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Limited-View and Sparse 
Photoacoustic Tomography for 
Neuroimaging with Deep Learning
Steven Guan  1,2 ✉, Amir A. Khan1, Siddhartha Sikdar  1 & Parag V. Chitnis1 ✉

Photoacoustic tomography (PAT) is a non-ionizing imaging modality capable of acquiring high 
contrast and resolution images of optical absorption at depths greater than traditional optical imaging 
techniques. Practical considerations with instrumentation and geometry limit the number of available 
acoustic sensors and their “view” of the imaging target, which result in image reconstruction artifacts 
degrading image quality. Iterative reconstruction methods can be used to reduce artifacts but are 
computationally expensive. In this work, we propose a novel deep learning approach termed pixel-
wise deep learning (Pixel-DL) that first employs pixel-wise interpolation governed by the physics of 
photoacoustic wave propagation and then uses a convolution neural network to reconstruct an image. 
Simulated photoacoustic data from synthetic, mouse-brain, lung, and fundus vasculature phantoms 
were used for training and testing. Results demonstrated that Pixel-DL achieved comparable or better 
performance to iterative methods and consistently outperformed other CNN-based approaches for 
correcting artifacts. Pixel-DL is a computationally efficient approach that enables for real-time PAT 
rendering and improved image reconstruction quality for limited-view and sparse PAT.

Neuroimaging in small animals have played an essential role in preclinical research to provide physiological, 
pathological, and functional insights that are key for understanding and treating neurological diseases. Over the 
past few decades, there has been signi�cant advances in magnetic resonance imaging (MRI) and optical imaging 
techniques for structural and functional neuroimaging. For example, MRI can acquire high resolution images of 
brain structures over large volumes, 3D connectivity and di�usivity information using di�usion tensor imaging, 
and brain activity using functional MRI1–3. However, MRI has poor temporal resolution and cannot be used to 
study fast hemodynamic mechanisms and responses. Optical imaging techniques can exploit the diverse biolog-
ical molecules (e.g. hemoglobin, melanin, and lipids) – each possessing di�erent optical properties – present in 
biological tissues to provide contrast for structural and functional imaging4–6. However, strong optical scattering 
limits the imaging depth of optical techniques to approximately 1–2 mm into the brain7.

Photoacoustic tomography (PAT) is an emerging non-invasive hybrid technique that has recently seen sub-
stantial growth in numerous preclinical biomedical applications and as a powerful clinical diagnostic tool8–11. In 
particular, there is a strong interest in PAT for preclinical structural and functional neuroimaging12–16. Given its 
unique use of light and sound, PAT combines the high contrast and molecular speci�city of optical imaging with 
the high spatial resolution and centimeter-penetration depth of ultrasound imaging17–19. PAT has been demon-
strated capable of kilohertz volumetric imaging rates, far exceeding the performance of other modalities, which 
enables new insights into previously obscure biological phenomena20. �ere are diverse contrast agents available 
such as chemical dyes, �uorescent proteins, and nanoparticles that can be used to further enhance the imaging 
capabilities of PAT21,22.

PAT involves irradiating the biological tissue with a short-pulsed laser. Optical absorbers within the tissue 
are excited by the laser and undergo thermoelastic expansion which results in the generation of acoustic waves23. 
A sensor array surrounding the tissue is then used to detect the acoustic waves, and an image is formed from 
the measured sensor data. PAT image reconstruction is a well-studied inverse problem that can be solved using 
analytical solutions, numerical methods (e.g. time reversal), and model-based iterative methods24–28. In general, 
a high-quality image can be reconstructed if the sensor array has a su�ciently large number of sensor elements 
and completely encloses the tissue. However, building an imaging system with these speci�cations is o�en pro-
hibitively expensive, and in many in vivo applications such as neuroimaging, the sensor array typically can only 
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partially enclose the tissue29,30. �ese practical limitations result in sparse spatial sampling and limited-view of 
the photoacoustic waves emanating from the medium. Reconstructing from sub-optimally acquired data causes 
streaking artifacts in the reconstructed PAT image that inhibits image interpretation and quanti�cation31.

To address these issues, iterative methods are commonly employed to remove artifacts and improve image 
quality. �ese methods use an explicit model of photoacoustic wave propagation and seek to minimize a penalty 
function that incorporates prior information32–34. However, they are computationally expensive due to the need 
for repeated evaluations of the forward and adjoint operators, and resulting image quality is dependent on the 
constraints imposed35,36.

