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Abstract
This paper proposes a framework of applying only the EGG signal for speech synthesis in the limited categories of contents
scenario. EGG is a sort of physiological signal which can reflect the trends of the vocal cord movement. Note that EGG’s
different acquisition method contrasted with speech signals, we exploit its application in speech synthesis under the
following two scenarios. (1) To synthesize speeches under high noise circumstances, where clean speech signals are
unavailable. (2) To enable dumb people who retain vocal cord vibration to speak again. Our study consists of two stages,
EGG to text and text to speech. The first is a text content recognition model based on Bi-LSTM, which converts each EGG
signal sample into the corresponding text with a limited class of contents. This model achieves 91.12% accuracy on the
validation set in a 20-class content recognition experiment. Then the second step synthesizes speeches with the correspond-
ing text and the EGG signal. Based on modified Tacotron-2, our model gains the Mel cepstral distortion (MCD) of 5.877
and the mean opinion score (MOS) of 3.87, which is comparable with the state-of-the-art performance and achieves an
improvement by 0.42 and a relatively smaller model size than the origin Tacotron-2. Considering to introduce the charac-
teristics of speakers contained in EGG to the final synthesized speech, we put forward a fine-grained fundamental frequency
modification method, which adjusts the fundamental frequency according to EGG signals and achieves a lower MCD of
5.781 and a higher MOS of 3.94 than that without modification.
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1 Introduction

In 1970, Fant [1] set up the Source-Filter model, a classical
acoustic modeling method, which provided a promising ap-
proach to conduct speech synthesis researches. The Source-
Filter model represented speeches as the combination of a
source and a linear acoustic filter, corresponding to the vocal

cords and the vocal tract (soft palate, tongue, nasal cavity, oral
cavity, etc.), respectively.

Electroglottograph (EGG) records electrical impedance in
the glottis collected by electrodes situated on the throat and
can reflect the vocal cord movement. When the vocal cord
closes, the contact area between the two cords reaches its max-
imum, which leads to the lowest resistance and highest collect-
ed voltage in EGG. Conversely, when the vocal cord opens, the
lowest collected voltage will be collected [2]. Figure 1 illus-
trates the waveform of a EGG signal sample. Phase 1, 2, 3, 4
represent the closing phase, maximum contact, opening phase
and open but no contact phase, respectively. Depending on the
periodical change of the amplitude of EGG signals during
speaking, we can mark pitching and obtain the source informa-
tion, which has been researched by Hussein [3].

In respect that EGG is directly collected from throat, there
are two definite superiority of the speech analysis based on the
EGG: 1. It is not affected bymechanical vibration and noise so
it is suitable to apply in the ultra-high noise environment; 2. It
can accurately reflect the vocal cord vibration state
information.
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As the EGG signal highly corresponds to speaking, lots of
researches have been carried out about EGG. Aiming at ex-
ploring the characteristics of EGG signals, Paul figured out
that some features, such as gender, vowel, and phonatory reg-
isters can be extracted from the EGG signal [4]. Lu discussed
the relationship between EGG and emotions [5]. Alberto eval-
uated EGG signal variability by amplitude-speed combined
analysis [6]. As for utilizing EGG signals, Chen proposed a
speech emotional features extraction method based on EGG
[7]. Michal Borsky utilized EGG signal as a feature type to
investigate its performance for voice quality classification task
[8]. Sunil Kumar put forward a robust method to detect glottal
activity using the phase of the EGG signal [9]. Liu compared
the parametrization methods of EGG signals in distinguishing
between phonation types [10]. Lebacq analyzed the dynamics
of vocal onset through the shape of EGG signals [11]. Filipa
discovered the immediate effects of using a flow ball device
for voice exercises, which can assist voice training [12].

Focusing on speech synthesis researches, traditional speech
synthesis aims at utilizing the information of the raw speech to
recover it, which consists of waveform synthesis method, rule-
based synthesis method, and synthesis method based on pa-
rameters. Waveform synthesis mainly refers to edit and joint
waveform, which has limited performance. The rule-based
synthesis method produces speeches through phonetic rules.
Belonging to it, PSOLA is a representative algorithm for
waveform splicing and prosody control [13]. However, this
method requires a large volume of sound libraries, making it
difficult to be applied to portable devices. The parameter-
based synthesis method mainly refers to speech synthesis with
acoustic features. Lots of well-known synthesis systems im-
plemented this method such as Klatt series-parallel formant
synthesizer [14], LPC [15], LSP [16], and LMA [17].

Additionally, char2wav [18], straight [19], WORLD [20],
vocaine [21], Mel spectrum [22] and other models have also
achieved good results.

