Limited Preemptive Scheduling
for Real-Time Systems: a Survey

Giorgio C. ButtazzoFellow Member, IEEEMarko BertognaSenior Member, IEEEand Gang Yao

Abstract—The question whether preemptive algorithms are o Preemption destroys program locality, increasing the run-
better than non-preemptive ones for scheduling a set of redgime time overhead due to cache misses and pre-fetch mech-

tasks has been debated for a long time in the research communi
In fact, especially under fixed priority systems, each apprach

has advantages and disadvantages, and no one dominates the

other when both predictability and efficiency have to be takae
into account in the system design. Recently, limited preentjon
models have been proposed as a viable alternative between
the two extreme cases of fully preemptive and non-preempteas
scheduling. This paper presents a survey of the existing appaches
for reducing preemptions and compares them under different
metrics, providing both qualitative and quantitative performance
evaluations.

Index Terms—Real-time systems, Non-preemptive regions,

anisms. As a consequence, worst-case execution times
(WCETSs) are more difficult to characterize and predict [2],
(3], [4], [3]-

Mutual exclusion is trivial in non-preemptive schedul-
ing, which naturally guarantees the exclusive access to
shared resources. On the contrary, to avoid unbounded
priority inversion [6], preemptive scheduling require® th
implementation of specific concurrency control protocols
for accessing shared resources [6], [7], which introduce
additional overhead and complexity.

Limited-preemptive scheduling. « In control applications, the input-output delay and jitter
are minimized for all tasks when using a non-preemptive
scheduling discipline, since the interval between staréti
and finishing time is always equal to the task computation
] .)] . time [8]. This simplifies control techniques for delay

REEMPTION is a key factor in real-time scheduling, since compensation at design time.

it allows the operating system to immediately allocate the Non-preemptive execution allows using stack sharing tech-
processor to incoming tasks requiring urgent service. Ity fu niques [7] to save memory space in small embedded
preemptive systems, the running task can be interruptedyat a systems with stringent memory constraints [9], [10].

time by. anothﬁr taslll< r\:\.'itﬂ high.er_ prioritli/, ::]nd be reStljmed In summary, arbitrary preemptions can introduce a sigmifica
to corr]mnue when all_higher priority tas S a}/e cfomp eteguntime overhead and may cause high fluctuations in task exe-
In other systems, preemption may be disabled for C?rtad[]tion times, so degrading system predictability. In paittr, at

intervgls of time d_uring the exec_u_tion of _critical OPeraso oqqt four different types of costs need to be taken into @tico
(e.g., interrupt service routines, critical sections,)eto other at each preemption:

e o e e o) SChecing Cos s th tme taken by the scheuing
P) 9 algorithm to suspend the running task, insert it into the

degree of predictability (although higher blocking times) ready queue, switch the context, and dispatch the new
The question whether enabling or disabling preemption dur- incoming tasI’<. ’

ing task executm_n has t_)een |nvgst_|gated by_ many authorsz) Pipeline cost It accounts for the time taken to flush the
under several points of view and it is not trivial to answer. processor pipeline when the task is interrupted and the
A general disadvg_ntage of th_e non-pre_emptive dis_cip_lirtba's time taken to refill the pipeline when the task is resumed.
it introduces additional blocking time in higher prioritgsks, 3) Cache-related costlt is the time taken to reload the
so reducing schedulability. On the other hand, there arerakv cache lines evicted by the preempting task. Bui et al
advantages to be considered when adopting a non-preemptive [11] showed that on a PowerPC MPC7410 with 2 MByte

scheduler. In particular, the following issues have to berta two-way associative L2 cache the WCET increment due
into account when comparing the two approaches: to cache interference can be as larg83#% of the WCET
« In many practical situations, such as I/O scheduling or measured in non-preemptive mode.
_commu_nication in g_s_hared mediu_m, either preemption is4) Bus-related costlt is the extra bus interference for
impossible or prohibitively expensive [1]. accessing the RAM due to the additional cache misses

caused by preemption.
The cumulative execution overhead due to the combination

of these effects is referred to asrchitecture related cost
Unfortunately, this cost is characterized by a high varaacd
depends on the specific point in the task code where preemptio
takes place [12], [13], [14].

The total increase of the worst-case execution time of a task
7; is also a function of the total number of preemptions experi-

I. INTRODUCTION

Giorgio C. Buttazzo is with the Scuola Superiore SantAnRésa, Italy.
E-mail: g.buttazzo@sssup.it.

Marko Bertogna is with the University of Modena and ReggioilEamltaly.
E-mail: marko.bertogna@unimore.it

Gang Yao is with the University of lllinois at Urbana Changrai E-mail:
gangyao@illinois.edu.

Copyright (c) 2009 IEEE. Personal use of this material isrpeed. However,
permission to use this material for any other purposes meisititained from
the IEEE by sending a request to pubs-permissions@ieee.org

enced byr;, which in turn depends on the task set parameters,
on the activation pattern of higher priority tasks, and oa th
specific scheduling algorithm. Such a circular dependericy o
WCET and number of preemptions makes the problem not easy
to be solved.

The major contribution of this paper is to provide a detailed
comparison of the various limited preemptive approaches pr
posed in the literature, with respect to fully preemptivel an
non-preemptive schemes. Schedulability tests for eachadet
are reported for completeness, and simulation experinagts
carried out to evaluate the impact of the algorithms on thanu
ber of preemptions and the overall system schedulabiling T
results reported here can be used to select the most apgteopri
scheduling scheme to increase the efficiency of time-atitic
embedded systems without sacrificing predictability.

The rest of the paper is organized as follows. Section I
describes three different approaches proposed in thatliter to

specific primitives in the task code that disable and
enable preemption. However, since the start time
of each region is not specified in the model, non-
preemptive regions cannot be identified off-line and,
for the sake of the analysis, they are considered to be
“floating” in the code, with a duration not exceeding

q;-

2) Activation-triggered model In this model, non-

preemptive regions are triggered by the arrival of
a higher priority task and programmed by a timer
to last exactly forg; units of time (unless the task
finishes earlier), after which preemption is enabled.
Once a timer is set at timg additional activations
arriving before the timeoutt (4 ¢;) do not postpone
the preemption any further. Once a preemption takes
place, a new high-priority arrival can trigger another
non-preemptive region.

handle limited preemptive scheduling. Section Il desesithe . Fixed Preemption Points (FPP)According to this ap-
task model and the terminology adopted in the paper. Seldion proach, proposed by Burns [17], a task implicitly exe-
presents the schedulability analysis for the non-preempti cutes in non-preemptive mode and preemption is allowed
task model. The preemption thresholds model is analyzed in only at predefined locations inside the task code, called
Section V. Section VI details the deferred preemption model preemption pointsin this way, a task is divided into a
while the method of fixed preemption points is analyzed in number of non-preemptive chunks (also called subjobs).
Section VII. Considerations regarding the differencesvieen If a higher priority task arrives between two preemption
the various models are presented in Section VIII. Section IX points of the running task, preemption is postponed until
reports and discusses some simulation results and Section X the next preemption point. This approach is also referred
states our conclusions. to asCooperative schedulindhecause tasks cooperate to

offer suitable preemption points to improve schedulapilit

Il. LIMITED PREEMPTIVE APPROACHES

Often, preemption is considered a pre-requisite to meet Ill. TERMINOLOGY AND NOTATION
timing requirement in real-time system design; howevemast et us consider a set of periodic or sporadic real-time tasks
cases, a fully preemptive scheduler produces many unragesshat need to be scheduled on a single processor. Eachrtask
preemptions. is characterized by a worst-case execution time (WCET,)

To reduce the runtime overhead due to preemptions aadelative deadlinéD;, and a period (or minimum inter-arrival
still preserve the schedulability of the task set, the feity time) T;. A constrained deadline model is adopted, Bp is
approaches have been proposed in the literature: assumed to be less than or equallio Each task is assigned a