Given the wide success of deep learning in computer vision, there is a strong interest in applying similar 
methods for tomographic image reconstruction problems37–39. Deep learning has the potential to be an e�ec-
tive and computationally e�cient alternative to state-of-the-art iterative methods. Having such a method would 
enable improved image quality, real-time PAT image rendering, and more accurate image interpretation and 
quanti�cation.

Among the many deep learning approaches for image reconstruction, post-processing reconstruction 
(Post-DL) is the most widely used and has been demonstrated for improving image reconstruction quality in 
CT40,41, MRI42, and PAT43–48. It was shown capable of achieving comparable or better performance than iterative 
methods for limited-view and sparse PAT image reconstruction45,49–51. In Post-DL, an initial inversion is used to 
reconstruct an image with artifacts from the sensor data. A convolutional neural network (CNN) is then applied 
as a post-processing step to remove artifacts and improve image quality. �e main drawback of Post-DL is that 
the initial inversion does not properly address the issues of limited-view and sparse sampling, which results in an 
initial image with artifacts. Image features (e.g. small vessels) that are missing or obscured by artifacts are unlikely 
to be recovered by the CNN.

Previous works attempted to improve upon Post-DL by removing the need for an initial inversion step50,52. 
One approach termed direct reconstruction (Direct-DL) used a CNN to reconstruct an image directly from the 
sensor data52. �e main challenge in using Direct-DL is the need to carefully select parameters (e.g. stride and 
kernel size) for each convolutional layer in order to transform the sensor data into the desired image dimensions. 
Changing either the dimensions of the input (e.g. using a di�erent number of sensors) or output would require 
a new set of convolution parameters and the CNN architecture to be modi�ed. Direct-DL was shown capable 
of reconstructing an image but underperformed compared to Post-DL. Interestingly, a hybrid approach using a 
combination of Post-DL and Direct-DL, where an initial inversion and the sensor data are given as inputs to the 
CNN, was shown to provide an improvement over using Post-DL alone53,54.

Another approach termed “model-based learning” similarly does not require an initial inversion step and 
achieves state-of-the-art image reconstruction quality50,55–57. �is approach is like iterative reconstruction and 
uses an explicit model of photoacoustic wave propagation for image reconstruction. However, the prior con-
straints are not handcra�ed and instead are learned by a CNN from training data. �e improved performance 
does come at the cost of requiring more time to train the CNN and reconstruct an image50. �us, the choice 
between model-based learning and direct learned approaches (e.g. Post-DL and Direct-DL) depends on whether 
the application prioritizes image reconstruction speed or quality.

In this work, we propose a novel approach termed pixel-wise deep learning (Pixel-DL) for limited-view and 
sparse PAT image reconstruction. Pixel-DL is a direct learned approach that employs pixel-wise interpolation to 
window relevant information, based on the physics of photoacoustic wave propagation, from the sensor data on a 
pixel-basis. �e pixel-interpolated data is provided as an input to the CNN for image reconstruction. �is strategy 
removes the need for an initial inversion and enables the CNN to utilize more information from the sensor data 
to reconstruct a higher quality image. �e pixel-interpolated data has similar dimensions to the desired output 
image which simpli�es CNN implementation. We compare Pixel-DL to conventional PAT image reconstruction 
methods (time reversal and iterative reconstruction) and direct learned approaches (Post-DL and a modi�ed 
implementation of Direct-DL) with in silico experiments using several vasculature phantoms for training and 
testing.

Methods
Photoacoustic signal generation. �e photoacoustic signal is generated by irradiating the tissue with 
a nanosecond laser pulse δ(t). Light absorbing molecules in the tissue undergo thermoelastic expansion and 
generate photoacoustic pressure waves23. Assuming negligible thermal di�usion and volume expansion during 
illumination, the initial photoacoustic pressure x can be de�ned as

= Γx r r A r( ) ( ) ( ) (1)

where A(r) is the spatial absorption function and Γ r( ) is the Grüneisen coe�cient describing the conversion 
e�ciency from heat to pressure58. �e photoacoustic pressure wave p(r, t) at position r and time t can be modeled 
as an initial value problem for the wave equation, in which c is the speed of sound59.

∂ − ∆ = = = ∂ = =c p r t p r t x p r t( ) ( , ) 0, ( , 0) , ( , 0) 0 (2)tt t0
2

Sensors located along a measurement surface So measure a time-dependent signal. �e linear operator  acts 
on p r t( , ) restricted to the boundary of the computational domain Ω over a �nite time T and provides a linear 
mapping from the initial pressure x to the measured time-dependent signal y.

