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Abstract

Macro-scale species richness studies often use museum specimens as their main

source of information. However, such datasets are often strongly biased due to

variation in sampling effort in space and time. These biases may strongly affect

diversity estimates and may, thereby, obstruct solid inference on the underlying

diversity drivers, as well as mislead conservation prioritization. In recent years,

this has resulted in an increased focus on developing methods to correct for

sampling bias. In this study, we use sample-size-correcting methods to examine

patterns of tropical plant diversity in Ecuador, one of the most species-rich and

climatically heterogeneous biodiversity hotspots. Species richness estimates were

calculated based on 205,735 georeferenced specimens of 15,788 species using

the Margalef diversity index, the Chao estimator, the second-order Jackknife

and Bootstrapping resampling methods, and Hill numbers and rarefaction. Spe-

cies richness was heavily correlated with sampling effort, and only rarefaction

was able to remove this effect, and we recommend this method for estimation

of species richness with “big data” collections.
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Introduction

Growing concern about the status and future of the

world’s biodiversity in the face of human-induced climate

and land-use change has focussed attention on the need

to mitigate these negative effects (Botkin et al. 2007). At

the same time, limited funds have raised demands for

resource-efficient conservation tactics (Margules and Pres-

sey 2000). A primary goal of large-scale conservation

efforts is to conserve as much biodiversity as possible

with minimum investment (Myers et al. 2000). This

requires comparable and reliable estimates of species rich-

ness across large geographic scales (Ib�a~nez et al. 2006).

However, species distributions are often poorly under-

stood (Wallacean short-fall) and many species remain

undescribed (Linnaean shortfall) (Whittaker et al. 2005;

Sheth et al. 2012; Ter Steege et al. 2013). This is particu-

larly true with respect to the tropics (Ferrier 2002). Sam-

pling methods and sampling intensity have been

inconsistent across space and time, making the calculation

of accurate and comparable species richness estimates

problematic (Colwell et al. 2012).

Museum specimens are an important source of infor-

mation for studies of biodiversity (Shaffer et al. 1998). In

recent years, many museums have undertaken digitization

of their collections and have been making these data pub-

lically available through internet sources such as the Glo-

bal Biodiversity Information Facility (GBIF, http://

www.gbif.org/). Since the 1990s, the number of published

studies using “big data” from collections of herbarium

specimens to investigate biogeographic patterns or envi-

ronmental changes has increased almost exponentially

(Lavoie 2013). However, these records are the result of

years of different researchers working with different aims

and methodologies and as a result may suffer from vari-

ous types of sampling bias. Site accessibility is highly cor-

related with the number of specimens in a given area,

and most specimens are found in close proximity to

roads, cities, and rivers (Reddy and Da 2003; Kadmon

et al. 2004). Sampling may tend to be higher for certain

functional or taxonomic groups that have received special

attention, and this bias may also potentially vary spatially.

Such biases may cause joint spatial and taxonomic biases

that must be considered to accurately estimate species

richness from museum specimens (Mateo et al. 2013).

Development of new methods to correct for sampling

bias in the estimation of spatial and temporal variation in

species richness has received much focus in recent years

(Ib�a~nez et al. 2006; Colwell et al. 2012). The simplest

measure of biodiversity is the number of species observed

within a geographic unit, but this estimate is strongly

affected by sample size (number of specimens) (Hellmann

and Fowler 1999). The importance of sampling bias is

also related to spatial scale. At coarser resolution, data

coverage is improved and sampling biases should be

weaker. However, coarse-grained studies are not always

useful for directing conservation efforts (Ferrier 2002),

and in the assessment of drivers of species richness, the

choice of scale can change the estimated importance of

individual factors (McGill 2010).

The biotas of tropical areas are generally much less

studied than those of temperate regions (Ferrier 2002).

However, it is clear that certain tropical regions contain

the highest plant species density on Earth. For this reason,

tropical areas have often been the focus of studies aimed

at optimizing global conservation efforts (Myers et al.

2000; Malcolm et al. 2006). Ecuador has been identified

as a tropical biodiversity hotspot (Jørgensen and Le�on-

Y�anez 1999; Conservation International 2007) and has

been shown to be particularly well sampled compared to

other tropical New World countries (Schulman et al.

