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Limiting absorption principles for the Navier equation in elasticity
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Abstract. We prove some a priori estimates for the resolvent of Navier equa-
tion in elasticity, when one approaches the spectrum (Limiting Absorption Prin-
ciples). They are extensions of analogous estimates for the resolvent of the eu-
clidean Laplacian in Rn . As a consequence, we get some results for the evolution
equation and for the spectral measure.
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1. Introduction and statement of results

The Navier equation of the dynamic linearized elasticity in a homogeneous and

isotropic medium is ruled by the wave operator

∂2

∂t2
− "∗, (1.1)

where the operator"∗, acting on the x-variable of vector-valued functions u(x, t) ∈
Cn reads

"∗u = µ"Iu+ (λ + µ)∇ div u, (1.2)

and "I denotes the diagonal matrix with the Laplace operator on the diagonal and
λ, µ are the Lamé constants.

In the case of time harmonic solution of frequency ω the operator to consider,
known as spectral Navier operator, is

Lu(x) = "∗u(x) + ω2u(x),

where ω > 0, x ∈ Rn, n ≥ 2, and u is a vector-valued function from Rn to Cn.

The first and fourth authors were supported by Spanish Grant MTM2008-02568, the second and
the third by Proyecto CONACyT-DAIC U48633-F, and the fifth by Spanish Grant MTM2007-
62186.

Received December 20, 2010; accepted April 19, 2011.
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Throughout this paper we will assume that µ > 0 and 2µ + λ > 0 so that the

operator "∗ is strongly elliptic and, we will denote by kp and ks respectively the
speed of propagation of longitudinal and transversal waves, which are given by

k2p = ω2

(2µ + λ)
and k2s = ω2

µ
. (1.3)

It is well known that any solution u, of the homogeneous spectral Navier equation

Lu(x) = "∗u(x) + ω2u(x) = 0, (1.4)

with "∗ given by (1.2), in a domain, can be written as the sum of the so called

compressional part, denoted by up, and the shear part, denoted by us, where

up = − 1

k2p
∇ div u and us = u− up. (1.5)

Observe that up and us are solutions of the vectorial homogeneous Helmholtz equa-

tions "Iup(x) + k2pup(x) = 0 and "Ius(x) + k2s us(x) = 0, respectively.
Besides, if u is an entire solution (i.e. a solution in the whole Rn) of (1.4)

satisfying the Kupradze outgoing radiation conditions:

(∂r − ikp)up = o(r−(n−1)/2), r = |x | → ∞, (1.6)

(∂r − iks)us = o(r−(n−1)/2), r = |x | → ∞, (1.7)

then, u = 0 (see [19] for the three-dimensional case).
As a consequence, for a vector-valued function f ∈ C∞

0 , if there exists a solu-
tion of the Navier equation

"∗u(x) + ω2u(x) = f(x), ω > 0, x ∈ Rn, n ≥ 2, (1.8)

satisfying the Kupradze outgoing radiation conditions (1.6) and (1.7), where up and

us are given by (1.5) out of the support of f, then the solution is unique.
Similar statements hold true for the Kupradze incoming radiation conditions

(∂r + ikp)up = o(r−(n−1)/2), r = |x | → ∞, (1.9)

(∂r + iks)us = o(r−(n−1)/2), r = |x | → ∞. (1.10)

Equation (1.8) and conditions (1.6) and (1.7) are genuine vectorial versions of the

scalar Helmholtz equation, given by

"v(x) + k2v(x) = g(x), k > 0, x ∈ Rn, n ≥ 2, (1.11)

and the Sommerfeld outgoing radiation condition

(∂r − ik)v = o(r−(n−1)/2), r = |x | → ∞. (1.12)
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Throughout this paper, given a Banach space of scalar valued functions

B(Rn) = {g : Rn −→ C : ‖g‖B < ∞},

its vector-valued version will be denoted by

B(Rn) = {f : Rn −→ Cn : ‖f‖B < ∞},

where ‖f‖B = ‖|f|‖B , and |f|2 = |( f1, . . . , fn)|2 = | f1|2 + . . . + | fn|2 and its dual
space by B∗(Rn).

