3, pp. 239–272, 2007.

[23] G. Yao, G. Buttazzo, and M. Bertogna, “Feasibility analysis under fixed
priority scheduling with fixed preemption points,” inProc. of the 16th
IEEE Int. Conf. on Embedded and Real-Time Computing Systemsand
Applications (RTCSA 2010), Macau, China, August 23-25, 2010.

[24] U. Keskin, R. Bril, and J. Lukkien, “Exact response-time analysis
for fixed-priority preemption-threshold scheduling,” inWork-in-Progress
Session of the 15th Int. Conf on Emerging Technologies and Factory
Automation (ETFA 2010), Bilbao, Spain, September 13-16, 2010.

[25] J. Regehr, “Scheduling tasks with mixed preemption relations for ro-
bustness to timing faults,” inProc. of the 23rd IEEE Real-Time Systems
Symposium (RTSS 2002), Austin, Texas, USA, December 3-5, 2002.

[26] M. Saksena and Y. Wang, “Scalable real-time system design using
preemption thresholds,” inProc. of the 21st IEEE Real-Time Systems
Symposium (RTSS’00), Orlando, Florida, USA, November 27-30, 2000.

[27] M. Bertogna and S. Baruah, “Limited preemption EDF scheduling of
sporadic task systems,”IEEE Transactions on Industrial Informatics,
vol. 6, no. 4, pp. 579–591, 2010.

[28] M. Short, “Improved schedulability analysis of implicit deadline tasks
under limited preemption edf scheduling,” inProceedings of the 16th
IEEE Conference on Emerging Technologies and Factory Automation
(ETFA 2011), September 2011, pp. 1–8.

[29] G. Yao, G. Buttazzo, and M. Bertogna, “Bounding the maximum length of
non-preemptive regions under fixed priority scheduling,” in Proc. of the
15th IEEE Int. Conf. on Embedded and Real-Time Computing Systems
and Applications (RTCSA 2009), Beijing, China, August 24-26, 2009.

[30] E. Bini and G. C. Buttazzo, “Schedulability analysis ofperiodic fixed
priority systems,”IEEE Transactions on Computers, vol. 53, no. 11, pp.
1462–1473, 2004.

[31] M. Bertogna, G. Buttazzo, and G. Yao., “Improving feasibility of fixed
priority tasks using non-preemptive regions,” inProceedings of 32nd IEEE
Real-Time Systems Symposium (RTSS 2011), Vienna, Austria, Nov. 30 -
Dec. 2, 2011.

[32] T. Facchinetti and M. D. Vedova, “Real-time modeling for direct load
control in cyber-physical power systems,”IEEE Transactions on Industrial
Informatics, vol. 7, no. 4, pp. 689 – 698, 2011.

[33] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and G. Buttazzo, “Op-
timal selection of preemption points to minimize preemption overhead,”
in Proc. of the 23rd Euromicro Conf. on Real-Time Systems (ECRTS’11),
Porto, Portugal, July 6-8, 2011.

[34] G. Yao, G. Buttazzo, and M. Bertogna, “Comparative evaluation of
limited preemptive methods,” inProc. of the 15th IEEE Int. Conf. on
Emerging Techonologies and Factory Automation (ETFA 2010), Bilbao,
Spain, September 13-16, 2010.

[35] E. Bini and G. C. Buttazzo, “Measuring the performance of schedulability
tests,”Real-Time Systems, vol. 30, no. 1-2, pp. 129–154, 2005.

[36] S. Altmeyer, R. Davis, and C. Maiza, “Cache related pre-emption delay
aware response time analysis for fixed priority pre-emptivesystems,” in
Proceedings of 32nd IEEE Real-Time Systems Symposium (RTSS2011),
Vienna, Austria, Nov. 30 - Dec. 2, 2011.

Giorgio C. Buttazzo is Full Professor of Computer
Engineering at the Scuola Superiore Sant’Anna of
Pisa. He graduated in Electronic Engineering at the
University of Pisa in 1985, received a Master in
Computer Science at the University of Pennsylvania
in 1987, and a Ph.D. in Computer Engineering at the
Scuola Superiore Sant’Anna of Pisa in 1991. From
1987 to 1988, he worked on active perception and
real-time control at the G.R.A.S.P. Laboratory of the
University of Pennsylvania, Philadelphia. Prof. But-
tazzo has been Program Chair and General Chair of

the major international conferences on real-time systems.He is Editor in Chief
of Real-Time Systems (Springer), Associate Editor of the IEEE Transactions
on Industrial Informatics and Chair of the IEEE Technical Committee on
Real-Time Systems. He has authored 6 books on real-time systems and over
200 papers in the field of real-time systems, scheduling algorithms, overload
management, robotics, and neural networks.

Marko Bertogna is Assistant Professor at University
of Modena and Reggio Emilia, Italy. Before, he held
the same position at the Scuola Superiore SantAnna
of Pisa, Italy, where he also received a Ph.D. in
Computer Engineering in 2008. He graduated (summa
cum laude) in Telecommunications Engineering at the
University of Bologna in 2002. In 2006, he visited the
University of North Carolina at Chapel Hill, working
with prof. Sanjoy Baruah on scheduling algorithms for
single and multicore real-time systems. His research
interests include scheduling and schedulability analy-

sis of real-time multiprocessor systems, protocols for theexclusive access to
shared resources, resource reservation algorithms and reconfigurable devices.
He has authored over 30 papers in international conferencesand journals in
the field of real-time systems, receiving four Best Paper Awards. He is Senior
Member of IEEE.



13

Gang Yao is a Postdoctoral Research Collaborator at
the University of Illinois at Urbana Champaign. He
received a Ph.D. in Computer Engineering from the
Scuola Superiore SantAnna of Pisa, Italy, in 2010.
He received the BE and ME degrees from Tsinghua
University, Beijing, China. His interests include real-
time scheduling algorithms, safety-critical systems
and shared resource protocols.