« Preemption Thresholds Scheduling (PTSBhis approach, fixed priority P;, used to select the running task among those

proposed by Wang and Saksena [15], allows a task t@sks ready to execute (a higher valueRfcorresponds to a
disable preemption up to a specified priority level, callebigher priority). Notice that task activation times are knbwn
preemption thresholdrhus, each task is assigned a reguld priori and the actual execution time of a task can be less
priority and a preemption threshold, and the preemptiontigan or equal to its worst-case valGg. Tasks are indexed by
allowed to take place only when the priority of the arrivinglecreasing priority, i.e¥i [1 <i <n: P; > P;;;. Additional
task is higher than the threshold of the running task. terminology will be introduced below for each specific metho

« Deferred Preemptions Scheduling (DPAgcording to this

method, first introduced by Baruah [16] under EDF, eack |nteger time model

taskr; specifies the longest intervgl that can be executed
non-preemptively. For the sake of clarity, it is worth ngtin
that the terminology is not consistent in the literaturecsi
other authors (e.g., Burns [17] and Bril et al. [18]) use

In real-time operating systems, time instants and interval
durations are measured by counting the number of clock sycle
generated by a real-time clock, hence all timing values lzave
the termDeferred Preemptionso actually denotd~ixed resolutlt_)n equal to one clock cycle. Therefor_e, to use divaly

results in a real embedded system, all timing parameters are

Preemption PointsHowever, we believe the terideferred assumed to be non-negative integer values. To complv with su
is more appropriate in this case, because preemption’is 9 9 ' Py

postponed for a given amount of time, rather than mc)Véldconventlon, all cited results derived under the domaireaf r

to a specific position in the code. Depending on how nOH_umbers have been adapted to the integer time model.

preemptive regions are implemented, this model can come
in two slightly different versions: B. Critical instant
1) Floating model In this model, non-preemptive re- The maximum response time of each task is derived under the
gions are defined by the programmer by insertingorst-case arrival pattern that leads to the largest iatenice on

the considered task. Such a particular scenario is oftemresf start at least one unit before the critical instant. Suctoakihg
to as thecritical instant For fully preemptive fixed priority term introduces an additional delay before task executibich
systems, Liu and Layland [19] proved that the critical instacould jeopardize schedulability. High priority tasks ahege
for a task occurs when it arrives synchronously with all eighthat are most affected by such a blocking delay, since the
priority tasks, and all task instances are released as ssonmm@aximum in Equation (1) is computed over a larger set of
possible, i.e., in a strictly periodic fashion. tasks. Figure 2 illustrates the schedule generated by eadl
In the presence of non-preemptive regions, however, tMonotonic on the task set of Table | when preemptions are
additional blocking from lower priority tasks has to be takedisabled. With respect to the schedule shown in Figure 1¢c@ot
into account, hence the critical instant for a tagloccurs when thatrs is now able to complete before its deadline, but the task
it is released synchronously and periodically with all fd@gh set is still not schedulable, since naw misses its deadline.
priority tasks, while the lower priority task that is respdiie

deadline miss

of the largest blocking time of; is released one unit of time 1 ‘ / ‘
beforer; [20]. However, the largest response time of a task is e l | l—‘ | = l ‘ ;
not necessarily due to the first job after a critical instdmi, 3
might be due to later jobs, as explained later on. T2] l ‘ L ‘ l ‘

All schedulability tests hereafter presented have beereter 6
by computing the worst-case response time of a task under the73 S I l I ‘ .
above described notion of critical instant. o 2 4 & 8 10 12 14 16 18 20
C. Motivating example Fig. 2. Schedule produced by non-preemptive Deadline Mutiown the task

set of Table I.

To better appreciate the importance of limited preemptive
scheduling and to better understand the difference amomg th . .
. . o Unfortunately, under non-preemptive scheduling, the tleas
limited preemptive approaches presented in this survepteTa .)

. upper bounds of both Rate Monotonic (RM) [19] and Earliest
reports a sample task set that will be used as a common exal . : :
) . eadline First (EDF) [19] drop to zero! This means that there
throughout this paper, because it results to be unschdduigb ~ . . P
. . . . : exist task sets with arbitrary low utilization that cannat b
Deadline Monotonic [21], both in fully preemptive and inful . :
. . . . scheduled by RM and EDF when preemptions are disabled.
non-preemptive mode, but it can be schedulable by all lighité

reemptive approaches.
preempive app A. Feasibility analysis

Ci | Ti | Di The feasibility analysis of non-preemptive task sets isemor
|l 1] 6] 4 complex than under fully preemptive scheduling. Davis et
| 3110 9 al. [22] showed that in non-preemptive scheduling the Isirge
T3] 6 18] 12 response time of a task does not necessarily occur in the first

TABLE | job, after the critical instant. An example of such a sitoiatis
PARAMETERS OF A SAMPLE TASK SET illustrated in Figure 3, where the worst-case response tifne
Figure 1 illustrates the schedule produced by Deadline Mong occurs in its second instance. Such a scheduling anomaly,
tonic in fully preemptive mode. As clear from the figure, théentified asself-pushing phenomenpoccurs because the high

task set is not feasible, since tagkmisses its deadline. priority jobs activated during the non-preemptive exemutdf
7;’s first instance are pushed ahead to successive jobs, which
n }1—‘ | }—‘ | }—‘ | ‘ then may experience a higher interference.
o | || ()
6 /deadline miss T1 ’—‘ ‘ ’—‘ *‘ ‘ (378)
,7_3 ‘ ‘ ‘ ‘ !—“ ‘ !—“ ‘ ‘ ‘ \L ‘ !_“ ‘ ‘ ‘ T T T T T
(o) 2 4 6 8 10 12 14 16 18 20
To ‘ ‘ (3,9)
Fig. 1. Schedule produced by Deadline Monotonic (in fullggmptive mode) DR ‘dead"nem‘s(
on the task set of Table I. X
T3 e ‘ T 312

IV. NON-PREEMPTIVE SCHEDULING(NPS) }_‘
Ta (2,100)

The most effective way to reduce preemption cost is to =
disable preemptions completely. In this condition, howgv
each taskr; can experience a blocking timB; equal to the
longest computation time among the tasks with lower psorit
That is,

eFig. 3. An example of self-pushing phenomenon occurringask ts.

The presence of the self-pushing phenomenon in non-
B; = max {C; —1} (1) preemptive scheduling implies that the response time aisaly
Jib <P for a taskr; cannot be limited to its first job, activated at
where the maximum of an empty set is assumed to be zetfe critical instant, as done in preemptive scheduling, ibut
Notice that one unit of time is subtracted from the compatati must be performed for multiple jobs, until the processosfieis
time of the blocking task to consider that, to blogk it must executing tasks with priority higher than or equall®p Hence,

the response time of a task needs to be computed within theif the following two conditions are both satisfied:
longest Level Active Period, defined as follows [20]: 1) the task set is feasible under preemptive scheduling;

Definition 1. The Level pending workloadV?(t) at time ¢ 2) relative deadlines are less than or equal to periods.

is the amount of processing that still needs to be performegyer these conditions, the longest relative start tinef task
at time¢ due to jobs with priority higher than or equal ;.. s equal tos; ; and can be computed from Equation (4) for

released strictly before. k=1
Definition 2. A Levels Active PeriodL; is an interval[a, b) SO =B+ Y G
such that the Level-pending workloadiV/(¢) is positive for h:Pyp>P;
i ¢ ®)
all ¢t € (a,b) and null ina andb. 5O _ B 4 Z i L1l
The longest Level-Active Period can be computed by the o W T, h
following recurrent relation: e
0 _ _ Hence, the response tintg; is simply:
LY = B + G
(s—1)
L@ — B, L.
ene s [l
e V. PREEMPTION THRESHOLDS SCHEDULINGPTS)
. . . s s—1
In particular,L; is the smallest value for which{” = L. according to this model, proposed by Wang and Saksena
This means that t_he response time of tasknust be computed [15)], each taskr; is assigned a nominal priority?; (used to
for all jobs 7 ., with k € [1, Ki], where: enqueue the task into the ready queue and to preempt) and
L; preemption threshold; > P; (used for task execution). Then,
K= {?W - (3) 7, can be preempted by, only if P, > 6;. At the activation

time r; i, the priority of 7; is set to its nominal valud’;, so
For a generic joby; ;, the start times; . can then be computedit can preempt all the tasks; with thresholdd; < P;. The
considering the blocking timé;, the computation time of the nominal priority is maintained as long as the task is kept in
preceding £ — 1) jobs and the interference of the tasks withhe ready queue. During this intervai, can be delayed by all
priority higher thanP;. Hence,s; . can be computed with the tasksr, with priority P, > P, and by at most one lower priority

following recurrent relation: task 7; with thresholdd;, > P,. When all such tasks complete
sO_p 4 S O (at times; 1), 7 is dispatched for execution and its priority is
bk L PP, raised at its threshold levé} until the task terminates (at time