Limiting absortion principles. If z = γ + iε belongs to the resolvent set of "∗,
i.e. ε )= 0 (see (2.7) below), there exists a constant c(z) > 0 independent of f such

that the following estimate holds:

‖("∗ + zI)−1f‖L2 ≤ c(z) ‖f‖L2,

where I denotes the identity matrix of order n. The constant c(z) blows up as z
approaches the spectrum of"∗, that is R+. An interesting question is the existence
of Banach spaces B(Rn) such that the estimate

‖("∗ + zI)−1f‖B∗ ≤ c(z) ‖f‖B (1.13)

holds for f ∈ L2(Rn) ∩ B(Rn) with c(z) > 0 a constant independent of f so that it

does not blow up when z approaches the spectrum of "∗.
Furthermore, given any interval [a, b] ⊂ (0,∞) we look for the existence of a

constant c, such that

sup
γ∈[a,b]

sup
ε∈(0,1)

‖("∗ + (γ ± iε)I)−1‖B−→B∗ < c. (1.14)

Under these conditions, if L2(Rn) ∩ B(Rn) is dense in B(Rn), we may consider
R(z) the extension to B(Rn) of the operator ("∗+zI)−1 defined in L2(Rn)∩B(Rn).
Following standard techniques (see [1, Theorem 4.1], and see also [20]), from (1.13)

one should be able to prove that for f ∈ B(Rn),

R(ω2 + i0)f := weak− lim
z→ω2, -z>0

R(z)f (1.15)

exists in B∗(Rn) and is a weak solution of equation (1.8), which satisfies

‖R(ω2 + i0)f‖B∗ ≤ c(ω2) ‖f‖B.

We say that the weak limiting absorption principle holds for the operator "∗ in the
space B(Rn) for Kupradze radiation conditions if (1.14) and (1.15) are satisfied and,
furthermore, under the extra assumption f ∈ C∞

0 (Rn) ∩ B(Rn) one has that out of

the support of f, R(ω2 + i0)f is the sum, as in (1.5), of us and up, satisfying (1.6)
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and (1.7). We assume also the similar statement for the incoming conditions (1.9)

and (1.10) when one takes

R(ω2 − i0)f := weak− lim
z→ω2, -z<0

R(z)f. (1.16)

These principles have interesting consequences for the behavior of solution of wave

equation and they are the first step to be accomplished, if one wants to treat some

inverse scattering problems for the elasticity equations (see for instance [16] and

[28]).

Function Spaces. Let us start by introducing the spaces B(Rn) in which we study
the limiting absorption principle.

We will use the scalar valued space introduced in [17], that we will denote by

X∗(Rn) and which is given by the following norm:

‖v‖2X∗ = sup
R>0

1

R

∫

B(0,R)
|v(x)|2dx,

where v is a function defined on Rn with values in C. This space is a homogeneous
version of the space considered in [1] and [2]. In fact, if we consider vλ(x) =
v(λx), with λ > 0, we have that

‖vλ‖2X∗ = λ1−n‖v‖2X∗ .

We will replace the norm in its predual space by the equivalent expression:

‖g‖X =
∑

j∈Z

(
2 j+1

∫

C j

|g(x)|2dx
)1/2

,

where g is a function defined on Rn with values in C, and

C j = {x ∈ Rn : 2 j < |x | ≤ 2 j+1}, j ∈ Z. (1.17)

Given a nonnegative function V, we will also use the weighted−L2 space L2(V )
defined as the Lebesgue space L2(Rn) with respect to the measure V (x)dx . We
consider weights V in several spaces: Morrey–Campanato classes, certain homo-

geneous Herz spaces and the space of functions with everywhere bounded X-ray

transform.