= =∂Ω×y Ax (3)p T(0, )
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Photoacoustic image reconstruction. Time reversal is a robust reconstruction method that works well 
for homogenous and heterogeneous mediums and also for any arbitrary detection geometry27,28. A PAT image is 
formed by running a numerical model of the forward problem backwards in time. �is involves transmitting the 
measured sensor data in a time-reversed order into the medium. Time reversal can reconstruct a high-quality 
image if the acoustic properties of the medium are known a priori and if the sensor array has enough detectors 
and fully encloses the tissue.

In this work, iterative reconstruction is used to recover the PAT image x from the measured signal y by solving 
the following optimization problem using the isotropic total variation (TV) constraint

λ= − ′ + ′
′

x y Ax xargmin
x

TV
2

where the parameter λ > 0 is a regularization parameter32,36,60. �e TV constraint is a widely employed regulari-
zation functional for reducing noise and preserving edges. Iterative reconstruction with a TV constraint works 
well in the case of simple numerical or experimental phantoms but o�en leads to sub-optimal reconstructions for 
images with more complex structures43.

Deep learning. In this work, three di�erent CNN-based deep learning approaches were used for limited-view 
and sparse PAT image reconstruction (Fig. 1). �ese direct learned approaches all began with applying an ini-
tial processing step to the PAT sensor data and then recovering the �nal PAT image using a CNN. �e primary 
di�erence among these approaches was the processing step used to initially transform the PAT sensor data. In 
Post-DL, the sensor data was initially reconstructed into an image containing artifacts using time reversal, and the 
CNN was applied as a post-processing step for artifact removal and image enhancement. In Pixel-DL, pixel-wise 
interpolation was applied to window relevant information in the sensor data and to map that information into the 
image space. In the modi�ed Direct-DL implementation (mDirect-DL), a combination of linear interpolation and 
down sampling was applied so that the interpolated sensor data had the same dimensions as the �nal PAT image.

CNN Architecture: fully dense UNet. A�er the sensor data was transformed, the �nal PAT image was 
recovered using the Fully Dense UNet (FD-UNet) CNN architecture (Fig. 2). �e FD-UNet builds upon the UNet, 
a widely used CNN for biomedical imaging tasks. by incorporating dense connectivity into the contracting and 
expanding paths of the network61. �is connectivity pattern enhances information �ow between convolutional 

Figure 1. Summary of CNN-based deep learning approaches for PAT image reconstruction. �e primary task 
is to reconstruct an essentially artifact-free PAT image from the acquired PAT sensor data. (a) PAT sensor data 
acquired using a sensor array with 32 sensors and semi-circle limited-view. (b) Initial image reconstruction 
with sparse and limited-view artifacts using time reversal for Post-DL. (c) 3D data array acquired a�er applying 
pixel-wise interpolation for Pixel-DL. (d) Sensor data interpolated to have matching dimensions as the �nal 
PAT image for mDirect-DL. (e) Desired artifact-free PAT image reconstruction from the CNN-based deep 
learning approaches.
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layers to mitigate learning redundant features and reduce over�tting62. �e FD-UNet was demonstrated to be 
superior to the UNet for artifact removal and image enhancement in 2D sparse PAT47.

Pixel-Wise interpolation. Pixel-wise interpolation uses a model of photoacoustic wave propagation to map 
the measured time series pressure in the sensor data to a pixel position within the image reconstruction grid that 
the signal likely originated from. In this work, we choose to apply pixel-wise interpolation using a linear model 
of photoacoustic wave propagation since the in silico experiments were performed using a homogenous medium 
(e.g. uniform density and speed of sound). �e linear model assumes the acoustic waves are propagating spher-
ically and traveling at a constant speed of sound. Based on these assumptions, the time-of-�ight can be easily 
calculated for a pressure source originating at some position in the medium and traveling to a sensor located on 
the medium boundary.

Reconstructing an image begins by de�ning an image reconstruction grid that spans the region of interest 
in the imaging system (Fig. 3a). �e goal of pixel-wise interpolation is to map the time series pressure measure-
ments of each sensor to the de�ned reconstruction grid on a pixel-basis, which results in a 3D data array with 
dimensions corresponding to the 2D image space and sensor number (Fig. 3b,c). �is is achieved by repeating 
the following interpolation process for each sensor in the sensor array (Fig. 3d–f). �e time-of-�ight for a sig-
nal originating from each pixel position and traveling to the selected sensor is calculated based on a model of 
photoacoustic wave propagation. In the case of a linear model, the time-of-�ight is proportional to the distance 
between the selected pixel and sensor (Fig. 3e). Pressure measurements in the sensor data are interpolated onto 
the reconstruction grid using the calculated time-of-�ight for each pixel (Fig. 3f).