354,3 =B+ (k—1)C; +Z Z’jlfh with priority P, > 6;. Notice that, whenr; is preempted, its
h:Pp>P; priority is kept to its threshold level.
Note that the original result derived in [20] adopted twdetif ~ Preemption threshold can be considered as a trade-off be-
ent expressions: one for theth task, that does not experiencéween fully preemptive and fully non-preemptive schedylin
any blocking, and one for the remaining tasks. Instead,gusithdeed, if each threshold priority is set equal to the taskinal
an integer time model and computing the blocking term withriority, the scheduler behaves like a fully preemptiveestiier;
Equation (1), it is possible to simplify the analysis, usiag Whereas, if all thresholds are set to the maximum prioritg, t

(F(“UJ) (4) fix). During this interval,r; can be preempted by all tasks
+1 Ch-

homogeneous formulation for all tasks. scheduler runs in a non-preemptive fashion. Wang and Saksen
Since, once started, the task cannot be preempted, the-fingig0 showed that, by appropriately setting the threshdtus,
ing time f; ,, can be computed as system can improve the schedulability compared with fully
fir = sik+ Ci. (5) preemptive and fully non-preemptive scheduling.
’ ’ For example, if priorities are assigned Bs = 3, P, = 2,
Hence, the response time of taskis given by and P; = 1, and thresholds a8, = 3, 6, = 3, andf3 =
R; = kgl[la}%v]{fi,k — (k- 1)T3}. (6) 2, the task set of Table | results to be schedulable, and the

schedule produced in the synchronous periodic arrivakpatt

Once the response time of each task is computed, the taskiseflustrated in Figure 4.

is feasible if and only if Notice that, att = 6, 7, can preempts since P, > 0s.
. _ _ However, att = 10, 7o cannot preempts, being P, = 0.

Vi=l...on Ris<Di) Similarly, att = 12, 7, cannot preempt;, being P, = 6,.
Yao, Buttazzo, and Bertogna [23] showed that the analysis of

non-preemptive tasks can be reduced to analyzing a single j6. Feasibility analysis

under specific (but not too restrictive) conditions. Thédwing Under fixed priorities, the feasibility analysis of a task se

theorem, originally stated for the fixed preemption modsl, with preemption thresholds can be performed by the testelgri

presented here for the non-preemptive scheduling modéthwhby Keskin et al. [24F. First of all, a taskr; can be blocked only

is a special case of the fixed preemption model. by lower priority tasks that cannot be preempted by it, that i

Theorem 1(from [23])' The Wors_t-cqse respor_lse time Of.a non- 1tpe original analysis by Wang and Saksena [15] has been atedreby
preemptive task occurs in the first job after its criticalteust Regehr [25], which in its turn has been improved by Keskinlef2a].

" % i h ‘ B l ‘ be computed as

3? T \ \ T \ T T T RZ(O) — S@ +OZ + Z C}L

: . : h: P, >0

2 LI \L | L — \L (/) R,Ee_l) SZ

. : . : l Ri :Si+ci+z T—; — f +1 Cy,.

‘ ‘ ‘ h:Pp,>0; ' '

3 ‘ (12)

O T \2 T \4 T \6 T \8 T \10 T \12 T \14 T T 16 T T 18 T T 20

B. Selecting preemption thresholds

Fig. 4. Schedule produced by Deadline Monotonic on the tasknsTable | The example illustrated in Figure 4 shows that a task set

‘;"r']tgez”i”;'.es Py =3, Py =2 andPs =1, and threshold$, =3, 02 =3, nfeasible under both preemptive and non-preemptive sthed
ing can be feasible under preemption thresholds, for aldeita
setting of threshold levels.

Given a task set that is feasible under preemptive schagulin
an interesting problem is to determine the thresholds that
limit preemption as much as possible, without jeopardizhrey

by tasks7; with P; < P; and6; > P;. Hence, a task; can schedulability of the task set. Saksena and Wang [26] pexpos

experience a blocking time equal to the longest computatian algorithm to increase the threshold of each task up to the
time among the tasks with priority lower thd® and threshold level after which the schedule would become infeasible. The
higher than or equal té&;. That is, algorithm considers one task at the time, starting from the

highest priority task.
B = max{C; — 1| P; < P, < 6;} (10) onestpriony
J

where the maximum of an empty set is assumed to be zero. V|- DEFERRED PREEMPTIONS SCHEDULINGDPS)
Then, the response tim&; of task 7; is computed by con- According to this method, each task defines a maximum
sidering the blocking time3;, the interference before its startinterval of time¢; in which it can execute non-preemptively.
time (due to the tasks with priority higher than), and the Depending on the specific implementation, the non-preempti
interference after its start time (due to tasks with priohigher interval can start after the invocation of a system call ritesk
than 6;). The analysis must be carried out within the longestt the beginning of a non-preemptive region (floating madel)
Level« active periodL; defined in Equation (2). This meansor can be triggered by the arrival of a higher priority task
that the response time of task must be computed for all the (activation-triggered model).
jobs7; . with k € [1, K], whereK; is defined in Equation (3). Under the floating model, preemption is resumed by another
system call, inserted at the end of the region (at ngpstnits

For a generic jobr; x, the start times; ;, can be computed long); whereas, under the activation-triggered modele e
considering the blocking timé;, the computation time of the tion is enabled by a timer interrupt after exagglyunits (unless
preceding k£ — 1) jobs, and the interference of the tasks witlthe task completes earlier). For example, considering dinges
priority higher thanP;. Hence,s;; can be computed usingtask set of Table I, assigning. = 2 and¢s = 1, the schedule
Equation (4). The finishing timef; , can be computed by produced by Deadline Monotonic with deferred preemptions
summing to the start time; ;, the computation time of job; ,, under the activation-triggered model is feasible, as titated
and the interference of the tasks that can preempt(those in Figure 5. Dark regions represent intervals executed im no

with priority higher thang;). That is, preemptive mode, triggered by the arrival of higher priorit
(0) tasks.
fiyk = sik+C;
fi(e—n Z_ 11
e (A E3E
ROV I nm. |l m L om)

Again, the integer time model adopted in this paper, alorth wi s ‘ | ‘ ‘ ‘ ‘ - | |
the convention on the blocking term given by Equation (10), . "—‘ I ; ‘ ‘
allow simplifying the analysis with respect to [24], withou e I l ! m w l w
needing to use two different expressions for the cases with a 6 R
without blocking. 73 . - l ‘

The. response time of task (.:an th?n b.e CompUteq USIng.ig. 5. Schedule produced by Deadline Monotonic with def&preemptions
Equation (6), and the task set is feasible if and only if Condiy the task set reported in Table 1, with = 2 andgs — 1.

tion (7) is satisfied.