2007; Ulloa et al. 2011). Ecuador also has very heteroge-

neous environmental conditions, making it an ideal

region for assessing the effects of environmental gradients

on patterns of tropical species richness (Skov and Bor-

chsenius 1997; Distler et al. 2009; Jim�enez et al. 2009) rel-

ative to the effect of sampling.

The aims of this study are threefold: (1) document

broad-scale spatial patterns of species richness for a tropi-

cal biodiversity hotspot, (2) determine the effect of geo-

graphic scale and sampling bias on estimates of species

richness and their relationships with environmental fac-

tors, and (3) evaluate the effectiveness of different meth-

ods for correcting sampling bias. We hypothesize that (1)

at higher resolution (smaller grid cell size), estimates

become more biased due to decreased and inconsistent

numbers of specimens resulting in poorer model fit and

imprecise parameter estimates, (2) methods of greater

mathematical complexity can result in improved species

richness estimates, and (3) the effects of predictor vari-

ables on species richness are scale dependent.

Materials and Methods

Predictor variables

We chose topographic heterogeneity, annual mean temper-

ature, and mean yearly precipitation as potential environ-

mental drivers of species richness patterns, as these have

been identified by previous authors as important drivers,

both generally (Kreft and Jetz 2007) and in Ecuador (Skov

and Borchsenius 1997). Elevation data were downloaded

from the CGIAR Web site (20 September 2008, http://

srtm.csi.cgiar.org/) at 90 9 90 m resolution and used to

calculate topographic heterogeneity defined as range of ele-

vation. Mean annual temperature and annual precipitation
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data were downloaded from the WorldClim Web site (12

November 2011, http://www.worldclim.org/bioclim) at

1 9 1 km resolution (Hijmans et al. 2005).

Specimen and sample data

Georeferenced plant species specimens for Ecuador were

downloaded from the Botanical Information and Ecology

Network (BIEN) (Enquist et al. 2009; http://bien.ncea-

s.ucsb.edu/bien/). The data contain 205,735 specimens

from Ecuador of 15,788 species. All species names in the

BIEN database are taxonomically standardized and syn-

onyms updated to currently accepted names with the

Taxonomic Name Resolution Service (version 1; Boyle

et al. 2013), with Tropicos� as the taxonomic authority

(http://www.tropicos.org). Furthermore, all georeferenced

specimens in the BIEN database are geoscrubbed to

ensure high reliability of the coordinates.

Sampling effort was measured as the number of speci-

mens per sample (here defined as a grid cell) and com-

pared with the environmental variables effect on species

richness estimates. We assume that the relationship

between the true species richness and sampling effort is

weak and if an estimation method is successful in remov-

ing sampling bias, expectation is to see weaker correla-

tions between species richness and sampling effort than

between species richness and the environmental variables.

To further test the influence of sampling effort, we reran

the models on subsets of the data by excluding cells with

fewer than 20, 50, or 100 samples. However, this did not

significantly change the results of the regression analyses

and these results are only shown in the supplementary

material (Table S1 in Supporting Information).

To test the effect of grid size on relationships between

species richness and environmental drivers, species and

environmental data were rasterized and analyzed at differ-

ent grid cell sizes: 10 9 10, 25 9 25, and 50 9 50 km,

respectively. In the following, species richness at these

three scales is considered as comparisons of gamma diver-

sity. We discuss species richness patterns for Ecuador in

three major regions for comparison with other studies:

the central Andean region going through the middle of

Ecuador, the western coastal region, and the eastern Ama-

zonian region (Fig. 1). The characteristics of the regions

are thoroughly described by Jørgensen and Le�on-Y�anez

(1999). The georeferenced specimens were projected to

the Lambert Azimuthal equal-area projection to ensure

equal grid cell area, thereby avoiding area effects on spe-

cies richness estimates. Topographic heterogeneity and

temperature were highly correlated (Pearson’s r = �0.65

at 10 9 10 km scale) and were separated into two indi-

vidual multiple regression model sets, each combined

with precipitation and sampling effort. All GIS (packages

“Raster,” “rgdal,” and “sp”) and statistical operations

(packages “Hmisc,” “fossil,” “vegan,” and “spdep”) were

performed in R (R Core Team 2013).

Correcting sampling bias

The simplest method for estimating diversity is to calculate

species richness (Peet 1974). However, species richness is

highly influenced by sample effort and size (Hellmann and

Fowler 1999). Many different methods for correcting sam-

pling bias have been developed to estimate species richness.