Speech synthesis with the deep learning method seeks to
convert text to speech, which is mainly achieved by extracting
deep features. Oord [23] proposed a deep neural network
model named WaveNet for generating original audio wave-
form signals. In 2017, Baidu put forward deep voice [24],
which replaced the traditional method with the neural network
at different levels, and applied the WaveNet model to the final
speech synthesis module. Another widely-used model named
Tacotron [25] was proposed by Google, which is an end-to-
end generative text to speech model and achieves to directly
learn the mapping between the text and speech pair. Later,
Baidu launched deep voice2 [26] and deep voice3 [27] to
improve and modify the previous generation model. Then,
based on Tacotron, several improvements have been put for-
ward to tackle different problems, in particular focus on spe-
cific characteristics when dealing with other languages. In
Japanese text-to-speech (TTS) tasks, Yasuda [28] included
self-attention to Tacotron to capture long-term dependencies
of pitch accents. Liu [29] designed a distillation loss function
to modify the feature loss function and proposed a teacher-
student training scheme based on Tacotron to solve the expo-
sure bias problem. To improve the naturalness and tackle the
prosodic problems in Mandarin TTS, several solutions have
also been figured out. Yang [30] proposed SAG-Tacotron
which replaced the CBHG encoder of Tacotron with the
self-attention-based one and utilized learnable Gaussian bias
to enhance localness modeling and overcome the problem of
self-attention’s dispersing the distributions of attention.
Another popular direction is to design an extra front-end, re-
alized by Lu [31] who proposed a text enhancing method and
tried to leverage previous phrasing models and larger text
database at the same time, and Pan [32] who set up a unified
front-end to solve polyphone disambiguation and prosody
word prediction. However, as all the speech synthesis
methods mentioned above are text-to-speech, it is not suitable
to generate personalized speech in our application scenario.

Attending to the inherent superiority of EGG, we have
made efforts to collect EGG and speech signals simultaneous-
ly ant built up a database named Chinese Dual-mode
Emotional Speech Database (CDESD [33]), which provides
a basis for the research of EGG, especially in the Mandarin
speech research. In our previous study, we have proved that
EGG signals can be used in text content recognition [34]. Two
long Chinese sentences with different contents often vary in
the vocal cord movement, which can be reflected by the EGG
signal. Thus, it is reasonable to convert the EGG signal into
one sentence under the condition of limited class of contents.
We extracted the fundamental frequency (F0 ), the relative
difference of F0 (diffF0 ) and log short-term energy (logE)
from the EGG signal in every frame to combine into a feature

Fig. 1 the waveform of EGG. Phase 1: the closing phase; Phase 2:
maximum contact; Phase 3: opening phase; Phase 4: open but no
contact phase

15194 L. Chen et al.



vector sequence, and fed in a 3-layer bidirectional LSTM
(Long Short-TermMemory [35]) to convert the sequence into
one of 20-class of sentences with different contents. This re-
search archived to recognize the text from some specific clas-
ses of sentences through the EGG signal and provided support
on our task of speech synthesis with EGG signals.

Based on our previous study, which has proved that EGG
signal can be classified into the text in the scenario of limited
contents, we now propose a framework to synthesize person-
alized speeches utilizing EGG signals. Compared to speech
signals, EGG signals have the following two superiority under
our application scenarios. (1) clean EGG signals can be col-
lected in high noise circumstances, where clean speech signals
can not. (2) To enable patients who retain vocal cord vibration
but lose the ability to produce voice to speak again. It must be
highlighted that to our knowledge, this is the first attempt to
utilize EGG signals into Tacotron-2.

This paper is organized as follows. In Section 2, our
methods andmaterials are introduced. In Section 3, we discuss
the results of our models and the comparison experiments we
have conducted. Section 4 makes conclusions and points out
the expected future works.

2 Methods and materials

2.1 Methods

This paper proposes a framework of applying only the EGG
signal for speech synthesis in the limited categories of con-
tents scenario. Our framework consists of a text content rec-
ognition model with the EGG signal and a speech synthesis
model with the text and EGG signal. Figure 2 is the overall
structure of our entire framework. The function of the text
content recognition model is to get text recognition results of
the EGG signal input, which is essential for speech synthesis.
Then, the speech synthesis model produces speech with the
EGG signal and its text recognition result. Based on Modified

Tacotron-2, three features (fundamental frequency, spectrum
envelope, and aperiodic parameter) are extracted from the text
recognition result. To utilize the information contained in
EGG signals and synthesize personalized speeches, we choose
WORLD as the vocoder and put forward a fine-grained fun-
damental frequency modification method to obtain the modi-
fied fundamental frequency. Finally, speech is synthesized by
the WORLD vocoder according to three features.

2.1.1 Text content recognition model with the EGG signal

In our previous study, we have set up a text content recogni-
tionmodel for getting the text recognition result from the EGG
signal, proposed in the article [34]. So we just briefly intro-
duce our method here.

Figure 3 is the structure of our text content recognition
model, which consists of an EGG feature extraction module
to obtain the feature vector sequence from the whole EGG
signal and a recognition network to get the recognition result
of the feature vector sequence.

As Fig. 3 depicts, the EGG feature extraction module con-
sists of three parts, voiced segments extraction part, feature
extraction part, and smoothing part. When setting about EGG
signals, we firstly extract voiced frames from the EGG signal
to avoid the unvoiced segments’ influence. Considering that
the change of the pitch varies greatly from each other for two
long sentences, we choose three parameters as features: the
fundamental frequency (F0 ), the relative first-order difference
of F0 (diffF0 ) and the log short-term energy (logE). Between
them, F0 is a commonly-used parameter to characterize vocal
cord vibration. The extraction of F0 is based on the periodical
change of the amplitude of EGG signals, which is estimated
by the auto-correlation method as follows:

F0 ¼ fs
fs

fmax
�k� fs

fmin
argmax

PN�1�k

m¼0
xEGGðmÞxEGGðmþkÞ ð1Þ

where fs is the sampling rate. fmax and fmin are the maximum and
minimum of the F0, respectively.