Deep learning implementation. �e CNNs were implemented in Python 3.6 with TensorFlow v1.7, an 
open source library for deep learning63. Training and evaluation of the network is performed on a GTX 1080Ti 
NVIDIA GPU. �e CNNs were trained using the Adam optimizer to minimize the mean squared error loss with 
an initial learning rate of 1e-4 and a batch size of three images for 40 epochs. Training each CNN required approx-
imately one hour to complete. Pairs of training datasets x y{ , }i i

 were provided to the CNN during training, where 
xi represents the input data (e.g. initial time reversal reconstruction, pixel-interpolated sensor data, and interpo-
lated sensor data) and y

i
 represents the corresponding artifact-free ground truth image. A separate CNN was 

trained for each CNN-based approached, imaging system con�guration, and training dataset.

Photoacoustic data for training and testing. Training data were procedurally generated using data 
augmentation, where new images were created based on a 340 × 340 pixel-size image of a synthetic vasculature 
phantom generated in MATLAB (Fig. 3a). First, scaling and rotation was applied to the initial phantom image 
with a randomly chosen scaling factor (0.5 to 2) and rotation angle (0-359 degrees). �en a 128 × 128 pixels 
sub-image was randomly chosen from the transformed image and translated by a random vertical and horizontal 
shi� (0–10 pixels) via zero-padding. Outputs from multiple iterations (up to �ve) of the data augmentation pro-
cess are summed together to create a training image. �e synthetic vasculature phantom dataset was comprised of 
500 training images. Testing data were generated from a 3D micro-CT mouse brain vasculature volume64 with a 
size of 260 × 336 × 438 pixels. �e Frangi vesselness �lter was applied to suppress background noise and enhance 
vessel-like features65. A new image was created from the �ltered volume by generating a maximum-intensity 
projection of a randomly chosen 128 × 128 × 128 pixel sub-volume. �e mouse brain vasculature dataset was 
comprised of 50 testing images.

Figure 2. FD-UNet CNN Architecture. �e FD-UNet CNN with hyperparameters of initial growth rate, 
=k 161  and initial feature-maps learned, =f 128

1
 is used for PAT image reconstruction. Essentially the same 

CNN architecture was used for each deep learning approach except for minor modi�cations. (a) Inputs into the 
CNN for each deep learning approach. �e Post-DL CNN implementation used residual learning which 
included a skip connection between the input and �nal addition operation. �e initial Pixel-DL input contains 
“N” feature-maps corresponding to the number of sensors in the imaging system. (b) �e FD-UNet is 
comprised of a contracting and expanding path with concatenation connections. (c) �e output of the CNN is 
the desired PAT image. In Post-DL, residual learning is used to acquire the �nal PAT image.
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�e “High-Resolution Fundus Image Database” is a public database that contains 45 fundus images from 
human subjects that were either healthy, had glaucoma, or had diabetic retinopathy. �e images had correspond-
ing vessel segmentation maps created by a group of experts and clinicians within the �eld of retinal image analy-
sis66. �e 45 fundus images were split into a separate training set (N = 15) and testing set (N = 30). �e training 
dataset was procedurally generated using data augmentation based on the images within the training set and was 
comprised of 500 training images. �e testing dataset was comprised of the original 30 images and 20 additional 
images, generated using data augmentation based on images from the testing set, for a total of 50 testing images.

�e “ELCAP Public Lung Image Database” is a public database that contains 50 low-dose whole-lung CT scans 
obtained within a single breath hold67. �e whole-lung volumes were split into a training (N = 15) and testing 
set (N = 35). Vessel-like structures were segmented from the whole-lung CT volumes using the Frangi vesselness 
�lter [63]. �e training dataset was then generated by taking maximum intensity projection images (MIP) of ran-
domly sampled sub-volumes from the �ltered volumes in the training set. Data augmentation was also applied to 
the MIPs to generate a training dataset comprised of 500 training images. With the same procedures, MIPs were 
taken from the �ltered volumes in the testing set to create a testing dataset comprised of 50 images.

In all three cases (mouse-brain vasculature, fundus image database, and ELCAP Lung database), training and 
testing data were completely segregated. In the latter two experiments, signi�cant variations were present between 
the training and testing datasets due to patient-to-patient variability and innate di�erences in vascular morphol-
ogy between healthy subjects and patients with varying degrees of disease.