The feasibility analysis under preemption thresholds can o]
also be simplified under the conditions of Theorem 1. In thfs: Feasibility analysis
case, we have that the worst-case start time is computed usinin the presence of non-preemptive intervals, a task can be
Equation (8), and the worst-case response time of tagslan blocked when, at its arrival, a lower priority task is rungiim

non-preemptive mode. Since each task can be blocked at moshen deadlines are equal to periods, a simple way to
once by a single lower priority task3; is equal to the longest compute a lower bound on the blocking tolerance is from the
non-preemptive interval belonging to tasks with lower gijo Liu and Layland test [19], which, in the presence of blocking

In particular, the blocking factor can be computed as factors, becomes: c
- o . n , Bi .
Bi = max {q; —1} (13) Vi=l...n) o+ 7 < U (d)

h:Py>P;
Note that, under the floating model, one unit of time must be o

subtracted fromy; to allow the non-preemptive region to startwhereUs (i) = i(2'/* — 1). Isolating the blocking factor, the
beforer;. Under the activation-triggered model, however, thef€st can also be rewritten as:
is no need to subtract one unit of time frayy since the non- [c
preemptive interval is programmed to be exactlyfrom the B; < T |Up (i) — Z Zh
arrival time of a higher priority task. h:Pp > P

In both the floating and activation-triggered cases, the Stﬁ o .]
. L ence, considering integer computations, we have:
times of non-preemptive intervals are assumed to be unknown
a priori. Therefore, non-preemptive regions cannot betitied Ch
off-line and, for the sake of the analysis, they are consider Bi=|Ti | Un(i) = Y =11 (15)
to occur in the worst possible time (in the sense of schedula- h:P,>p; P

bility). Thef" schedulqbility can be checked through tressic When deadlines are less than or equal to periods, an exaatibou
response time analysis: R for 8; can instead be achieved by using the schedulability test
R, = B, + Z {_ﬂ Ch. (14) presented in [30], so that a task set is schedulable withridefe
h:P,>P; Th preemptions if and only if for each task:

Note that, under the floating model, the analysis does nal nee

to be carried out within the longest Leviehctive period. In

fact, the worst-case interference groccurs in the first instance

assuming that; could be preempted one time-unit before itghere dof

completion. TS(r:) = Pi_1(Di) 17)
On the other hand, the analysis is more pessimistic under

activation-triggered model, where non-preemptive irdémare

IeTS(n): Bit+ Y [Tiw Ch <t (16)
h

h:Pp,>P;

%Pi(t) is defined by the following recurrent expression:

exactly equal tay; units and can last until the end of the task. Po(t) = {t}

In this case, the analysis does not take advantage of the fact Pi(t) = Pi_y QTLJ Ti) UPi (1), (18)
that 7; cannot be preempted when higher periodic tasks arrive _

¢: units (or less) before its completion. The advantage of sucH his leads to the following result [29]:

pessimism, however, is that the analysis is much simplecand

be limited to the first job of each task. Under these assumgtio B; < max {t-— Z [iw Ch,

a task set is feasible with deferred preemptions only if #sit teTS(s) PSP Th

set is feasible preemptively. The analysis of periodic$aslkh B

floating non-preemptive regions has also been developeerund B = max {it— Z [iw oS (19)
EDF [27], [28]. teTS(m:) hiPr > P,

Given the blocking tolerance, the feasibility test can di&o
expressed as follows:
When using the deferred preemption method, an interesting ,
problem is to find the longest non-preemptive intergal for Vi=1,....n Bi<p
each taskr; that can still preserve the task set schedulabilityng, by Equation (13), we can write:
More precisely, the problem can be stated as follows:

B. Longest non-preemptive interval

Given a set ofn periodic tasks that is feasible Vi=1,...,n jg;%,i{%*l} < Bi.
under preemptive scheduling, find the longest non- o) o .
preemptive interval of lengtt); for each taskr, This implies that, to achieve feasibility, we must have:

so thatr; can continue to execute fap; units of
time in non-preemptive mode, without violating the

schedulability of the original task set. L
i Hence, the longest non-preemptive inter¢al that preserves
This problem has been solved under EDF by Bertogna apdhsibility for each task; is:

Baruah [27], and under fixed priorities by Yao et al. [29]. The .
solution is based on the concept libcking tolerances;, for Qi = min_ {f +1}. (20)
a taskr;, defined as follows: R

Vi=1,... . < mi 1
i=1,...,n qt_kzpmklgpi{ﬁkwL}

— i _ The @; terms can also be computed more efficiently, starting
Definition 3. The blocking tolerances; of a task; is the gom the highest priority taskr{) and proceeding with decreas-
maximum amount of blocking can tolerate without missing ing priority order, according to the following theorem:
any of its deadlines.

Theorem 2 (from [29]). The longest non-preemptive interval « The last non-preemptive chunk of is equal to glest

Q; of task; that preserves feasibility can be computed as (instead ofC}).
Q; = min{Q;_1, Bi_1 + 1} (21) The response time analysis for a tagkhas to consider all
’ the jobs within the longest LevélActive Period, defined in
whereQ; = oo and 1 = Dy — Ch. Equation (2). This means that the response time; ohust be

Note that, in order to apply Theorem@; is not constrained 0mputed for all jobs; ;. with & € [1, K;], wherek; is defined
to be less than or equal ;, but a value of); greater tharg; " Equation (3).

means that; can be fully executed in non-preemptive mode. FOr @ generic job; ;, the start times; ;. of the last subjob can
be computed considering the blocking tiBg, the computation

VII. FIXED PREEMPTIONPOINTS (FPP) time of the precedingi(— 1) jobs, the subjobs of; ;, preceding
According to this model, each task is split into m; non- the last one(; — glest), and the interference of the tasks with
preemptive chunks (subjobs), obtained by inserting — 1 priority higher thanP;. Hence,s; , can be computed with the
preemption points in the code. Thus, preemptions can ori}lowing recurrent relation:

occur at the subjobs boundaries. All the jobs generated By on ¢ (o) Bot O — glast c
task have the same subjob division. THé subjob has a worst- | ik = PiTCi—d ij:rPIZ>P¢ "
case execution time; i, henceC; = >~/ ¢i k. ' =D (24)
Among all the parameters describing the subjobs of a task,| s!) = B,-+I<;Ci—qf“5t+z Q Lk J + 1) Ch.
two values are of particular importance for achieving attigh 7 h:P,>P; Ty
schedulability result:mw Also in this case, the original result reported by Bril et[aD]
{ % = kem[f}f‘m]{q@k} (22) adopted a more complex expression, separating the lowiest pr
¢t = i, ity task from the higher priority ones. The expression pnése:

here has been simplified thanks to the integer time model,
provided the blocking term is computed using Equation (23).

Since, once started, the last subjob cannot be preempted, th
finishing time f; ;, can be computed as

In fact, the feasibility of a high priority task; is affected by
the sizeg;"** of the longest subjob of each taskwith priority

P; < Py. Moreover, the lengtly!*s! of the final subjob ofr;

directly affects its response time. In fact, all higher pitiojobs
arriving during the execution of;’s final subjob do not cause fir = 8ik + glast, (25)
a preemption, since their execution is postponed at the én
;. Therefore, in this model, each task will be characterizged
the following 5-tuple:

{C’L; D’Lv Ti; q’_mal" q'f{LSt}

K2

dt')f%e response time of task can then be computed using Equa-
tion (6), and the task set is feasible if and only if Condit{@h
is satisfied.

For example, consider the same task set of Table |, and seppgs Longest non-preemptive interval
that , is split into two subjobs of 2 and 1 unit, andg is split . . . o
into two subjobs of 4 and 2 units. The schedule produced byS done in Section VI-B under deferred preemptions, it is

Deadline Monotonic with such a splitting is feasible andsit iMt€resting to compute, also under task splitting, the ésig
illustrated in Figure 6. non-preemptive interval); for each taskr that can guarantee

the schedulability. It is worth observing that splittinglka into

subjobs allows achieving a largé);, because a task cannot

N i ‘] ‘ M l ‘ be preempted during the execution of the Ig&t* units of time.