Fig. 2 The flow chart of our framework
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diffF0 indicates the change of F0 over time, which is
naturally calculated as equation (2). The log short-term energy
(logE) is included to characterize the stress distribute of the
EGG signal.

diffF0ðiÞ ¼ F0ðiþ1Þ�F0ðiÞ
F0ðiÞ ð2Þ

where F0ðiÞ and diffF0ðiÞ are respectively F0 and the relative
first-order difference of F0 at the frame i.

As the method of F0 extraction will cause erroneous
values [36], F0 smoothing is required. We adopt the
smoothing method with bidirectional searching proposed
by Jun et al [37], which combined interpolation and mean
filtering according to a normalized F0 in every segment.
Compared with the traditional median filter, bidirectional
searching achieves better performance on F0 smoothing
according to our experiment.

Through feature extraction module, a feature vector se-
quence is prepared, which contains 504 frames and 3 features
at every time step. Next, we feed the feature vector sequence
in our recognition network. Figure 4 illustrates the structure of
our recognition network.

As Fig. 4 shows, our recognition network consists of an
encoder and a classifier. The encoder extracts contextual
information from the feature vector sequence and generates
a contextual vector. Then the classifier converts the con-
textual vector into an index that can search the sentence
from 20-class of contents dictionary. For reasons of the
superior performance of LSTM in sequence processing
tasks, we select Three-layer Bi-LSTM [38] as our encoder,
which has proved effective according to our comparative
experiment. Through the encoder, the forward and back-
ward output are concatenated to obtain the last encoded
vector. Then the classifier generates a probability vector
by feeding the contextual vector into the fully connected
layer and the softmax operator.

2.1.2 Speech synthesis model with the EGG signal
and the text

After the text content recognition model, we have obtained
corresponding texts from EGG signals. The next step is to
synthesize speeches utilizing the texts and EGG signals. Our
speech synthesis model consists of the same EGG feature
extractionmodule to extractF0 and a Chinese speech synthesis
model to synthesize speeches. Besides, to contain the personal
characteristic into synthesized speech utilizing EGG signals,
we propose a fine-grained fundamental frequency modifica-
tion method. Figure 5 is the overall flow chart of our speech
synthesis model.

The principle and details of the EGG feature extraction
module have been discussed in 2.1.1, we reuse it here to obtain
F0 to work in the fine-grained fundamental frequency modi-
fication method. As for the Chinese speech synthesis module,
it consists of three parts, text frontend, acoustic model and
vocoder. Next we introduce these parts as well as our pro-
posed F0 modification method as follows.

Text Frontend The function of the text frontend is to classify
the input characters and encoder into a limited number of
classes to reduce the difficulty in training the acoustic model.
When focusing on the Mandarin TTS task, it means to convert
a sequence of Chinese characters into smaller text modeling
units, like a sequence of pinyin or phones.

To explore which text modeling unit is optimal between
pinyin and phone, we conduct comparative experiments based
on pinyin and phone, respectively. Specifically, pypinyin li-
brary is used to convert Chinese characters into pinyin and a
pinyin-to-phones dictionary is set up through the mapping
between pinyin and phone sequence in the Chinese speech
synthesis dataset. Compared with 4103 classes of Chinese
characters, we squeeze the number into only 1609 of pinyin
and 263 of phones after the text frontend.

Fig. 3 The structure of our text
content recognition model
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Acoustic Model The function of the acoustic model is to es-
tablish the mapping between text modeling units. Our acoustic
model is based on Tacotron-2 [39] and modified with
depthwise separable convolution to decrease the model size.
Our model replaces all the convolutions in the Tacotron-2
model with depthwise separable convolutions.

Tacotron-2 is an end-to-end TTS model. The core of
Tacotron-2 is the acoustic model, shown in Fig. 6, which

comprises an encoder, a decoder and a postprocessing module
(PostNet). In the encoder, the text modeling unit sequence is
converted into a dense vector through character embedding.
This dense vector is input into a 3-layer 1-dimensional
convolutional layer to simulate the language model and then
feed in a 2-layer Bi-LSTM to obtain an encoded vector.