A MATLAB toolbox, k-WAVE, was used to simulate photoacoustic data acquisition using an array of acoustic 
sensors68. Photoacoustic simulations in the k-WAVE toolbox are implemented using a pseudospectral approach69. 
Each training and testing image were normalized (values between 0 and 1) and treated as a photoacoustic source 
distribution on a computation grid of 128 × 128 pixels. �e medium was assumed to be non-absorbing and 
homogenous with a speed of sound of 1500 m/s and density of 1000 Kg/m3. �e sensor array had 16, 32, or 64 
sensor elements equally spaced on a semi-circle with a diameter of 120 pixels. �e time reversal method in the 
k-WAVE toolbox was also used for reconstructing an image from the simulated photoacoustic time series data.

Reconstructed images were compared against the ground truth using the peak-signal-to-noise ratio (PSNR) 
and structural similarity index (SSIM) as metrics for image quality. PSNR provides a global measurement of 

Figure 3. Pixel-Wise Interpolation Process. (a) Schematic of the PAT system for imaging the vasculature 
phantom. �e red semi-circle represents the sensor array, and the gray grid represents the de�ned 
reconstruction grid. �e �rst sensor (S1) is circled and used as an example for applying pixel-wise interpolation 
to a single sensor. (b) �e PAT time series pressure sensor data measured by the sensor array. (c) Resulting 
pixel-interpolated data a�er applying pixel-wise interpolation to each sensor based on the reconstruction grid. 
(d) Sensor data for S1. Color represents the time at which a pressure measurement was taken and is included 
to highlight the use of time-of-�ight to map the sensor data to the reconstruction grid. (e) Calculated time-of-
�ight for a signal originating at each pixel position and traveling to S1. (f) Pressure measurements are mapped 
from the S1 sensor data to the reconstruction grid based on the calculate time-of-�ight for each pixel.
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image quality, while SSIM provides a local measurement that takes into account for similarities in contrast, lumi-
nance, and structure70.

Disclaimer. Author S.G.’s a�liation with �e MITRE Corporation is provided for identi�cation purposes 
only and is not intended to convey or imply MITRE’s concurrence with, or support for, the positions, opinions or 
viewpoints expressed by the author. Approved for Public Release; Distribution Unlimited. Case Number 18-4405. 
©2019 �e MITRE Corporation. All Rights Reserved.

Results
Conventional PAT image reconstruction techniques (e.g. time reversal and iterative reconstruction) and 
CNN-based approaches (Post-DL, Pixel-DL, and mDirect-DL) were compared over several in silico experiments 
for reconstruction image quality and reconstruction time. CNN-based approaches were all implemented using 
the FD-UNet CNN architecture. Reconstructed images were compared to the ground truth image using PSNR 
and SSIM as quantitative metrics for image reconstruction quality.

Mouse brain vasculature experiment. In the �rst experiment, the CNNs were trained on the synthetic 
vasculature phantom dataset and tested on the mouse brain vasculature dataset. Although both datasets con-
tained images of vasculature, they were non-matched meaning there were likely image features (e.g. vessel con-
nectivity patterns) in the testing dataset but not in the training dataset. In addition to evaluating the CNNs’ 
performance, this experiment sought to determine if the CNNs were generalizable when trained on the synthetic 
vasculature phantom and tested on the mouse brain datasets.

�e time reversal reconstructed images had severe artifacts blurring the image and the lowest average PSNR 
and SSIM for all sparsity levels (Fig. 4 and Table 1). Images reconstructed with iterative or a CNN-based method 
had fewer artifacts and a higher average PSNR and SSIM. Vessels obscured by artifacts in the time reversal recon-
structed images were more visible in the other reconstructed images. As expected, increasing the number of sen-
sors resulted in fewer artifacts and improved image quality for all PAT image reconstruction methods. Pixel-DL 
consistently had a higher average PSNR and SSIM than Post-DL for all sparsity levels and similar scores to itera-
tive reconstruction.

In the case of sparse sampling (especially with 16 sensors), Post-DL o�en introduced additional vessels that 
were not originally in the ground truth image (Fig. 4a,b). �is was likely due to the CNN misinterpreting strong 
artifacts in the input image as real vessels. Pixel-DL exhibited a similar behavior but typically had fewer false 
additional vessels. �is issue was not as prevalent in images reconstructed using the iterative method. However, 

Figure 4. Limited-view and sparse PAT image reconstruction of mouse brain vasculature. PAT sensor data 
acquired with a semi-circle limited-view sensor array at varying sparsity levels. (a) Ground truth image used 
to simulate PAT sensor data. (b) PAT reconstructions with 16 sensors. Vessels are di�cult to identify in time 
reversal reconstruction as a result of artifacts. (c) PAT reconstructions with 32 sensors. Vessels can be clearly 
seen in CNN-based and iterative reconstructions. (d) PAT reconstructions with 64 sensors. Larger vessels are 
identi�able in all reconstructed images.
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images reconstructed using iterative reconstruction had an overly smoothed appearance compared to the deep 
learning-based reconstructed images. �is is a pattern commonly observed when using the total variation con-
straint. Moreover, iterative reconstruct.