For α > 0 and 1 ≤ r ≤ n/α, the Morrey-Campanato classes (see [6] and [29])
are given by

Lα,r (Rn) =
{
V ∈ Lr(oc(Rn) : ‖V‖Lα,r < ∞

}
,

where

‖V‖Lα,r = sup
x∈Rn,ρ>0

ρα

(
ρ−n

∫

B(x,ρ)
|V (y)|r dy

)1/r
.
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Notice that some Lebesque spaces are included in these classes: Lα,n/α(Rn) =
Ln/α(Rn)We also remark that for r < n/α the class Lα,r (Rn) contains the Lorentz
space Ln/α,∞(Rn).

For 1 ≤ p ≤ ∞, we define the spaces

Dp(Rn) =
{
V ∈ L

p
(oc(R

n \ {0}) : ‖V‖Dp < ∞
}
,

where

‖V‖Dp =
∑

j∈Z
2 j (p−n)/p ‖Vχ j‖L p , if 1 ≤ p < ∞, and

‖V‖D∞ =
∑

j∈Z
2 j ‖Vχ j‖L∞,

with χ j = χC j
, where χE denotes the characteristic function of the set E and C j is

given by (1.17).

From the definition, it is easy to prove that if p1 ≥ p2, then

Dp1(Rn) ⊆ Dp2(Rn). (1.18)

Besides, if V is a radial function, then ‖V‖Dp(Rn) = ‖V‖Dp(R) where, abusing

notation, V = V (x) = V (r), with r = |x |. In such a case, we will simply write
‖V‖Dp to denote both, ‖V‖Dp(Rn) and ‖V‖Dp(R).

We want to note that the spaces X(Rn) and Dp(Rn) are homogeneous Herz
spaces, in fact, following the notation used in [13] and [21], we have that X (Rn) =
K̇
1/2,1
2 (Rn), Dp(Rn) = K̇

(p−n)/p,1
p (Rn) if 1 ≤ p < ∞, and D∞(Rn) = K̇

1,1
∞ (Rn).

We denote by T (Rn) (see [4]) the class of nonnegative radial functions V such
that

|||V ||| := sup
µ>0

∫ ∞

µ

r V (r)

(r2 − µ2)1/2
dr < ∞,

where as before, abusing notation, V = V (x) = V (r), with r = |x |. This is to say
that the X−ray transform of the function V is bounded everywhere.

In general, the limit

lim
δ→0+

1

δ

∫

Cδ,L

g(y) dy,

defines the X−ray transform of a function g ∈ L1(oc(Rn) on the set of all lines L in

Rn.Here Cδ,L = {y ∈ Rn : d(y, L) < δ and |x−y| < δ−1}, L = {x+tω/t ∈ R},
x ∈ Rn, ω ∈ Sn−1 and d(y, L) denotes the Euclidean distance between y and L .

Note that if V is a radial function, then there exists a positive constant C inde-

pendent of V such that

|||V ||| ≤ C ‖V‖Dp (1.19)

if and only if p > 2 (see [4, Remark 1] and Remark 4.6 below).
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We will use the vector-valued version of some of the spaces introduced above,

which will be denoted by X(Rn), X∗(Rn) and L2(V ).
The following theorems extend known limiting absorption principles for the

Helmholtz equation to the Navier equation. The theorems are extensions in the

sense that the Helmholtz equation can be viewed as the particular case of the Navier

equation when we take µ + λ = 0.

Theorem 1.1. Let z = γ + iε with ε )= 0, 1
p

+ 1
q

= 1 with 2
n+1 ≤ 1

p
− 1

q
≤ 2

n
if

n > 2, or 2
3

≤ 1
p

− 1
q

< 1 if n = 2. Let V1 be a nonnegative real valued function in

L2,r (Rn) with (n − 1)/2 < r ≤ n/2 and n > 2, and let V2 be a nonnegative radial
function in Dr̃ (Rn) with 2 < r̃ ≤ ∞. If f ∈ L2(Rn) then, there exists a constant
c > 0 independent of z, f, V1 and V2 such that the following a priori estimates hold:

‖("∗ + zI)−1f‖X∗ ≤ c |z|−1/2‖f‖X, (1.20)