In terms of the decoder, an attention weight vector is cal-
culated based on the encoder output. Two types of attention,

Fig. 4 The structure of the recognition network

Fig. 5 The structure of the speech
synthesis model
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content attention and position attention, are applied here.
Content attention focuses on the correlation between the de-
coder’s hidden vector at a certain time step and the encoder’s
at each time step, while position attention figures out the cor-
relation between the decoder’s attention weight vector at a
certain time step and the encoder’s hidden vector at each time
step. Attention scores are calculated by fully connected layers,
defined in the following equation:

eij ¼ scoreðsi; cai�1; hjÞ ¼ vTa tanhðWsi þ Vhj þ Ufi þ bÞ
ð3Þ

where W, V, U and b are the parameters that fully con-
nected layers learn. si is the hidden state of the decoder at
the current time step i. hj is the hidden state of the encoder
at time step j. cai indicates the accumulation of attention
weight vector aj calculated by equation (4) and fi is
convoluted by cai , shown in equation (5). The attention
weight vector aj in equation 4 is a composition of the
attention weight coefficient, aj ¼ ½aj1; aj2; � � � ; ajS �. By cal-
culating cai, the attention weight network can acquire the
attention information which has been learned, so that the
model could avoid repeating the unexpected speech.

cai ¼
Pi�1

j¼1 aj ð4Þ
fi ¼ F � cai ð5Þ
After calculating the attention score (eij ), the attention
weight coefficient aij can be figured out by softmax, as
equation (6). Finally, the output of attention module, the
context vector ci can be generated by accumulating the
product of aij and the hidden state of the encoder hj, shown
in equation (7).

aij ¼ expðeijÞPs

k¼1
expðeikÞ ð6Þ

ci ¼
PS

j¼1 aijhj ð7Þ

The input of preprocessing network (PreNet) are acoustic fea-
tures, and the teacher forcing criterion works in the training
phase. The output of PreNet and the context vector calculated
from the last decoding time step are input into the 2-layer
LSTM decoder. Meanwhile, the context vector is generated
by the decoder’s output combined with the attention weight of
the last decoding time step. This process forms a cycle. The
final output is predicted by the linear projection of the
concatenated vector of decoder output and the context vector.
There are two forms of output, one is the acoustic feature, the
other is the stop token probability, of which the latter is a
binary recognition task, determining whether the decoding
process ends. Besides, the acoustic features of p frame (p > 1 )
are predicted at each time step to speed up calculation and reduce
memory consumption.

Considering PostNet, 5-layer convolutional layers and re-
sidual connections are combined to refine the predicted acous-
tic features.

We design the loss of our acoustic model to include the
following four parts: (a) The mean square error between
target acoustic features ytarget;i and predicted ones without
post-processing yprev;i. (b) The mean square error between
target acoustic features and predicted features with post-
processing ypost;i . (c) The cross-entropy loss between the
one-hot vector of the target stop token Starget and the
probability vector of the predicted stop token Sprediction .
(d) TheL2 regularization loss (λ ¼ 10�6 ). The loss function
is defined as equation (8):

loss ¼ MSEðytarget;i; yprev;iÞ þMSEðytarget;i; ypost;iÞ
þCEðStarget; SpredictionÞ þ λ

Pp
j¼1 w

2
j

ð8Þ

Additionally, to reduce the size of our model, we modify
the baseline Tacotron-2 introduced above and replace the
regular convolution with the depthwise separable convolu-
tion in our model. The depthwise separable convolution
originated from Xception [40] and MobileNet [41]. This

Fig. 6 The structure of the acoustic model
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method is widely used to substitute the regular convolution
to reduce the number of parameters as well as the model
size, sometimes enables the model to converge faster [42].

Figure 7 illustrates the principle of the regular convolution.
Concretely, for the 2-dimensional regular convolution, each
convolution kernel squeezes all channels of the input feature
map into a one-channel output feature map. Then all one-
channel output feature maps are concatenated into an output
with a given number of channels.

The 2-dimensional depthwise separable convolution com-
prises the depthwise convolution and pointwise convolution.
On the depthwise convolution phase, each convolution kernel
goes through a channel of the input feature map to generate
CM (channel multiplier, CM � 1 ) channels of output. On the
pointwise convolution phase, all the channels of the depthwise
convolution output are feed in a 1 � 1 pointwise convolution
to generate one-channel output. Finally, all one-channel out-
put feature maps are combined to produce an output with a
given number of channels. Figure 8 depicts the principle of the
depthwise separable convolution.

According to Fig. 8, the number of parameters of the
depthwise separable convolution is calculated as the following
equation.

Nsc ¼ kh � kw � Cin � CM þ Cin � Cout � CM ð9Þ
The ratio of the number of parameters between these two
methods is shown in equation (10), which proves that the
depthwise separable convolution has much fewer parameters
than the regular.

Nsc
Nrc

¼ CM
Cout

þ CM
kh�kw

ð10Þ

Considering that all the convolutions in Tacotron-2 are 1-di-
mensional. To utilize depthwise separable convolution, we
expand all the feature maps with a height dimension.
Concretely, we change the shape from 2-dimensional normal
structure T �W : T � d to 3-dimensional normal structureH
�W � C : 1� T � d . Afterward, we set kh to 1, kw to the
number of time steps, and Cout to the dimension of features at
each time step. Finally, we remove the height dimension to
obtain the 2-dimensional normal structure (H �W � C : 1
�T � d ! T �W : T � d ).