Pixel-DL consistently outperformed time reversal in reconstructing images of the synthetic vasculature and 
mouse brain vasculature (Fig. 5). Interestingly, mDirect-DL only outperformed time reversal in reconstructing 
the synthetic vasculature images, which were used to train the CNN. �e mDirect-DL reconstructed image of 
mouse brain vasculature resembled the ground truth image but was substantially worse than the time reversal 
reconstruction. �is indicated that the CNN learned a mapping from the PAT-sensor data to the image space but 
severely over�tted to the training data. During training, the CNNs for Pixel-DL and mDirect-DL converged to a 
minimum mean squared error, but the Pixel-DL CNN converged to a lower error.

Lung and fundus vasculature experiment. In the second experiment, the CNNs were trained and tested 
on the lung vasculature and fundus vasculature datasets. �is experiment represented a scenario in which the 
training and testing datasets are derived from segregated anatomical image data. �ere were natural di�erences 
between the training and testing datasets since the original images were acquired from healthy patients and those 
with varying disease severity.

As expected, the time reversal reconstructed images of lung and fundus vasculature had the most artifacts 
and the lowest average PSNR and SSIM for all sparsity levels (Fig. 6 and Table 2). Images reconstructed with a 
CNN-based method or iterative reconstruction resulted in fewer artifacts and a higher average PSNR and SSIM. 
Pixel-DL consistently outperformed Post-DL for both vasculature phantoms for all sparsity levels. Comparable 
to iterative reconstruction, Pixel-DL had similar performance for the fundus vasculature and outperformed it for 
the lung vasculature dataset. For images reconstructed from PAT sensor data acquired using 16 sensors, Pixel-DL 
reconstructed images appeared sharper and were qualitatively superior compared to iteratively reconstructed 
images despite having similar SSIM and PSNR values.

Number of 
Sensors Time Reversal Post-DL Pixel-DL

Iterative 
Reconstruction

16
13.91 ± 1.12
0.34 ± 0.04

17.4 ± 1.24
0.52 ± 0.04

21.52 ± 1.36
0.64 ± 0.04

22.64 ± 1.4
0.66 ± 0.05

32
17.29 ± 1.20
0.48 ± 0.04

21.31 ± 1.10
0.71 ± 0.04

25.67 ± 1.29
0.81 ± 0.04

26.98 ± 2.11
0.82 ± 0.06

64
22.7 ± 1.06
0.73 ± 0.03

24.37 ± 1.25
0.85 ± 0.03

29.59 ± 1.42
0.91 ± 0.02

30.16 ± 2.70
0.89 ± 0.05

Table 1. Average PSNR and SSIM for Micro-CT Mouse Brain Vasculature Testing Dataset (N = 50 testing 
images). For each row, PSNR is shown as normal text on top while SSIM is shown as italicized text on the 
bottom.

Figure 5. Limited-view and sparse Pixel-DL and mDirect-DL PAT image reconstructions. PAT sensor data 
acquired with 32 sensors and a semi-circle view. (a) CNNs were trained and tested on images of the synthetic 
vasculature phantom. Both CNN-based approaches successfully reconstructed the example synthetic 
vasculature phantom image (b) CNNs were trained on images of the synthetic vasculature phantom but tested 
on mouse brain vasculature images. mDirect-DL failed to reconstruct the example mouse brain vasculature 
image and performed worse than time reversal.
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Image reconstruction times. �e average reconstruction time reported for each method are for recon-
structing a single image from the PAT sensor data. Time reversal is a robust and computationally inexpensive 
reconstruction method (~2.57 seconds per image). Iterative reconstruction removed most artifacts and improved 
image quality but had a much longer average reconstruction time (~491.21 seconds per image). Pixel-DL recon-
structed images with similar quality to iterative reconstruction and was faster by over a factor of 1000 (~7.9 mil-
liseconds per image). Average reconstruction time for Post-DL is dependent on the initial inversion used since 
the computational cost of a forward pass through a CNN is essentially negligible. Since time reversal was used 
as the initial inversion, Post-DL had a longer average reconstruct time than Pixel-DL (~2.58 seconds per image).