Here we use seven different methods of varying complexity

to examine the extent to which application of these meth-

ods results in improved species richness estimates.

The Margalef richness index (Margalef 1958) is a sim-

ple method for correcting sampling bias derived from the

semi-log relationship first proposed by Fisher et al.

(1943) and following the formula:

Ŝ ¼
Sobs � 1

lnN

where Ŝ is the estimated species richness, Sobs is the num-

ber of species in a sample, and N is the total number of

specimens in a sample, here defined as a grid cell. The

Margalef index standardizes the number of species in a

sample in relation to the number of observations. How-

ever, the Margalef index has also been known to be sensi-

tive to the number of samples despite being meant to

correct for sampling bias (Gamito 2010).
Chao (Chao 1984) developed a nonparametric estimate

based on the following equation:

Ŝ ¼
Sobs þ S1

2

2S2

where Sobs is the observed species richness and S1 and S2
are the number of species with only one and two speci-

mens, respectively. Chao has been shown to seriously

underestimate the number of species for areas of high spe-

cies richness with low sampling (Ugland and Gray 2004).
Among the more computer-intensive methods are non-

parametric resampling procedures (Quinn and Keough

2002). One of these, the second-order Jackknife proce-

dure, estimates the species richness as a function of the

number of rare species in a sample by subsetting the data

without replacement to species with only one or two

specimens following the formula:

Ŝ ¼ Sobs þ
N � 1

N
� k

where Sobs is the observed species richness, N is the num-

ber of specimens within a sample, and k is the number of

rare species in the sample defined as the subset of species

with only one or two specimens (Heltshe and Forrester

1983).
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Efron (1981) first proposed the bootstrap estimator

where subsamples of size N are randomly selected from N

specimens with replacement (Hellmann and Fowler 1999)

following the formula:

Ŝ ¼ Sobs þ
XSobs

J¼1

1� YN
j

N

where Sobs is the total number of species, Yj is the num-

ber of specimens of species j, and N is the number of

specimens within a sample (Smith and Van Belle 1984).

Hill numbers can be used to estimate standardized spe-

cies richness with integrated curves that link rarefaction

and prediction on the basis of sampling completeness

(Chao et al. 2014) following the formula:

Ŝ ¼
XN

k¼1

E½fkðNÞ�

where E[fk(N)] is the expected number of species repre-

sented by exactly k specimens in a sample of N speci-

mens. Rarefaction curves tend to converge at low sample

sizes, which can result in imprecise richness estimates,

and consequently, samples with a low number of speci-

mens should be excluded (Gotelli and Colwell 2001).

However, setting the criterion of specimen size too high

will exclude many samples and the size of the subsample

should be a reasonable compromise (Jim�enez et al. 2009).

We chose to exclude cells with <100 specimens.

With rarefaction, a subsample of size n is drawn ran-

domly from the original sample and the expected species

richness is calculated as:

Ŝ ¼ 1�
N�Ni

n
N
n

where N is the number of specimens within a sample, n

is the number of specimens in the subsample, and Ni the

specimens of the ith species (Hurlbert 1971). For our rar-

efaction procedure, we estimated species richness for sub-

sets of data by excluding cells with fewer than 100, 500,

and 1000 samples and reran the regression models for

each of these subsets at all three spatial scales to evaluate

the influence of sampling effort.

As a measure of sampling completeness, we con-

structed smoothed species accumulation curves from

rarefaction with random subsampling for cells with at

least 100 specimens at the 50-km scale. Following Yang

et al. (2013), we used the slope of the last 10% of the

curve as a proxy of sampling completeness. A shallow

slope indicates saturation of species richness with sam-

pling, and we define grid cells with slope values ≤0.05

as well sampled and those with slope values >0.05 as

under-sampled.
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Figure 1. Sampling intensity across Ecuador at

three different scales. Sampling intensity was

calculated as the number of point observations

within a grid cell. Gray cells lack any

observations. Species observations were

projected to the Lambert Azimuthal equal-area

projection before being rasterized to avoid any

effect of area on species richness estimates.