- D L ‘ As shown by Bertogna et al. [31], there are cases in whj¢h

B ‘ P can be computed even when the task set is not preemptively

- w i l !—‘ m w l w feasible, because the last non-preemptive region allogscing

} L } the interference from higher priority tasks.
3 L l ‘ Defining 3; . as the blocking tolerance of theth job of 7;

o 2 4 6 8 10 12 14 16 18 20 after a critical instant, the schedulability of such a jolm dze

checked using the following condition [31]:

Fig. 6. Schedule produced by Deadline Monotonic for the wmkreported

in Table I, whenrs is split into two subjobs of 2 and 1 unit, and is split last t
into two subjobs of 4 and 2 units, respectively. dtellp: B <t—kC;i+¢"" — Z T + 1) Ch,
h
o) hiPyp>P;
A. Feasibility analysis = (26)

Feasibility analysis for tasks with fixed preemption pointsvhere

can be carried out in a very similar way as the non-preemptivg , def (k= 1)T;, (k —)T; + D; — ¢/***] n

case, with the.following differences: . . (hT; —1,¥h e N,j < i} U {(k)T+ D; — qlﬁast}'
« The blocking factorB; to be considered for each taskis
equal to the length of longest subjob (instead of the longddence, the blocking tolerangg ,, becomes

task) among those with lower priority: ;
last
B; = max _ 23 ik = max {t—k:Ci—i-qi -y Q—J +1) Ch} . (27)
j:rgzzxpi{qj } (23) telli i bap Th

The blocking tolerance of task; can be computed as thewhich preemption is disabled. Initially, all tasks stareenting
minimum blocking tolerance among the fir&f; jobs of ; in in non-preemptive mode. When is running and a task with

the longest Level-Active Period: priority higher thanP; is activated, a timer is set by the kernel
Bi = min B, (28) (inside the activation primitive) to interrupt; after ¢; units
ke[LEG] of time. Until then,r; continues executing in non-preemptive
where K; is defined in Equation (3). mode. The interrupt handler associated to the timer must the

From Equation (27), it is easy to see that the blockincall the scheduler to allow the higher priority task to preém
tolerancesp; , do not depend onB;, which can be set to 7;. Notice that, once a timer has been set, other additional
B:,1 without affecting the analysis. The longest non-preengptiactivations before the timeout will not prolong the timeany
interval Q; that guarantees the feasibility for each tagkcan further.
then be computed by Theorem 2, using the blocking tolerances-inally, cooperative scheduling does not need specialdtern
given by Equation (28). support, but it requires the programmer to insert in each

As previously mentioned, the maximum length of the norpreemption point a primitive that calls the scheduler, sabéing
preemptive chunk under fixed preemption points is largen thaending high-priority tasks to preempt the running task.aAs
in the case of deferred preemptions. It is worth pointingtbat last remark, note that the fixed preemption point model camn al
the value ofQ); for taskr; only depends on thg;, of the higher be adopted to model electrical loads of a distributed snrédt g
priority tasks, as expressed in Equation (20), and the lmigck where power appliances can be interrupted only at pre-define
tolerance3; is a function ofg!?**, as clear from Equation (28). points [32].

Note that when tasks are assumed to be preemptively feasible
the analysis can be limited to the first job of each task. Ia thB. Predictability

case, the blocking tolerangg of task; is: As observed in Section I, the runtime overhead introduced by
Bi = Bia- (29) the preemption mechanism depends on the specific point where
the preemption takes place. Therefore, a method that allows
VIIl. A SSESSMENT OF THE APPROACHES predicting where a task is going to be preempted simplifies th

The limited preemption methods presented in this paper c@gtimation of preemption costs, permitting a tighter eation
be compared under several aspects, such as: implementa®bifsk WCETSs. _ 3
complexity, predictability in estimating the preemptionst ~ Unfortunately, under preemption thresholds, the specite p

effectiveness in improving schedulability and in reducthg €mption points depend on the actual execution of the running
number of preemptions. task and on the arrival time of high priority tasks, hencesit i

practically impossible to predict the exact location whetask
is going to be preempted.
)) _ Under deferred preemptions (floating model), the positibn o
The preemption threshold mechanism can be implemenigg, reemptive regions is not specified in the model, thag th
by raising the execution priority of the task, as soon as lfe considered to be unknown. In the activation-triggeredeh
starts running. The mechanism can be easily implementedi@liaaq, the time at which the running task will be preemjeed
the application level by calling, at the beginning of thekia® get,, units of time after the arrival time of a higher priority task
system call that increases the priority of the_ task at iteghold Hence, the preemption position depends on the actual émacut
level. The mechanism can also be fully implemented at thg ihe running task and on the arrival time of the higher fityor
operating system level, without modifying the applicattasks. 5qk. Therefore, it can hardly be predicted off-line.
To do that, the kernel has to increase the priority of a task atg, the contrary, under fixed preemption points, the location
the level of its threshold when the task is scheduled for thg are preemptions may occur are explicitly defined by the
flrst time. In this way, _at |t_s first a_ctlvatu_)n,_ a task is irnser programmer at design time, hence the corresponding owétrhea
in the ready queue using its nominal priority. Then, when ey, e estimated more precisely by timing analysis tools. Fo
task is scheduled for execution, its priority becomes etuis jstance, Bertogna et al. [33] presented an algorithm flecse
threshold, until completion. Note that, if a task is preesapt ing the preemption points that minimize the overall predampt

its priority remains at its threshold level. ~ cost without compromising the feasibility of the task set.
Note that preemption threshold scheduling is already used

in the ThreadX real-time operating system by Express Logic]
Inc. and in the Erika Enterprise real time kernel by EvidencE- Effectiveness
and it represents an example of a great success of tramgferri The effectiveness of an algorithm that limits preemptions
research results to industrial applications. can be evaluated either in terms of schedulability or by the
In deferred preemption (floating model), non-preemptiveumber of preemptions. As long as schedulability is coregrn
regions can be implemented by proper kernel primitives thall the limited preemptive methods (under fixed priorities)
disable and enable preemption at the beginning and at the elodninate both fully preemptive scheduling and non-preérept
of the region, respectively. As an alternative, preemptiam be scheduling, even when preemption cost is neglected. Such a
disabled by increasing the priority of the task at its maximu behavior has been clearly illustrated by showing how thegam
value, and can be enabled by restoring the nominal taskifgriortask set in Table | cannot be scheduled by fully preemptivk an
In the activation-triggered mode, non-preemptive regitarsbe non-preemptive Deadline Monotonic, whereas it is schddela
realized by setting a timer to enforce the maximum intermal using any limited preemptive algorithm. This property waik

A. Implementation issues

also evaluated by simulation in the next section, using motlee methods illustrated in Section VI-B and Section VII-B,
guantitative data. respectively.

The number of preemptions each task can experience dependn the rest of this section, three sets of experiments are
of different parameters. Under preemption thresholdsskata presented: the first set is aimed at evaluating how the number
can only be preempted by tasks with priority greater than it preemptions is affected by different parameters; theseéc
thresholdd;. Hence, if preemption cost is neglected, an uppset evaluates the schedulability level in the ideal caseeod z
boundy; on the number of preemptions can experience can peremption cost, whereas the third set compares the féigsibi
be computed by counting the number of activations of taslevel in the presence of non-negligible cost.
with priority higher thand; occurring in[0, R;] that is:

R, A. Number of preemptions
vi= {_W B0 The first set of experiment ied out t it
periments was carried out to monitor
hiFn>0: the total number of preemptions generated by the different
This is an upper bound because each higher priority arrvalgigorithms on a periodic task set within a simulation windsfw
counted as a different preemption, even when multiple @siv 5.107 units of time. In particular, each value shown in the graphs
cause a single preemption. plots the average over 1,000 runs. To make the comparison

Under deferred preemption, the number of preemptions agir, only preemptively feasible task sets were considened
curring on; can be upper bounded using the non-preemptivige preemption cost was assumed to be zero. In this set of
intervalg; specified for the task. If preemption cost is neglectedxperiments, the non-preemptive scheduling algorithmSNP