Discussion
In this work, we propose a novel deep learning approach termed Pixel-DL for limited-view and sparse PAT image 
reconstruction. We performed in silico experiments using training and testing data derived from multiple vas-
culature phantoms to compare Pixel-DL with conventional PAT image reconstruction methods (time reversal 
and iterative reconstruction) and direct learned approaches (Post-DL and mDirect-DL). Results showed that 
Pixel-DL consistently outperformed time reversal, Post-DL, and mDirect-DL for all experiments. Pixel-DL was 
able to generalize well evidenced by its comparable performance to iterative reconstruction for the mouse brain 
vasculature phantom despite having only trained on images generated from a synthetic vasculature phantom 
with data augmentation. Having a more varied training dataset may further improve CNN generalization and 
performance. When the training and testing data were derived from segregated anatomical data, Pixel-DL had 
similar performance to iterative reconstruction for the fundus vasculature phantom and outperformed it for the 
lung vasculature phantom. �e total variation constraint used for iterative reconstruction was likely suboptimal 
for reconstructing lung vasculature images since the lung vessels were small and closely grouped.

Figure 6. Limited-view and sparse PAT image reconstructions of fundus and lung vasculature. PAT sensor data 
acquired with 32 sensors and a semi-circle view. (a) CNNs were trained and tested on images of lung vasculature 
(b) CNNs were trained and tested on images of fundus vasculature. Testing images were derived from a separate 
set of patients’ lung and fundus images than the training images.

Number of 
Sensors Time Reversal Post-DL Pixel-DL

Iterative 
Reconstruction

Lung

16
13.30 ± 1.01
0.09 ± 0.02

23.21 ± 1.45
0.35 ± 0.04

24.14 ± 1.53
0.43 ± 0.06

22.74 ± 1.36
0.29 ± 0.08

32
15.19 ± 1.13
0.13 ± 0.02

25.09 ± 1.67
0.50 ± 0.04

26.76 ± 1.83
0.53 ± 0.07

27.50 ± 1.98
0.46 ± 0.06

64
18.82 ± 1.11
0.23 ± 0.05

27.14 ± 1.67
0.65 ± 0.04

29.98 ± 2.00
0.69 ± 0.11

33.67 ± 1.92
0.62 ± 0.07

Fundus

16
12.26 ± 1.10
0.19 ± 0.02

20.00 ± 1.52
0.42 ± 0.06

20.78 ± 1.61
0.52 ± 0.08

20.77 ± 1.07
0.50 ± 0.04

32
14.07 ± 1.38
0.26 ± 0.03

21.57 ± 1.60
0.59 ± 0.04

23.40 ± 1.40
0.67 ± 0.05

23.37 ± 1.06
0.68 ± 0.04

64
18.08 ± 1.40
0.45 ± 0.05

24.16 ± 1.56
0.75 ± 0.03

26.23 ± 1.35
0.81 ± 0.05

28.07 ± 1.10
0.85 ± 0.06

Table 2. Average PSNR and SSIM for Lung and Fundus Vasculature Testing Dataset (N = 50 testing images). 
For each row, PSNR is shown as normal text on top while SSIM is shown as italicized text on the bottom.
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Comparison between deep learning approaches. �e CNN architecture and hyperparameters used for 
all deep learning approaches implemented were essentially the same. �us, discrepancies in performance between 
the approaches were primarily due to their respective inputs into the CNN (Fig. 4). In Post-DL, the input was an 
image initially reconstructed from the sensor data using time reversal. �e input and output to the CNN are both 
conveniently images of the same dimensions. �is removed the need for the CNN to learn the physics required 
to map the sensor data into the image space. However, the initial inversion did not properly address the issues of 
limited-view and sparse sampling which resulted in an initial image with artifacts. Moreover, the CNN no longer 
had access to the sensor data and was only able to use information contained in the image to remove artifacts. 
�ere was likely useful information in the sensor data for more accurately reconstructing the PAT image, which 
was ignored in this approach.

In Pixel-DL, the initial inversion is replaced with pixel-wise interpolation, which similarly provides a map-
ping from the sensor data to image space. Relevant sensor data is windowed on a pixel-basis using a linear model 
of acoustic wave propagation. �is enables the CNN to have a richer information source to reconstruct higher 
quality images. Furthermore, there is no initial inversion introducing artifacts; thus, the CNN does not have an 
additional task of learning to remove those artifacts.

mDirect-DL similarly did not require an initial inversion and instead used the full sensor data as an input to 
the CNN to reconstruct an image. �e potential advantage of mDirect-DL is that the CNN had full access to the 
information available in the sensor data to reconstruct a high-quality image. However, reconstructing directly 
from the sensor data was also a more di�cult task because the CNN needed to additionally learn a mapping 
from the sensor data into the image space. Results showed that the CNN had di�culty in learning a generalizable 
mapping and over�tted to the training data (Fig. 5). �e FD-UNet was likely not an optimal architecture for this 
task since it was designed assuming the input was an image. A di�erent neural network architecture for a multi-
dimensional time-series input would be better suited.