Also shown is Ecuador with major roads and

the cities with major herbariums. The road and

cities layer was downloaded from the Global

Administrative Areas database (21 November

2013, www.gadm.org).
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Statistics

We analyzed the relation between the environmental driv-

ers and species richness with a set of multiple least

squares regression (OLS) and spatial autoregressive (SAR)

models. All variables were standardized before running

the analysis to allow direct comparison of parameter esti-

mates. Model performance was evaluated with the R2

value for OLS models and Nagelkerke’s pseudo R2 value

for SAR models (Nagelkerke 1991). Regression analyses

were repeated for each spatial resolution, 10 9 10,

25 9 25, and 50 9 50 km, to quantify the scale depen-

dency of parameter coefficients. SAR models were

included to account for spatial autocorrelation. Spatial

autocorrelation could be present in the response variable

(species richness) where the grids are considered indepen-

dent sampling units (Colwell et al. 2012), when in fact

cells in close proximity are likely to be more alike than

what is expected at random.

To further evaluate the relationship between species

richness and sampling effort, we calculated the pairwise

Pearson’s product-moment correlations between all the

different measures of species richness and the number of

specimens at all the different grid sizes.

Results

Spatial patterns of species richness

Spatial coverage, as indicated by the number of specimens

within a cell, improved with increasing grid cell size

(Fig. 1). The least sampled areas were the western coastal

region and the eastern Amazonian region. Species richness

showed a distinct spatial pattern across Ecuador, peaking

in the central Andean region and decreasing in the western

coastal and eastern Amazonian regions (Fig. 2). The same

spatial pattern was evident at all resolutions. The spatial

pattern of raw and estimated species richness mirrored the

spatial patterns of number of specimens (Figs. 1, 2), with

the exception of rarefied species richness (Fig. 3).

Species richness and environmental drivers

The models of species richness containing topographic

heterogeneity consistently performed better or as well as

the models based on temperature, and in the following,

we only present results derived from the models based on

topographic heterogeneity (see Table S2 for results from

the temperature models). Increased spatial coverage at

higher grid size was reflected in improved model fit

although the variable coefficients and R2 values in some

cases changed only slightly. Excluding under-sampled cells

did not affect the interpretation of the regressions, so we

only show results from the full dataset (see Table S1 for

results from the regressions with subsets of the data).

Both R2s for the OLS and pseudo R2s for the SAR models

increased (6–43%) with increasing grid size (Table 1).

The number of specimens per grid cell was consistently

the most important predictor variable of species richness

for the methods of least complexity. Topographic hetero-

geneity and annual precipitation had similar low-to-mod-

erate correlations with species richness for these methods.

The results of the rarefaction procedure differed from the

other methods by having lower R2s, but also by having

much higher relative coefficient values for the environ-

mental predictors and lower coefficient values for sam-

pling (Table 1). The relationships were also scale

dependent, and the effect of topographic heterogeneity

and annual precipitation increased with grain size with a

more than 50% increase going from 10 to 50 km. The

effect of sampling decreased with increasing scale, oppo-

site to what we found for the environmental predictors.

Performance of richness estimators

The correlation between the number of specimens and the

number of species was very high (Table 2) and equal or

only slightly lower for the sampling-bias-corrected richness

estimators compared to the raw species richness. The rich-

ness estimates of different methods were also highly corre-

lated (Table S3). The correlation between the number of

specimens and rarefied richness estimates was noticeably

lower than any other measure of species richness (average

Pearson correlation 0.40 for rarefied richness and 0.93 for

all other measures, Table 2). The number of species

increased almost linearly with number of specimens and

only slightly approximated an asymptotic decline at the 50-

km cell size (Fig. S1). Most species had only been sampled

a few times (95% <50 specimens, Fig. S2), and half the spe-

cies had <5 specimens (Fig. S2). Severe spatial under-sam-

pling was evident with even the best sampled cells having a

slope of >0.05 in the last 10% of the rarefied species accu-

mulation curves (Fig. 4). The richness estimators per-

formed similarly to the raw species richness in terms of

both model fit and P values of parameter estimates for the

richness–environment relations with the exception of rare-

fied species richness. The rarefied richness estimates had

poorer model fit, but a noticeably lower correlation with

sampling compared to the other sampling-bias-correction

methods as well as a stronger correlation with the environ-

mental predictors (Table 1).