Vocoder The function of the vocoder is to generate the speech
according to acoustic features. Wavenet, the default vocoder in
Tacotron-2, is utilized in the process of synthesizing the original
speech. But to synthesize the personalized speech with the aid of
the EGG signal, we require a vocoder that utilizes the F0, so we
chooseWORLD in our framework. WORLD vocoder generates
the speech according to theF0, spectrum envelope, and aperiodic
parameter. Among them,F0 is used as the periodic excitation and
the aperiodic parameter as the aperiodic excitation to constitute
the mixed excitation signal e(n). The spectrum envelope simu-
lates the resonance part of the vocal tract through the minimum
phase response h(n). The synthesized speech signal is figured out
by the convolution of these two signals. Figure 9 is the principle
of the WORLD vocoder.

Fine-grained fundamental frequency modification method
To utilize the speaker’s characteristics contained in the EGG
signal and synthesize personalized speech, a fine-grained fun-
damental frequency modification method is proposed. We de-
sign both the paralleled path, which means the EGG signal
corresponds to the text, and the unparalleled path, which

Fig. 7 The principle of the regular convolution
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means the EGG signal indicates a different context from the
text. Figure 10 depicts the principle of our fine-grained fun-
damental frequency modification method.

For the unparalleled path, as the waveform between F0EGG

and F0Speech;old is different, we apply the coarse-grained funda-
mental frequency modification method to synthesize personal-
ized speech. As the average value of theF0 describes the pitch of
the speaker, we calculate the ratio of the average value of the F0

of the EGG signal and the original F0 feature as equation (11)
shows and set this ratio as the modified scale to adjust theF0 and
spectrum envelope of the acoustic features predicted by
Tacotron-2 point by point. The adjustment equations are defined
as follows.

R ¼ F0EGG

F0 feature
ð11Þ

F0personalizedðiÞ ¼ R� F0featureðiÞ ð12Þ
Specpersonalizedði; kÞ ¼ Specfeatureði; ½kR�Þ ð13Þ

where R is the coarse-grained adjustment ratio.F0EGG,F0feature is
the average value of the F0 of the EGG signal and the original
synthesized speech, respectively.F0featureðiÞ,F0personalizedðiÞ is the
i� th frame of the F0 of the original synthesized speech and the
newly synthesized speech with adjustments, respectively.
Specfeatureði; kÞ , Specpersonalizedði; kÞ is the i� th frame and the
k � th frequency sampling point of the spectrum envelope of the

original synthesized speech and the newly synthesized speech
with adjustments, respectively.

By adjusting the overall range of F0 and re-sampling the
frequency axis to adjust the spectrum envelope, we can syn-
thesize personalized speech contained speaker’s characteris-
tics by the WORLD vocoder.

For the paralleled path, asF0EGG andF0feature correspond to the
same context, their waveforms are similar to each other and can
be aligned. So we put forward the fine-grained fundamental fre-
quency modification method to more detailed adjustF0feature and
synthesize personalized speech. Due to the obvious difference in
sampling rate and duration between the EGG signal and the
original synthesized speech. F0EGG often mismatches F0feature .
So firstly, we apply dynamic time wrapping to F0EGG to obtain
F0EGG;aligned which shares the same length and zero segments as
F0feature. Then,we apply the coarse-grained fundamental frequen-
cy modification method to gain F0coarse�grained . For further
adjusting F0coarse�grained to imitate the changes of F0EGG over
time, we conductF0 fine-grainedmodification, which generates a
specific ratio r(i) to indicate the relationship between this time
step and the overall range, and modified F0feature at every time
step, defined as follows.

rðiÞ ¼ F0EGGðiÞ
F0EGG

ð14Þ
F0personalizedðiÞ ¼ rðiÞ � F0coarse�grainedðiÞ ð15Þ

Fig. 8 The principle of the depthwise separable convolution

Fig. 9 The principle of WORLD
vocoder
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where r(i) is the fine-grained adjustment ratio. F0EGG is the
average value of the F0 of the EGG signal. F0coarse�grainedðiÞ,
F0personalizedðiÞ is the i� th frame of F0coarse�grainedðiÞ and the
F0 of the newly synthesized speech with fine-grained adjust-
ments, respectively.

By applying fine-grainedmodification, we relymuch deep-
ly onF0EGG. We obtain personalizedF0 which not only shares
the same overall range as F0EGG but also imitates the range
changes over time, which promises to contain more personal-
ized characteristics such as tone and stress.

2.2 Materials

The dataset for our text content recognition model is the
Chinese Dual-mode Emotional Speech Database (CDESD
[33]). This dataset is built by the pattern recognition and

human intelligence laboratory affiliated with the Department
of Electronics and information engineering at Beihang
University and collected from 20 speakers aged 21 to 23 (13
men, 7 women). The dataset contains 11366 speeches and
corresponding EGG samples, and there are 20 classes of
sentences with different contents in this dataset, which is the
output of the classifier. In the experiment, 0.8 of the total
dataset are chosen as the training set and the others as the
validation test.

The dataset for the Chinese speech synthesis is Biaobei
Chinese female voice dataset1, which is widely used for
Mandarin TTS task. The dataset is recorded by a 20-year-old
woman, whose voice is active and intelligent. The total dura-
tion is about 12 hours and the sampling rate is 48 kHz.