A limitation of Post-DL and Pixel-DL for sparse and limited-view PAT is that the reconstructed image could 
have additional vessels that are not in the ground truth image. �is can be problematic depending on the require-
ments of the application. Large vessels and structures are o�en reliably reconstructed in the image, but some 
small vessels could be false additions. �is limitation primarily occurred at the sparsest sampling level and could 
be addressed by increasing the number of sensors used for imaging. �e loss function could also be modi�ed to 
penalize the CNN for reconstructing false additional vessels, but this could lead to the CNN to preferentially not 
reconstruct small vessels. Alternatively, a model-based learning approach could be used for better image quality 
if computational cost is not a limitation.

Deep learning for in vivo imaging. A key challenge in applying deep learning for in vivo PAT image 
reconstruction is that a large training dataset is required for the CNN to learn and be able to remove artifacts and 
improve image quality. �e training data can be acquired experimentally using a PAT imaging system that has a 
su�cient number of sensors and full-view of the imaging target. However, this process is o�en infeasible because 
it is prohibitively expensive, time-consuming, and needs to be repeated when the imaging system con�guration 
or imaging target is changed. Alternatively, synthetic training data can be generated using numerical phantoms 
or images from other modalities. In combination with data augmentation techniques, this approach enables for 
arbitrarily large synthetic training datasets to be created. However, CNN image reconstruction quality is largely 
dependent on the degree to which the simulations used to generate the training data matches actual experimental 
conditions. Properly matching the simulation is a non-trivial task that necessitates the PAT imaging system to be 
well-characterized and understood. Some factors to be considered when creating the simulations include: sensor 
properties (e.g. aperture size, sensitivity, and directivity), sensor con�guration, laser illumination, and medium 
heterogeneities. Generally, it is preferable to closely match the simulation to the experimental conditions, but 
post-processing (e.g. �ltering and denoising) can also be applied to the experimental data. It is beyond the scope 
of this work to discuss the impact of each factor in detail, but the issue of medium heterogeneities, speci�cally for 
speed of sound, is examined.

In this work, Pixel-DL was applied using a linear model of acoustic wave propagation that assumes the acous-
tic waves propagate spherically and travel at a constant speed of sound throughout the medium. Although this 
model was su�cient for the case of a homogenous medium, a di�erent model would be needed if the medium 
was heterogeneous (e.g. speed of sound and density) such as for in vivo imaging. Naively reconstructing with 
these assumptions for heterogeneous mediums would result in additional artifacts that degrade image quality 
and potentially impact CNN performance. �e severity of the artifacts would depend on the degree of mis-
match between the heterogeneity and assumed value. If the distribution of the heterogeneities or acoustically 
re�ective surfaces is known then they can be accounted for during the time-of-�ight calculations when applying 
pixel-interpolation. However, if it is not known then the CNN should be trained with training data containing 
examples of heterogeneous mediums similar to what would be anticipated during image reconstruction. �is 
would enable the CNN to learn to compensate for potential artifacts due to applying pixel interpolation with a 
linear model of acoustic wave propagation when the medium is actually not homogeneous.

Deep learning for fast image reconstruction. �e proposed Pixel-DL approach can be used as a compu-
tationally e�cient method for improving PAT image quality under limited-view and sparse sampling conditions. 
It can be readily applied to a wide variety of PAT imaging applications and con�gurations. Pixel-DL enables for 
the development of more e�cient data acquisition approaches. For example, PAT imaging systems can be built 
with fewer sensors without sacri�cing image quality, which would allow for the technology to be more a�ordable. 
Pixel-DL achieved similar or better performance and was faster than iterative reconstruction by over a factor of 
a 1000. It would allow for real-time PAT image rendering which would provide valuable feedback during image 
acquisition.
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In this work we have demonstrated in silico the feasibility of Pixel-DL for PAT imaging of vasculature-like 
targets. �is approach can also be readily applied to ultrasound imaging. Image reconstruction for PAT and 
ultrasound imaging both largely rely on time-of-�ight calculations to determine where the signal originated. 
�erefore, a similar linear model of acoustic wave propagation can be used to readily apply Pixel-DL for ultra-
sound image reconstruction problems. Pixel-DL can also be adapted to other imaging modalities if a model 
mapping the sensor data to the image space is available.

Data availability
�e datasets generated during and/or analyzed during the current study are available from the corresponding 
author on reasonable request.
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