Discussion

Identification of the underlying drivers behind geographic

patterns of species richness has long been a key research
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focus in ecology and biogeography (Hawkins et al. 2003)

but requires accurate species richness estimates. Here we

estimated species richness for a tropical biodiversity hot-

spot at three different spatial resolutions using seven dif-

ferent sampling-bias-correction methods. Species richness

across Ecuador showed a clear geographic gradient peak-

ing along the central Andean region (Fig. 2). However,

sampling effort was consistently the most important pre-

dictor of species richness at all scales, except for rarefac-

tion, indicating that the other methods are not able to

overcome the influence of variation in sampling intensity

(Table 1). This suggests that any geographic patterns

observed are strongly influenced by sampling and should

be interpreted with caution including correlations with

environmental predictors. Our results show that for data

of this kind rarefaction is the most reliable method for

species richness estimation.

Geographic patterns of species richness

The peak in species richness along the Andean region

(Figs. 1, 2) could be explained by the high topographic

heterogeneity in the area consistent with the hypothesis

that high topographic complexity promotes habitat diver-

sity and higher species richness (Distler et al. 2009). Cells

in the Andean region of Ecuador cover a highly complex

topographic area and are more likely to contain different

habitat types, which may in turn result in higher species
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Figure 2. Six measures of species richness at

10-, 25-, and 50-km grid cells. Species richness

was calculated as the raw number of species

within a grid cell, estimated with the Margalef

diversity index, the Chao estimator, the

bootstrapping and jackknife resampling

methods, and combined rarefaction and

extrapolation with Hill numbers (see Materials

and Methods for details). Gray indicates cells

lacking observations. Projection: Lambert
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richness numbers, when compared to the more flat

Coastal and Amazonian regions. The importance of topo-

graphic heterogeneity as a driver of species richness has

already been confirmed by results from other authors

(Gentry 1982; Kreft and Jetz 2007; Svenning et al. 2010).

However, the Andes is recognized as a biodiversity hot-

spot, mainly due to the high number of small-range ende-

mic species (Myers et al. 2000). Rahbek (1995) showed in

a meta-study, consisting of mainly unstandardized data,

that the elevation-richness gradient peaks at mid-altitude.

The decline with increasing elevation has been attributed

to increasingly unfavorable climatic conditions. The same

pattern had previously been found for a small subsample

of Ecuadorian plant species monographs with high species

richness at mid-altitude on both the eastern and western

sides of the Andes (Balslev 1988) and confirmed by a

country-wide inventory of all vascular plants (Jørgensen

and Le�on-Y�anez 1999).

Sparseness of specimens appears to obscure many

underlying patterns. The western coastal region of Ecua-

dor has very low numbers of specimens and species rich-

ness. Early deforestation in especially the central and

southern parts of this area is likely to have depleted the

natural vegetation and caused this pattern (Dodson and

Gentry 1991). The lowland tropical rainforest of the Ama-

zonian region has often been mentioned as an area of

extremely high species richness (Schulman et al. 2007). In

fact, the eastern tropical rainforests of Ecuador have been

shown to be the most species-rich part of the country

(Bass et al. 2010) with tree species richness alone reaching

>1100 for a fully censused 0.5 9 0.5 km plot (Valencia

et al. 2004). However, this pattern does not appear on

our maps of species richness, even though a large part of

Eastern Ecuador is lowland tropical rainforest. This area

is also characterized by being highly unaccessible, and it

is highly likely that the low species richness indicated on

our maps is a consequence of insufficient sampling. In

contrast, most of the best sampled areas are in close prox-

imity of the capital, Quito, which further emphasizes the

effect of accessibility on sampling effort (Fig. 4) and sup-

ports results from other studies (Reddy and Da 2003; Loi-

selle et al. 2007). This result is also not surprising

considering our cells showed no sign of having reached

the asymptote on the species accumulation curve (Fig. 4).

This issue is particularly visible in the highest resolution

maps at the 10-km scale, which shows large areas of both

regions without any specimens at all (Fig. 2), particularly

for rarefied richness (Fig. 3). We also see a concentration

of specimens around the other two cities with major her-

bariums, Loja and Guayaquil (Fig. 1), indicating an effect

of higher sampling by experienced botanists (Bebber et al.