1 https://www.data-baker.com/data/index/source

Fig. 10 The principle of fine-grained fundamental frequency modification method
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3 Experiments, results and discussions

3.1 Text content classification model

Figure 11(a) and (b) show the loss and accuracy of every
epoch fo our text content classification model. The best result
of the validation set occurs at epoch 52, whose accuracy
reaches 91.12 %. This result is based on the following condi-
tions: (a) choosing the 3-layer Bi-LSTM as the encoder, (b)
including all of the three features, theF0, the relative first order
difference ofF0 and the log short-term energy logE, (c) choos-
ing bidirectional smoothing as the smoothing method. The
promising recognition accuracy provides strong support for
speech synthesis based on the classified text.

To figure out the best conditions of our text content
classification model, we design three series of compara-
tive experiments. The first comparative experiment ex-
plores which encoder is the most effective in extracting
contextual information. We choose commonly-used en-
coders as baseline, including CNN, Bi-GRU and LSTM,
to highlight the superior of Bi-LSTM. Additionally, to
figure out how many layers of Bi-LSTM perform best,
we also conduct experiments under different numbers of
layers. The result is listed in Table 1 and suggests that the
3-layer Bi-LSTM is the best encoder compared to the
others. This result proves the effectiveness of our encoder
and provides the guidance to choose an encoder with ap-
propriate numbers of parameters.

The second comparative experiment explores whether ev-
ery feature we select contributes to improve the accuracy of
the recognition network and which combination is the best.
We try out different units of features with the orginal EGG
signal as baseline. In Table 2, the result indicates that using all
the three features is more effective than other combinations.
That is, all of these three features work for improving recog-
nition. Among these features, F0 proves to have an essential
influence on the result, which accords with our expectation

that F0 directly reflects the characteristic of the vocal cord
vibration of speakers.

The third comparative experiment explores which smooth-
ing method is optimal. We set F0 without any smoothing as
baseline and compare bidirectional smoothing method with
traditional median filter. The result shown in Table 3 suggests
that bidirectional smoothing achieves a better result than other
methods.

The experiment with the best result in this section shows
the satisfying performance of our text content recognition
model with the EGG signal, which lands a strong basis for
the research of speech synthesis with the EGG signal and the
text. Besides, concluded from the comparative experiments,
the combination of three conditions, encoder, feature and
smoothing method selection, contributes to the best results
of our model.

3.2 Speech synthesis model

Figure 12(a), (b), (c) and (d) shows the total loss and the
former three types of losses defined in equation (8) of every
iteration of the acoustic model.

In our experiment, we set the batch size as 32, the total
training iterations as 2M, the initial learning rate as 1e-3 and
the final as 1e-5 and exponentially decay every 4000 itera-
tions. The optimizer is Adam [45]. After about 200k iteration,
the loss curve converges at a very low value, which proves a
satisfying performance of the model. Compared with Fig. 11
(b) and (c), the loss of the acoustic features with
postprocessing is much less than that without postprocessing,
which proves the effectiveness of the postprocessing module
[46]. Figure 11 (d) proves that the model has learned how
many time steps should stop generating the predicted acoustic
features.

To evaluate the sound quality of synthesized speeches, ob-
jective and subject test are conducted.We chooseMel cepstral
distortion (MCD) [47] in objective test, for MCD is regarded

Fig. 11 Loss and accuracy of
recognition model
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as a target to indicate spectral performance. When dealing
with subject test, the mean opinion score (MOS) is figured
out. We choose SAG-Tacotron [30] to a representative state-
of-the-art performance, for it improves the naturalness of
speeches without complex front-end, corresponding to our
target.

3.2.1 objective test

In the objective test, we set the original Tacotron-2 as the
baseline, and compare our model with SAG-Tacotron.We test
our model under the condition with and without our fine-
grained fundamental frequency modification method to ex-
plore the influence of EGG in speech synthesis. Dynamic time
warping (DTW) is applied to align the frames of the predicted
Mel spectrums with the ground truth.

Table 4 shows the results of different methods judged by
MCD. As lower MCD indicates better spectral performance, it
can be figured out that our model outperforms the Tacotron-2
with a decrease of 0.14 and our fine-grained fundamental fre-
quency modification method works in improving the quality
of the speech. The performance of our model, Tacotron-2+
DSC with modification, is comparable with the state-of-the-
art performance.

3.2.2 Subjective test

For the mean opinion score (MOS) measurement, we set up 5
series of evaluation sets in which 5 different sentences are
included and invite 20 listeners, 10 men and 10 women, aged
18 to 40, to randomly choose and rate the quality on a 5-point
scale: “5” for excellent, “4” for good, “3” for fair, “2” for poor,
and “1” for bad. Table 5 shows the performance of different
methods. As participants’ feedback, our model improves the
performance of the original Tacotron-2 with a gain of 0.42 and
achieves a comparable score with SAG-Tacotron. When as-
sociating with the fine-grained fundamental frequency modi-
fication method, we can get a higher score of 3.94, which
proves our modification is effective. Besides, the low variance
indicates that the robustness of our model.