Th

we simply have: is not reported, since the number of preemptions is always
v = [9] _1. zero, for any utilization. Such a great performance of NPS,
qi however, is compensated by a poor schedulability levelchvhi

This is a pessimistic estimation since a tasks assumed to be is better evaluated in the second set of experiments. Thes cur
preempted after every interval of lenggh even in the absencefor deferred preemption scheduling (DPS) corresponds €o th
of higher priority jobs. In this case, a better upper bound c&ctivation-triggered model. We did not include the floating
be derived from Equation (30), by replacifdgwith P,. Note Mmodel because in this model no information is provided on the
that when preemption cost is not negligible, the derivedemppminimum length and position of the non-preemptive regions.
bounds are not applicable, since task computation times alhe number of preemptions is therefore the same as in the
depend on the number of preemptions, leading to a circufgly preemptive case (FPS).
dependency, as shown by Yao et al. [34]. Figure 7 shows how the performance of the various al-
Under cooperative scheduling, the number of preemptioggrithms varies as a function of the task set utilizatiorr, fo
can be easily upper bounded by the minimum between tigsk sets composed of = 10 tasks. As clear from the
number of effective preemption points inserted in the tamkec graphs, the use of non-preemptive regions, either fixed XFPP
and the number of higher priority jobs activated during ther not (DPS), allows achieving a higher reduction with respe

response time of the considered task. to preemption thresholds, especially for task set utilirest
greater than 70%. Note that in all the graphs related to this
IX. SIMULATION EXPERIMENTS experiment, DPS performs slightly better than FPP. This can

be explained considering that, when preemption points are

randomly generated task sets, with the objective of evialgat fixed, h|gh pr|(_)r|ty Jobs arriving _shghtly before _and after
preemption point generate two distinct preemptions (aigo

the effects qf the different scheduling approac_:hes on ‘"’@t?’“’” qeferred), whereas under DPS the first arrival always trigjge
of preemptions and the system schedulability. Specificstes i T .
h . o a non-preemptive interval of lengtp, which prevents other
ave been carried out to evaluate how schedulability isctdte . o :
:) . subsequent arrivals to generate additional preemptions.ost
by the size of non-preemptive regions and by the preemption . : "
X . . aoractlcal cases, however, such a performance differerpaitis
cost. The aforementioned algorithms have been considered’i .. T i
. . negligible, hence FPP is still to be preferred against DRS fo
the comparison, all executed under the Deadline Monoto%c) . i
riority assignment e reasons expressed in the previous sections. .
P ' . Figure 8 shows the average number of preemptions as a
Each task set was generated as follows. The UUniFast [?fg ction of the number of tasks. wheii — 0.9. Note that
algorithm was used to genergte a setoperiodic tasks with preemptions rapidly decrease w'rtr’for all the alg.;o.rithms. This
total utilization equal to a desired val@ié Then, for each task :

7, its computation time"; was generated as a random integé? due to the fact that, for a given utilization, large tasts sere

uniformly distributed in the interval [100, 500], and itsrjoe characterized by tasks with smaller computation tlm.es,cbvh|
! . have less chance to be preempted. For task setsmwith20,
T; was computed a8; = C;/U;. The relative deadlind®; was L . .
. . o : however, both FPP and DPS lead to a significant reduction with
generated as a random integer uniformly distributed in &inge

[Ci+a- (TL' —Cy), T;], with a = 0.5. respect to PTS))

To reduce preemptions as mush as possible, in the PBsSchedulability with zero preemption cost
algorithm, threshold priorities were set at the highestsjis The second set of experiments was carried out to test the
value using the method described in Section V-B. Similarly, impact of the various algorithms on the task set schediitigbil
both DPS and FPP, the length of non-preemptive regions waswbich has been verified using the feasibility tests repoited
at the highest possible value to keep the task set feasileg u this paper, assuming zero preemption cost. The performaince

This section presents a set of simulation results perforomed

10

14 . 1 e
—%— FPS
0.9F
12 4
o 0.8f
15
g 10r £ 07
2
£ @ —=«— EDF
g gl & o6 FPP
b= 8 @ — % — PTS
=)
] ‘% 0.5 —«— FPS
R s+
£ gl L —4&— NPS
E 5 0.4
S 2
S 4t & 03
=
<<
0.2t R
2T 0.1l N 1
: \,
L L L 0 i i i i i i L \\\.%
05 055 06 065 07 075 08 08 09 095 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Total Utilization Total Utilization
Fig. 7. Average number of preemptions versus utilizatiorenvh = 10. Fig. 9. Feasible ratio versus utilization when= 10.
x 10* 1
10 . . : : : : : B *
—+«— EDF
ot : 0.91 FPP [
—+*—FPS osh — *— PTS ||
o 8T) —%— FPS
s 2 971 —a—NPs |/
8 7t 2 0
g 3
< k-
8 ol & oef - Formgesioy g
a % - Tk -k - <%
5 = * - - %
s 5 05 A 7
2 3 s S)
S 4t s 0.4 T
= o
© g
g 3} & 03 S
g
< gt 0.2t]
1L o1f : E
° ; ; ; ; ; ; ; P 0 : ; : :
o 5 10 15 20 25 30 35 20 0 5 10 15 20 25 30 35 40

Number of Tasks Number of Tasks

Fig. 8. Average number of preemptions versus number of tabkenU/ = 0.9. Fig. 10. Feasible ratio as a function of whenU = 0.9.

the algorithms was evaluated by comparing the feasible,rafMits the length of non-preemptive regions of lower prpri
calculated as the number of feasible task sets divided by tRSKS: hence FPP has less chance to improve schedulability f
total number of generated sets. In each experiment, 5.680 t'9€ task sets. On the other hand, the performance of NPS
sets were randomly generated for each parameter configurat/1C7€ases with, because larger task sets tend to have smaller
The assumption on preemptive feasibility was removed aad tfﬁpmputat}or? times, which introduce smaller blocking tinres
percentage of feasible task sets was monitored as a furmtior{'gher priority tasks.
different parameters.

In this set of experiments, DPS is not shown, since ifS. Schedulability with preemption cost

performance is the same as FPS, as mentioned in Section VI-Aconsidering that FPP is the algorithm that exhibits the best
On the other hand, fully preemptive Earliest Deadline Firﬁkerformance with respect to the other fixed priority scheraes
(EDF) [19] has been included in the graphs to evaluate thga| experiment was carried out to evaluate how the featsibil
difference with respect to an optimal solution. ratio of FPP is affected by the preemption cost. In this case,
Figure 9 shows the performance of the various algorithms géwever, existing feasibility tests that take preemptiosts into
a function of the task set utilization, when= 10. It is worth account are quite pessimistic, since they count a preemptio
observing that both FPP and PTS improve the schedulabilit each high priority job arrival. For this reason, in thit f
level with respect to FPS, but FPP is able to achieve a largsfperiments, an approximated feasibility ratio was comgut
improvement, especially for higher utilizations ¢ 0.85). For by simulation, considering a task set schedulable if no litead
example, FPP is able to schedule 30% more task sets than hiiSs occurred during the entire simulation interval. Evfesuth
for U around 0.9. a simulation represents just a necessary condition foilditas
A second experiment has been carried out to test hawy, it allows giving a rough estimation of the schedulatyili
schedulability is affected by the number of tasks. Herefdked performance when preemption cost is taken into account.
system utilization was set tf = 0.9 and the number of tasks Preemption cost has been incorporated into response time
was varied from 4 to 40. The results are reported in Figure léhalysis by Altmeyer et al. [36] to obtain tight bounds on
Note that FPP always outperforms all the other fixed priorifigasibility. However, the approach requires detailed rimf@tion
algorithms, although the improvement decreases for laeghr on the task structure and cache usage, which is not in theescop
sets. This can be explained observing that a large task eéthis paper.
is more likely to have smaller blocking tolerances, due to Inthe experiment, the lengthof the non-preemptive regions
the higher number of generated deadlines. This phenometioreach task was varied from 0 t0),.., (i.e., the longest