2012). Despite strong evidence for sampling bias affecting

the patterns of species richness here, we also consider at

least part of the spatial pattern is caused by true differ-

ences in species richness. The scale of this study allows

for comparison of gamma diversity, which is expected to

be relatively high in the Andes due to high beta diversity,

that is, species turnover caused by the heterogeneous
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was calculated as the raw number of species

within a grid cell, estimated with the

criterion of >100, >500, and >1000

observations per cell at each scale (see

Materials and Methods for details). Gray

shows cells lacking observations. Species

observations were projected to the Lambert

Azimuthal equal-area projection before being

rasterized to avoid any effect of area on

species richness estimates.
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environmental conditions. The Amazonian basin has

comparably lower beta diversity and, therefore, also

gamma diversity, caused by lower environmental hetero-

geneity. This pattern is confirmed by a count of all her-

barium specimens from Ecuador which found that twice

as many species were registered in the Andean region

(Jørgensen and Le�on-Y�anez 1999). This difference is also

seen in our maps, but it is nevertheless clear that the

coastal and Amazonian regions are under-sampled as

evidenced by the many grid cells with no or only a few

samples.

Estimator effect on drivers of species

richness

We found a strongly scale-dependent relationship

between environmental drivers and species richness.

Topographic heterogeneity was positively correlated with

species richness and consistently increased in importance

with increasing grain size to be the strongest environ-

mental predictor at the 50-km scale (Table 1). We also

found a positive correlation between species richness

and annual precipitation, but the strength of the rela-

Table 1. Standardized parameter estimates from OLS and SAR models (model set 1).

Topography Precipitation Sampling r2

OLS SAR OLS SAR OLS SAR OLS SAR

Raw

10 0.07*** 0.07*** 0.07*** 0.08*** 0.92*** 0.90*** 0.88 0.88

25 0.13*** 0.13*** 0.09*** 0.09*** 0.92*** 0.91*** 0.94 0.94

50 0.24*** 0.24*** 0.16*** 0.16*** 0.85*** 0.84*** 0.94 0.94

Margalef

10 0.11*** 0.10*** 0.11*** 0.11*** 0.86*** 0.84*** 0.79 0.80

25 0.18*** 0.18*** 0.13*** 0.13*** 0.88*** 0.86*** 0.89 0.90

50 0.30*** 0.31*** 0.20*** 0.21*** 0.79*** 0.78*** 0.91 0.91

Chao

10 0.15*** 0.14*** 0.20*** 0.20*** 0.61*** 0.60*** 0.45 0.45

25 0.30*** 0.22*** 0.26*** 0.27*** 0.66*** 0.65*** 0.61 0.61

50 0.35*** 0.36*** 0.27*** 0.29*** 0.74*** 0.73*** 0.88 0.88

Bootstrap

10 0.08*** 0.07*** 0.07*** 0.08*** 0.92*** 0.90*** 0.87 0.87

25 0.14*** 0.14*** 0.01*** 0.10*** 0.92*** 0.90*** 0.93 0.93

50 0.25*** 0.25*** 0.16*** 0.17*** 0.84*** 0.83*** 0.93 0.93

Jackknife

10 0.11*** 0.11*** 0.13*** 0.15*** 0.84*** 0.82*** 0.75 0.76

25 0.19*** 0.19*** 0.16*** 0.17*** 0.86*** 0.84*** 0.87 0.87

50 0.33*** 0.34*** 0.24*** 0.25*** 0.76*** 0.75*** 0.89 0.89

Hill

10 0.12*** 0.15*** 0.20*** 0.23*** 0.85*** 0.83*** 0.77 0.78

25 0.16*** 0.16*** 0.17*** 0.17*** 0.90*** 0.89*** 0.89 0.89

50 0.29*** 0.29*** 0.22*** 0.23*** 0.80*** 0.80*** 0.91 0.91

Rarefied

>100

10 0.21*** 0.28*** 0.41*** 0.46*** 0.25*** 0.23*** 0.20 0.22

25 0.41*** 0.41*** 0.50*** 0.50*** 0.28*** 0.28*** 0.34 0.34

50 0.55*** 0.56*** 0.56*** 0.55*** 0.25** 0.25** 0.52 0.52

>500

10 0.08 0.19 0.20 0.33* 0.31** 0.31** 0.13 0.16

25 0.39*** 0.39*** 0.54*** 0.54*** 0.39*** 0.38*** 0.40 0.40

50 0.63*** 0.63*** 0.57*** 0.61*** 0.32*** 0.34*** 0.56 0.56

>1000

10 0.32 0.31 0.35 0.32 0.31 0.31 0.20 0.20

25 0.42* 0.43** 0.44* 0.46* 0.39** 0.38*** 0.31 0.32

50 0.71*** 0.71*** 0.67*** 0.67*** 0.37** 0.36*** 0.43 0.43

Standardized parameter coefficients from OLS and SAR regressions for seven measures of species richness, each modeled at three different resolu-