‖("∗ + zI)−1f‖Lq ≤ c |z|
n
2

(
1
p
− 1
q

)
−1‖f‖Lp , (1.21)

‖("∗ + zI)−1f‖L2(V1) ≤ c ‖V1‖L2,r ‖f‖L2(V−1
1 )

, (1.22)

‖("∗ + zI)−1f‖L2(V2) ≤ c |z|−1/2‖V2‖Dr̃ ‖f‖L2(V−1
2 )

. (1.23)

Besides, the weak limiting absorption principle for "∗ holds in the spaces X(Rn),
Lq(Rn), L2(V1) and L

2(V2) for Kupradze radiation conditions.

Theorem 1.2. Let p such that 1
n+1 ≤ 1

p
− 1

2
≤ 1

n
, and let V1 be a nonnegative

real valued function in L2,r (Rn) with (n − 1)/2 < r ≤ n/2 and n > 2, and let V2
be a nonnegative radial function in Dr̃ (Rn) with 2 < r̃ ≤ ∞. If f ∈ C∞

0 (Rn) and
we consider the unique solution u = (u1, . . . , un) of equation (1.8) satisfying (1.6)
and (1.7), then, there exists a constant c > 0 independent of ω, f, V1 and V2 such
that the following a priori estimates hold:

sup
1≤ j≤n

‖∇ u j‖X∗ ≤ c ‖f‖X, (1.24)

sup
x0,R>0

1

R

∫

B(x0,R)
|u(x)|2dx ≤ c ω

2n
(
1
p
− 1
2

)
−3‖f‖2Lp , (1.25)

sup
x0,R>0

1

R

∫

B(x0,R)
|D1/2u(x)|2dx ≤ c ‖V1‖L2,r ‖f‖2L2(V−1

1 )
, (1.26)

sup
1≤ j≤n

‖∇ u j‖L2(V2) ≤ c ‖V2‖Dr̃ ‖f‖L2(V−1
2 )

, (1.27)

where D1/2u = (D1/2u1, . . . , D
1/2un).

Remark 1.3. Estimates (1.23) and (1.27) are weaker than those known for the

Helmholtz equation (see (3.10), (3.14) and (1.19)). We will explain later why in

this case we could not extend the known results for the Helmholtz equation to the
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Navier equation (see Remark 3.11). A related open problem in harmonic analysis

is the behavior of the space T (Rn) with respect to the Hardy-Littlewood maximal
operator.

Remark 1.4. The result given in (1.23) is sharp in the sense that the estimate is

false for r̃ ≤ 2.We give the details in the last section.

Remark 1.5. It would be interesting to give an alternative proof of estimates (1.24)

and (1.20) with the multiplier method in [22].

We recall certain well-known notions from the work of Kato [15] and Kato

a Yajima [16]. Let H be a self adjoint operator in a Hilbert space H, so that the
resolventRH (z) = (H − z)−1 is defined at least for -z )= 0.

We say that a densely defined closed linear operator T from H into itself is

H -supersmooth if

|〈RH (z)T ∗ f, T ∗ f 〉H| ≤ c‖ f ‖2H f ∈ D(T ∗), (1.28)

uniformly in -z )= 0. If T satisfies the weaker condition

|-〈RH (z)T ∗ f, T ∗ f 〉H| ≤ c‖ f ‖2H f ∈ D(T ∗), (1.29)

uniformly in -z )= 0, we say that T is H -smooth. Here T ∗ is the adjoint of T and
D(T ∗) is the domain of T ∗.

From the point of view of the Schrödinger evolution, (1.29) is equivalent to the

estimate ∫ ∞

−∞
‖Teit H f ‖2Hdt ≤ 2πc‖ f ‖2H f ∈ H. (1.30)

IfR(z) = ("∗+zI)−1 and V is a nonnegative real function inL2,α(R)n , (n−1)/2 <
r ≤ n/2, estimate (22) of Theorem 1.1, which is equivalent to the uniform bound

|〈R(z)(V 1/2f), V 1/2f〉L2 | ≤ c‖f‖2
L2

, (1.31)

is thus equivalent to the "∗-supersmoothing of the multiplication operator on Rn ,

n ≥ 3, with multiplier V 1/2. We also have, by (1.30),

∫ ∞

−∞
‖eit"∗

f‖2
L2(V )

dt ≤ C‖f‖2
L2

f ∈ L2. (1.32)

Similar results can be stated for the evolution wave equation, which in the case of

the Navier operator is the natural to consider.