computation time among the tasks), through a paramgter

11

varying in [0,1], such thaty = A\C),,4.. In this way, FPS and asl 5 e *;‘ - a R

NPS result to be two special cases of FPP, obtained AvithO al \Qe\ -
and)\ = 1, respectively. Note that, f > C;, taskr; is entirely 2 55 TEzoree RN o VO
executed in non-preemptive mode. The samealue is used Bl o+ r=oa \2\
for all tasks in the system in order to vary the length of th 2 oo o)
non-preemptive regions in a uniform way for the whole tas § “*lle—ar=10ws) o ”

set. However, a much better schedulability performancédcot
be obtained adopting a different value for each task;, as vor)
explained in Section VII. The preemption cost, denotechby o N
was assumed to be a fixed value for each task. osr N
Figure 11 shows the feasibility ratio achieved by FPP as
function of the task set utilization, for different valueEoin _ _ T _ _
[0,1]. Here, the task set has— 10 tasks and the preemption;gd 11:. 32?a5|ble ratio versus utilization under differgmalues, withn = 10
cost isy 30. Note that different curves intersect each
other, meaning that the relative performance depends on
task set utilization. In particular, using smaller nonérgptive
regions is more efficient for small task set utilizations,emwh
there are less preemptions due to the reduced workload.
the other hand, when the total utilization increases, hgavil
longer non-preemptive regions might help reducing the remt
of preemptions, reducing the overhead experienced. In t
considered configuration, the curve for = 0.2 (i.e., for
q = Cinae - 0.2 = 100) has the best performance urtil= 0.8,
while the curve forA = 0.4 (i.e., forq = Cyae - 0.4 = 200)
has a better performance for larger utilizations. It isriesting
to note that the curve for fully preemptive scheduling= 0)
has a rapid performance degradation, being the highestarne
U < 0.7 and the lowest one wheli > 0.85. Fig. 12.
Finally, Figure 12 shows how the overall system feasibility
computed for all the task sets generated within the utibrat
range [0.05, 0.95], varies as a function bf from the fully preemption threshold mechanism has a simple and intuitive
preemptive case\(= 0), to the non-preemptive casg & 1). interface and can be implemented by introducing a low ruatim
Different curves are plotted for different preemption sosioverhead; however, preemption cost cannot be easily dstiima
ranging from O to 50 units of time, with a step of 10. It is wortlsince the position of each preemption, as well as the overall
noting that the highest feasibility ratio is not achievedlein number of preemptions for each task, cannot be determiried of
fully preemptive schedulingX(= 0), even for low preemption line. Using deferred preemptions, the number of preemption
costs. Also note that increasing the preemption cost thiedsig for each task can be better estimated, but still the position
feasibility ratio is achieved for longer non-preemptivgions each preemption cannot be determined off-line. Fixed ppeem
(higher X). This confirms that limited preemptive schedulingion points represents the most predictable solution fomes-
dominates fully preemptive and non-preemptive schedulin@g preemption costs, since both the number of preemptions
even when preemption cost is negligible, and becomes maied their positions are fixed and known from the task code.
effective for larger preemption costs. Also note that, when Moreover, simulation experiments clearly show that the FPP
increases, each task has less chances to be preempted, halgoeithm is the one generating less preemptions and higher
the cost is less relevant and the gap between lines redugghedulability ratios for any task set parameter confignmat
Eventually, all lines merge at one point, since NPS doessufHowever, FPP requires adding explicit preemption pointhé
from the preemption cost. program, hence achieving portability of legacy code id stil
challenge for future works.

o]
0.5

. . . .
0.7 0.75 0.8 0.85
Total Utilization

L L L
0.55 0.6 0.65

o
©
N

e
—

o
©

0.8

Ratio of All Feasible Task Sets with Utilization in [0.05, 0.95]

o
g
0

. . .
0.4 0.6 0.8 1
A (RatioofgoverC__)

max

Overall feasible ratio versus length of non-pretirapregions.

.
0.2

(=]

X. CONCLUSIONS

This paper presented a survey of limited preemptive schedul REFERENCES

ing alg_or_ithms, as me_thOdS for increasing the predicﬂa{bili [1] M. Grenier and N. Navet, “Fine-tuning MAC-level protdsdor optimized
and efficiency of real-time systems. The most relevant tesul real-time qos,JEEE Transactions on Industrial Informaticsol. 4, no. 1,
that clearly emerges from the experiments is that, unded fixe_ PP- 6-15, February 2008.

L Y . 9 p. . . [2] C.-G. Lee, J. Hahn, Y.-M. Seo, S. L. Min, R. Ha, S. Hong, C.Park,
priority scheduling, any of the considered .algorlthms MS M. Lee, and C. S. Kim, “Analysis of cache-related preempiitaay in
both fully preemptive and non-preemptive scheduling, even fixed-priority preemptive scheduling/EEE Transactions on Computers
when preemption cost is neglected. vol. 47, no. 6, pp. 700713, 1998.

As discussed in the previous sections, each specific digori

t [3] H. Ramaprasad and F. Mueller, “Tightening the bounds easible
for limiting preemptions has advantages and disadvantdgpes

preemption points,” irProceedings of the 27th IEEE Real-Time Systems
Symposium (RTSS 200®io de Janeiro, Brazil, December 5-8, 2006.

(4

12

——, “Bounding worst-case response time for tasks with-poeemptive [26]
regions,” inProceedings of the Real-Time and Embedded Technology and
Applications Symposium (RTAS 2008}. Louis, Missouri, USA, April

M. Saksena and Y. Wang, “Scalable real-time system gdesising
preemption thresholds,” ifProc. of the 21st IEEE Real-Time Systems
Symposium (RTSS’Q0Prlando, Florida, USA, November 27-30, 2000.

22-24, 2008. [27] M. Bertogna and S. Baruah, “Limited preemption EDF sthieg of
[5S] ——, “Tightening the bounds on feasible preemption&CM Trans- sporadic task systemsJEEE Transactions on Industrial Informatics

actions on Embedded Computing Systemd. 10, no. 2, pp. 1-34, vol. 6, no. 4, pp. 579-591, 2010.

December 2010. [28] M. Short, “Improved schedulability analysis of impticddeadline tasks

(6]

(7]
(8]

El

(20]

[11]

(12]

L. Sha, R. Rajkumar, and J. Lehoczky, “Priority inhenita protocols: An
approach to real-time synchronizatiotZEE Transactions on Computers
vol. 39, no. 9, pp. 1175-1185, September 1990.

T. P. Baker, “Stack-based scheduling for realtime psses,’Real-Time
Systemgsvol. 3, no. 1, pp. 67-99, April 1991.

G. Buttazzo and A. Cervin, “Comparative assessment amaliation of
jitter control methods,” inProceedings of the 15th International Con-
ference on Real-Time and Network Systems (RTNSN&Mcy, France,
March 29-30, 2007.

P. Gai, L. Abeni, M. Giorgi, and G. Buttazzo, “A new kernapproach
for modular real-time systems development,”"Rmoceedings of the 13th
IEEE Euromicro Conference on Real-Time Systems (ECRTS,2D6lt,
The Netherlands, June 13-15, 2001.

R. Marau, P. Leite, M. Velasco, P. Marti, L. Almeida, Redpeiras, and
J. Fuertes, “Performing flexible control on low-cost miantrollers using
a minimal real-time kernelIndustrial Informatics, IEEE Transactions pn
vol. 4, no. 2, pp. 125-133, May 2008. [
B. D. Bui, M. Caccamo, L. Sha, and J. Martinez, “Impact ache
partitioning on multi-tasking real time embedded systémns|EEE Pro-
ceedings of the 14th Int. Conf. on Embedded and Real-TimepQ@org

Systems and Applications (RTCSA 20®&ohsiung, Taiwan, August 25- [34]

27, 2008.