tions (10, 25, and 50 km). Topography refers to topographic heterogeneity, precipitation is annual precipitation, and sampling is the number of

herbarium specimens. Also shown are the r-squared values from the OLS models and the Nagelkerke pseudo r-squared values from the SAR mod-

els. For sample sizes (number of cells), see Table 2. *P < 0.05, **P < 0.01, *** P < 0.001.
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tionship was slightly lower than for topographic hetero-

geneity. Sampling effort per grid cell was consistently a

strong predictor of species richness (up to 24 times

higher than the environmental predictors) across all spa-

tial scales (Table 1) and is likely to be more important

than real scale dependence of environmental drivers

when using this kind of data. This can explain why we

for most methods we did not see the strong effect of

the environmental predictors that has been found in so

many other studies and for different scales (Gentry

1988; Field et al. 2009). Underestimation of the

importance of environmental predictors when sampling

bias has strong effects on species richness estimates is

likewise reported in a study from China (Yang et al.

2013).

Performance of richness estimators

Our results show sampling effort to be the strongest predic-

tor of variation in plant species richness in Ecuador with

the exception of rarefied species richness estimates

(Table 1). We also found a high correlation (0.86–0.96)

between the number of specimens per grid cell and esti-

mated species richness across all scales for the nonrarefac-

tion methods (Table 2). This shows that the other methods

we used are under most circumstances unable to remove

the effect of sampling bias, resulting in unreliable species

richness estimates. This finding is supported by our plots

of species richness as a function of the number of observa-

tions (Fig. S1). The expected relationship would be an

asymptotical decline of species richness as sampling reaches

a level of saturating species richness (Colwell et al. 2012).

Looking at the raw species richness as grain size and num-

ber of specimens increase, the relationship only slightly

approximates an asymptote, indicating that even at the

coarsest scale, Ecuador is greatly under-sampled despite

having a very high overall collection density. The plots of

the Margalef-, Bootstrap- and Jackknife-estimated species

richness show an almost identical relationship to what we

found for raw species richness. This confirms the inability

of most of these methods to remove the sampling bias in

our data and leads us to recommend rarefaction for species

richness estimation based on herbarium specimens. The

models with rarefied richness did have the lowest model

performance of all the richness estimators. However, this is

likely caused by the much lower sample size for this estima-

tor, as relatively few cells had enough observations to be

included in the analysis (Figs. 3, S3 and Table 2). Interest-

ingly, rarefaction was the only method resulting in stronger

effects of environmental predictors than sampling effort on

species richness (Table 1). Furthermore, the correlation

between the number of specimens and estimated species

richness was also lower for the rarefied richness estimates

than any of the other methods (Table 2). This indicates

that rarefaction is the only one of our chosen methods to

effectively reduce the impact of sampling bias in this type

of dataset.

Insufficient and uneven sampling remains a major

impediment to understanding the patterns and determi-

nants of species richness in the world’s biodiversity hot-

spots, even for a relatively well-sampled country such as

Ecuador. Sampling was inadequate at all scales, and

strong geographic biases in sampling intensity limited our

ability to compare regions or assess the influence of envi-

ronmental predictors on species richness. Spatial coverage

could be greatly improved by focussing sampling efforts

in the western coastal and eastern Amazonian regions of

Ecuador; especially more generalized sampling is needed

to improve the data as most species were greatly under-

sampled and had fewer than 20 specimens (Fig. S2). In

particular, establishment of a network of plots or tran-

sects with complete registration of all vascular plants

could greatly improve our understanding of alpha, beta,

and gamma diversity. Although this process is very costly

and time-consuming, the gained knowledge would be well

worth the effort as plot richness can be used to extrapo-

late species richness at larger scales (Plotkin et al. 2000).

Even for the best sampled cell, we found evidence of

severe under-sampling (Fig. 4A, slope of last 10% = 0.1).

This leads us to conclude that much more sampling or

different methods are needed before we can provide reli-

able richness estimates for Ecuador or any other country

with similar or worse data situations.

Table 2. Pearson correlation between richness estimates, raw rich-

ness, and observations.