3.2.3 Comparative experiments

We conduct two series of comparative experiments to figure
out the best acoustic model, focusing on text modeling unit
and the selection of depthwise separable convolution param-
eters. ForMandarin TTS task, the choice of text modeling unit
is essential. So we explores both pinyin and phone to figure
out which text modeling unit is optimal. Figure 13 shows the
alignment between the encoder and decoder. Comparing
Fig. 13 (a) with (b), the alignment curve of phone modeling
is nearly a straight line, while that of pinyin modeling is
messy. This phenomenon proves that for this dataset, choos-
ing phone as the text modeling unit is much better than pinyin
because the number of the classes of phone is much smaller
than pinyin, let alone Chinese characters.

Table 6 shows the comparative results of MOS under two
text modeling units. The result proves the better performance
of the phone modeling once again. However, the quality of
synthesized speech is worse than the ground truth. It may be
because that phone modeling regards the transition of two
consecutive phones from two different Chinese characters as
the same as that in a Chinese character, which will cause the
synthesized speech to be not fluent and natural enough.

The other comparative experiment explores whether the
modification on the acoustic model works. Selecting the orig-
inal Tacotron and Tacotron-2 as baselines, we seek the best
CM on our Tacotron-2 revised by depthwise separable convo-
lution. Table 7 shows the comparative results under two

Table 2 The Acc results among different feature selection strategies

Network Acc-Train (%) Acc-Val (%)

Original EGG signal 70.45 61.25

F0 97.04 86.06

diffF0 89.45 80.56

logE 86.41 74.80

F0 þ diffF0 96.76 86.47

F0 þ logE 97.75 88.52

diffF0 þ logE 85.45 78.54

F0 þ diffF0 þ logE 99.25 91.12

Table 3 The Acc results among different F0 smoothing methods

Network Acc-Train (%) Acc-Val (%)

Without any process 97.33 89.49

5-Median filter 91.00 82.19

7-Median filter 97.38 85.79

9-Median filter 97.85 86.80

Bidirectional Smoothing 99.25 91.12

Table 1 The comparative experiments among different encoders

Network Acc-Train(%) Acc-Val(%)

CNN [43] 72.20 68.78

Bi-GRU [44] 92.64 86.08

LSTM (1 layer) 90.80 82.94

Bi-LSTM (1 layer) 90.47 85.05

Bi-LSTM (2 layer) 98.98 90.19

Bi-LSTM (3 layer) 99.25 91.12

Bi-LSTM (>3 layer) Not converged Not converged
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aspects: (a)TheMOS of the synthesized speech. (b)The model
size of the acoustic model. The conclusion is that Tacotron-2
is much better than Tacotron. Besides, the quality of the
speech synthesized by themodified Tacotron, which is revised
by depthwise separable convolution structure achieves better-

synthesized speech than that by the original Tacotron.
Meanwhile, the model size of the revised model is much
smaller than the original one.

Both aiming to achieve natural prosody on an end-to-end
speech synthesis system for Mandarin, the state-of-the-art per-
formance is realized by SAG-Tacotron [30]. Shown in
Tables 4 and 5, our model achieves a comparable performance
with SAG-Tacotron in the objective and subjective test. And
as Table 7 shows, the trade-off between the quality of the
synthesized speech and the model size gets the balance.

3.3 Fine-grained fundamental frequency modified
method

Figure 14 shows the F0 extracted from the EGG signal.
For unparalleled path, Fig. 15(a) shows the F0 extracted
from the features of Tacotron-2. As the F0EGG signal
contains personalized features of the speech, it can be
utilized to adjust the original F0 and synthesize personal-
ized speech. By equation (11), the adjustment ratio R is
figured out. Figure 15(c) is the spectrum of the original
synthesized speech. Figure 15(b) and (d) is the F0 and the
spectrum of the adjusted synthesized speech, respectively.
Figure 15(b) shows the average F0 is more similar to that
of the EGG signal, which means the pitch of newly

Fig. 12 Losses of the acoustic
models

Table 5 Mean option scores(MOS) with 95% confidence intervals

Method MOS

Tacotron [25] 3.40±0.14

Tacotron-2 [39] 3.45±0.13

Tacotron-2+DSC 3.87±0.15

Tacotron-2+DSC with modification 3.94±0.14

SAG-Tacotron 3.87±0.13

Ground Truth 4.50

Table 4 The MCD evaluation of different acoustic models

Methods MCD(dB)

Baseline 6.017

Tacotron-2+DSC1 5.877

Tacotron-2+DSC with modification 5.781

SAG-Tacotron [30] 5.775

DSC is short for depthwise separable convolution
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synthesized speech is similar to the speaker. Figure 15(d)
shows the frequency axis resampling, which means the
reasonable change of the fundamental frequency and the
harmonic frequency.

For paralleled path, theF0EGG is first aligned to theF0 from
features by conducting the dynamic time wrapping method.
Then fine-grained fundamental frequency modification meth-
od is conducted to adjust F0 in more detailed levels. The
comparison of F0 between the original and personalized
speech is shown as Fig. 16. It indicates that not only the av-
erage F0 has been modified to fit the speaker’s tone, but also
the trend of F0 has been adjusted according to the F0EGG ,
which includes the stress information into the final personal-
ized speech.