S. Altmeyer and G. Gebhard, “WCET analysis for preesgticheduling,”
in Proc. of the 8th Int. Workshop on Worst-Case Execution TWIEET)
Analysis Prague, Czech Republic, July 2008, pp. 105-112.

[29]

(30]

(31]

(32]

(35]

under limited preemption edf scheduling,” Proceedings of the 16th
IEEE Conference on Emerging Technologies and Factory Aatiom
(ETFA 2011) September 2011, pp. 1-8.

G. Yao, G. Buttazzo, and M. Bertogna, “Bounding the maxin length of
non-preemptive regions under fixed priority scheduling,Proc. of the
15th IEEE Int. Conf. on Embedded and Real-Time Computinge®gs
and Applications (RTCSA 20Q%Beijing, China, August 24-26, 2009.
E. Bini and G. C. Buttazzo, “Schedulability analysis périodic fixed
priority systems,"IEEE Transactions on Computersol. 53, no. 11, pp.
1462-1473, 2004.

M. Bertogna, G. Buttazzo, and G. Yao., “Improving fduslily of fixed
priority tasks using non-preemptive regions,'Hroceedings of 32nd IEEE
Real-Time Systems Symposium (RTSS 20dnna, Austria, Nov. 30 -
Dec. 2, 2011.

T. Facchinetti and M. D. Vedova, “Real-time modeling fdirect load
control in cyber-physical power systemHZEE Transactions on Industrial
Informatics vol. 7, no. 4, pp. 689 — 698, 2011.

M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and Gut&zzo, “Op-
timal selection of preemption points to minimize preemptmverhead,”
in Proc. of the 23rd Euromicro Conf. on Real-Time Systems (ESCH]
Porto, Portugal, July 6-8, 2011.

G. Yao, G. Buttazzo, and M. Bertogna, “Comparative estibn of
limited preemptive methods,” ifProc. of the 15th IEEE Int. Conf. on
Emerging Techonologies and Factory Automation (ETFA 20B@pao,
Spain, September 13-16, 2010.

E. Bini and G. C. Buttazzo, “Measuring the performanésahedulability

[13] G. Gebhard and S. Altmeyer, “Optimal task placementmprove cache tests,”Real-Time Systemsol. 30, no. 1-2, pp. 129-154, 2005.
performance,” inProc. of the 7th ACM-IEEE Int. Conf. on Embedded36] S. Altmeyer, R. Davis, and C. Maiza, “Cache related @mgstion delay
Software (EMSOFT 07)Salzburg, Austria, October 1-3, 2007. aware response time analysis for fixed priority pre-empsiystems,” in

[14] C. Li, C. Ding, and K. Shen, “Quantifying the cost of cext switch,” in Proceedings of 32nd IEEE Real-Time Systems Symposium (BRI
Proc. of ACM Workshop on Experimental Computer Science (B Vienna, Austria, Nov. 30 - Dec. 2, 2011.

San Diego, California, June 13-14, 2007.
[15] Y. Wang and M. Saksena, “Scheduling fixed-priority &skith preemp-

[16]

(17]

(18]

[29]

[20]

[21]

tion threshold,” inProc. of the 6th IEEE Int. Conference on Real-Time
Computing Systems and Applications (RTCSA'#®)ng Kong, China,
December 13-15, 1999.

S. Baruah, “The limited-preemption uniprocessor sictieg of sporadic
task systems,” iProc. of the 17th Euromicro Conf. on Real-Time Systernr
(ECRTS'05) Palma de Mallorca, Balearic Islands, Spain, July 6-8, 200!
pp. 137-144.

A. Burns, “Preemptive priority based scheduling: Anpegpriate engi-
neering approach,S. Son, editor, Advances in Real-Time Systeups
225-248, 1994.

R. J. Bril, J. J. Lukkien, and W. F. J. Verhaegh, “Worate response time
analysis of real-time tasks under fixed-priority schedylimith deferred
preemption revisited,” ifProc. of the 19th Euromicro Conf. on Real-Time
Systems (ECRTS'Q7pisa, Italy, July 4-6, 2007, pp. 269-279.

C. Liu and J. Layland, “Scheduling algorithms for mpfttigramming in
a hard-real-time environmentJournal of the Association for Computing
Machinery vol. 20, no. 1, pp. 46-61, January 1973.

R. Bril, J. Lukkien, and W. Verhaegh, “Worst-case rasp®time analysis
of real-time tasks under fixed-priority scheduling with eteéd preemp-
tion,” Real-Time Systenvol. 42, no. 1-3, pp. 63-119, 2009.

J. Leung and J. Whitehead, “On the complexity of fixetbyity schedul-
ing of periodic real-time tasks,Performance Evaluatignvol. 2, no. 4,
pp. 237-250, 1982.

Giorgio C. Buttazzo is Full Professor of Computer
Engineering at the Scuola Superiore Sant'/Anna of
Pisa. He graduated in Electronic Engineering at the
University of Pisa in 1985, received a Master in
Computer Science at the University of Pennsylvania
in 1987, and a Ph.D. in Computer Engineering at the
Scuola Superiore Sant'’Anna of Pisa in 1991. From
1987 to 1988, he worked on active perception and
real-time control at the G.R.A.S.P. Laboratory of the
University of Pennsylvania, Philadelphia. Prof. But-
tazzo has been Program Chair and General Chair of

the major international conferences on real-time systétess Editor in Chief
of Real-Time Systems (Springer), Associate Editor of thEHETransactions
on Industrial Informatics and Chair of the IEEE Technical n@oittee on
Real-Time Systems. He has authored 6 books on real-timersgsand over
200 papers in the field of real-time systems, schedulingrifgos, overload
management, robotics, and neural networks.

Marko Bertogna is Assistant Professor at University

[22] R. I Davis, A. Burns, R. J. Bril, and J. J. Lukkien, “Coolter area of Modena and Reggio Emilia, ltaly. Before, he held
network (CAN) schedulability analysis: Refuted, reviditend revised,” the same position at the Scuola Superiore SantAnna
Real-Time Systenvol. 35, no. 3, pp. 239-272, 2007. _ of Pisa, Italy, where he also received a Ph.D. in

[23] G. Yao, G. Buttazzo, and M. Bertogna, “Feasibility arss under fixed Computer Engineering in 2008. He graduated (summa

[24]

[25]

priority scheduling with fixed preemption points,” iroc. of the 16th
IEEE Int. Conf. on Embedded and Real-Time Computing Syséemds
Applications (RTCSA 2010Macau, China, August 23-25, 2010.

U. Keskin, R. Bril, and J. Lukkien, “Exact response-¢imanalysis
for fixed-priority preemption-threshold scheduling,” Work-in-Progress
Session of the 15th Int. Conf on Emerging Technologies araiofRa
Automation (ETFA 2010)Bilbao, Spain, September 13-16, 2010.

J. Regehr, “Scheduling tasks with mixed preemptioratiehs for ro-

cum laude) in Telecommunications Engineering at the
University of Bologna in 2002. In 2006, he visited the
University of North Carolina at Chapel Hill, working
with prof. Sanjoy Baruah on scheduling algorithms for
single and multicore real-time systems. His research
interests include scheduling and schedulability analy-

sis of real-time multiprocessor systems, protocols for ékelusive access to
shared resources, resource reservation algorithms aodfigarable devices.

bustness to timing faults,” ifProc. of the 23rd IEEE Real-Time SystemsHe has authored over 30 papers in international confereacdsjournals in

Symposium (RTSS 20023ustin, Texas, USA, December 3-5, 2002.

the field of real-time systems, receiving four Best Paper rd@aHe is Senior

Member of IEEE.

Gang Yaois a Postdoctoral Research Collaborator at
the University of lllinois at Urbana Champaign. He

received a Ph.D. in Computer Engineering from the
Scuola Superiore SantAnna of Pisa, Italy, in 2010.
He received the BE and ME degrees from Tsinghua
University, Beijing, China. His interests include real-

time scheduling algorithms, safety-critical systems
and shared resource protocols.

13