Observations Richness

10 25 50 10 25 50

Raw 0.93 0.96 0.95 1 1 1

Margalef 0.88 0.93 0.92 0.99 0.61 0.44

Chao 0.90 0.94 0.95 0.80 0.38 0.24

Bootstrap 0.93 0.96 0.95 1.00 0.59 0.42

Jackknife 0.93 0.96 0.95 1.00 0.59 0.41

Cells 1845 425 125 1845 425 125

Hill 0.86 0.93 0.93 0.98 0.99 1.00

Cells 465 259 103 465 259 103

Rarefied

>100 0.28 0.38 0.47 0.50 0.52 0.61

Cells 465 259 103 465 259 103

>500 0.33 0.46 0.51 0.69 0.69 0.71

Cells 82 103 73 82 103 73

>1000 0.32 0.44 0.42 0.75 0.78 0.68

Cells 27 53 54 27 53 54

Correlations between seven measures of species richness and number

of observations and raw species richness for three different grid sizes.

Cells show the sample size (here the number of grids cells).
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The strong and persistent relationship between species

richness and sampling intensity most likely reflects strong

sampling biases, with severe under-sampling in many

areas and associated strong Wallacean and perhaps Lin-

naean shortfalls – even when standard measures intended

to correct for such biases are employed. An alternative

explanation would be that the best sampled areas are also

the areas with the highest species richness and vice versa.

(B)(A)

(C) (D) Figure 4. Inventory completeness across

Ecuador. Inventory completeness was

calculated as the slope of the last 10% of

species accumulation curves for grid cells with

at least 100 samples at the 50-km grid scale. A

slope >0.05 indicates insufficient sampling

which is evident for all cells. (A–D) show

species accumulation curves for four select

cells with (A) and (B) being the cells with the

highest number of samples and (C) and (D)

being the cells with the number of samples

closet to the median. Projection: Lambert

azimuthal equal-area.
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This scenario is not entirely unlikely, as especially taxo-

nomic collection activities are often concentrated in areas

known to be species rich. However, many years of

research in Yasun�ı National Park located in the lowland

tropical Amazonian rainforest of eastern Ecuador have

identified this area as the most diverse region in Ecuador

(Bass et al. 2010), a pattern confirmed by stacking species

distribution modeling (Mateo et al. 2013), but this area

was on our maps characterized by low species richness

for the 10-km scale with many unsampled cells (Fig. 1).

The effect of accessibility was also clear in our study with

observations being clustered in close proximity to roads

and major cities (Figs. 1, 5).

The challenges associated with estimating species rich-

ness from georeferenced specimens have shifted attention

to alternative methods. One alternative is estimation of

species richness by stacking species distribution maps

(Dubuis et al. 2011). This approach has proven very suc-

cessful in producing reliable species distribution maps

even from a limited number of specimens (Loiselle et al.

2007), but is also not without its own issues. Data on

most species, especially in the tropics, consist of only few

presence records making species distribution modeling

difficult or impossible (Elith et al. 2006). Although mod-

eling many species simultaneously is currently time-con-

suming and computationally intensive, technological

advances may soon render this issue obsolete (Geen et al.

2005). However, species distribution modeling remains

dependent on the underlying environmental predictors,

which have been shown to be strongly scale dependent

(McGill 2010), and whose selection may be subjective.

Still, species distribution modeling is a valuable supple-

ment to species richness estimations from georeferenced

specimens, and databases of species distribution maps

(e.g., BIEN 2013; http://bien.nceas.ucsb.edu/bien/; Map of

Life, www.mappinglife.org) offer a valuable alternative for

the estimation of species richness patterns. However, a

lack of primary occurrence data remains the biggest

impediment to understanding of the world’s biodiversity,

and therefore, it is vital to continue sampling in areas

identified as under-sampled and to update existing data

with new records (Beck et al. 2012).

Conclusion

In conclusion, bias resulting from variation in sampling

effort highly affected estimation of plant species richness

across Ecuador, even when standard measures intended to

correct for such bias were employed. Sampling effort

overshadowed the effect of environmental predictors as

the dominant richness predictor for most of the estima-

tors used. Rarefaction was the only method to remove at

least some of the effect of sampling bias. To attain reliable

species richness estimates for tropical biodiversity hot-

spots, more primary sampling of species occurrences will

be required to overcome the Wallacean and Linnaean

shortfalls and enhance the usefulness of existing “big

data” collections for synthetic research.
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