To figure out the voice quality of personalized
speeches, a series of subjective evaluation is conducted.
Table 8 shows that for unparalleled path, coarse-grained
modified speech gains the mean opinion score (MOS) of

3.94, which proves that EGG signal contributes to im-
proving the naturalness of F0 and synthesizing personal-
ized speech. Compared with the state-of-the-art perfor-
mance of Mandarin TTS named SAG-Tacotron [30], our
method achieves better result of MOS. For paralleled
path, the MOS of fine-grained modified speech is slightly
lower than the original speech. It may because there still
be something mess when conducting the alignment.
However, it must be pointed out that the fine-grained
modified speech includes the stress of the speaker, as
listeners feed back. So fine-grained fundamental frequen-
cy modification method still proves to add more detailed
information into the final speech and its good perfor-
mance is promising when solving the alignment problem.

The results of our experiment indicate that utilizing EGG
signals enables the personalized synthesized speech to be
more consistent with the speaker’s characteristics. For unpar-
alleled path, it has been proved that coarse-grained fundamen-
tal frequency modification method can get a higher MOS of
3.94 than the original speech. For paralleled path, it is also
proved that fine-grained fundamental frequency modification
method makes the final speech include stress information of
the speaker.

Fig. 13 The alignment between
the encoder and decoder with
different text modeling units

Table 7 The MOS and model size of different acoustic models

Acoustic Model MOS Model Size

Tacotron [25] 3.40 278.3MB

Tacotron-2 [39] 3.45 320.3MB

Tacotron-2+DSC(CM ¼ 1 ) 3.34 232.8MB

Tacotron-2+DSC (CM ¼ 2 ) 3.87 255.0MB

Tacotron-2+DSC (CM ¼ 3 ) 2.98 277.1MB

Tacotron-2+DSC (CM ¼ 4 ) 3.67 299.3MB

Ground Truth 4.50

Fig. 14 The F0 extracted from EGG

Table 6 TheMOS under
different text modeling
units

Text Modeling Unit MOS

Pinyin 1.05

Phone 3.87

Ground Truth 4.50
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4 Conclusions

In this paper, a speech synthesis framework with EGG signals
based on the modified Tacotron-2 is proposed to utilize in
some extreme environments where speech signals can hardly
be collected. This framework consists of a text content recog-
nition model and a speech synthesis model. To synthesize
personalized speech, we propose a fine-grained fundamental
frequency modification method.

The text content recognition model is to convert each EGG
signal sample into the corresponding text with a category of
content. This model achieves 91.12% accuracy on the valida-
tion set in a 20-class content recognition experiment. The
comparative experiments show the following results: (1) The
3-layer Bi-LSTM gains higher accuracy than other recogni-
tionmodels we choose. (2) All of the three features contributes
to the result and the combination of three features is more
effective. (3) The smoothing method with bidirectional
searching achieves better results than traditional methods.

The speech synthesis model is to synthesize the personal-
ized speech with the corresponding text and EGG signals. Our
model achieves a comparable result to the state-of-the-art per-
formance according to both MCD and MOS. This model
gains the mean opinion score (MOS) of 3.87 with relatively
small model size and synthesizes the personalized speech with
the MOS of 3.94, which is more consistent with the speaker’s
characteristics, with the aid of EGG signals. From the

Fig. 15 The F0 and spectrum of
the original and personalized
speech

Fig. 16 The comparison of F0 between the original and personalized
speech

Table 8 The MOS of
personalized speeches Speech MOS

our original synthesized speech 3.87

coarse-grained modified speech 3.94

fine-grained modified speech 3.72

SAG-Tacotron [30] 3.87

Ground Truth 4.50
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comparative experiments, it can be proved that: (1) In terms of
the text modeling units, phone is much better than pinyin. (2)
Tacotron-2+depthwise separable convolution (channel multi-
plier=2) is better than other acoustic models considering the
quality of synthesized speech and model size.

The expected future works are listed as follows. For the text
content recognition model, the dataset will be expanded for more
classes of contents to obtain a more general result. Considering
the speech synthesis procedure, a better acoustic model will be
explored to increase the speech quality and for other applications.
For instance, to utilize it in portable devices, other modifications
can be explored. Spiking neural networks (SNNs) [48, 49], as the
third generation of neural network, comprise of spiking neurons.
Addition of the temporal dimension for information encoding in
SNNs yields new insight into the dynamics of the human brain
and makes it potential to result in compact representations of
large neural networks [50]. As such, SNNs have great potential
for solving complicated time-dependent pattern recognition
problems defined by time series. So it is a fascinating direction
to apply SNN in speech synthesis in the future. As the develop-
ment of spiking neural networks (SNNs) controlling mobile ro-
bots is one of the modern challenges in computational neurosci-
ence and artificial intelligence [51],moremotivationsmay arouse
when associating the TTS task with neuromorphic computing
[52–54]. For example, when dealing with TTS tasks based on
large-scale datasets, to enhance the biological realism of
neuromorphic systems and further understand the computational
power of neurons, multicompartment emulation is an essential
step to discuss [55]. Finally, for the fine-grained fundamental
frequency modification method, a more proper alignment meth-
od will be explored.
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