Consider the following forward initial value problem:






∂t tu− "∗u = F(x, t), (x, t) ∈ Rn × R+, n ≥ 2,
u(x, 0) = f(x),
ut (x, 0) = g(x).

(1.33)
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Theorem 1.6. Let u(x, t) be a solution of (1.33) with f = g = 0 and, let V (x) be a
nonnegative function in L2,r (Rn) with (n− 1)/2 < r ≤ n/2 and n > 2. Then there

exists a positive constant C, only depending on n, such that the following a priori
estimate holds:

sup
x0∈Rn,R>0

1

R

∫

B(x0,R)

∫ ∞

0

∣∣∣D1/2x u(x, t)
∣∣∣
2
dtdx

≤ C ‖V‖L2,r
∫ ∞

0

‖F(·, t)‖2
L2(V−1)dt.

(1.34)

Theorem 1.7. Let u(x, t) be a solution of (1.33) with F = 0. If V (x) satisfies the
conditions of Theorem 1.6 then there exists a positive constant C, only depending
on n, such that for any γ ∈ R the following a priori estimates hold:

∫ ∞

0

‖Dγ
x u(·, t)‖2L2(V )

dt ≤ C ‖V‖L2,r
(
‖Dγ+1/2f‖2

L2
+ ‖Dγ−1/2g‖2

L2

)
,

n > 2,

(1.35)

sup
x0∈Rn,R>0

1

R

∫

B(x0,R)

∫ ∞

0

∣∣Dγ
x u(x, t)

∣∣2 dtdx≤C
(
‖Dγ f‖2

L2
+‖Dγ−1g‖2

L2

)
,

n > 1.

(1.36)

Remark 1.8. As above it would be of interest to obtain the above estimates by the

multiplier method, this would allow to prove lower estimates (see ([30])).

ACKNOWLEDGEMENTS. We would like to thank A. Carbery, E. Hernández, F.J.

Martin-Reyes and L. Vega for enlightening conversations and for suggesting proper

references.

2. The resolvent operator and the spectral measure

We introduce the Leray’s projection operator I − R, where I denotes the identity
matrix of order n, andR is defined via the Fourier transform by

(Rf)̂ (ξ) =
(
f̂(ξ) · ξ

|ξ |

)
ξ

|ξ | , ξ ∈ Rn, (2.1)

with f ∈ L2(Rn) and f̂(ξ) = ( f̂1(ξ), . . . , f̂n(ξ)). Observe thatRf can be written as
multiplication by the operator matrix (Ri R j ):

Rf = −
(
R1

(
n∑

j=1
R j f j

)
, . . . , Rn

(
n∑

j=1
R j f j

))
, (2.2)
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where R j for j = 1, . . . , n, are the Riesz transforms defined for any g ∈ L2(Rn),
via the Fourier transform, by

(R j g)̂ (ξ) = −i ξ j

|ξ | ĝ(ξ).

The following lemma is easy to prove using the Fourier transform.

Lemma 2.1. The following identities hold for functions h in the appropriate space:

R2h = Rh, (2.3)

(I−R)2h = (I−R)h, (2.4)

(I−R)Rh = R(I−R)h = 0, (2.5)

"Rh = ∇ div h, (2.6)

whereR is defined by (2.1) and I denotes the identity matrix of order n.

The following lemma relates resolvent operators of Navier equations and re-

solvent operators of Helmholtz equations using the Riesz transforms.

Lemma 2.2. Let z = γ + iε with ε )= 0 and f ∈ L2(Rn). The following identity
holds:

("∗+zI)−1f = 1

2µ + λ

(
" + z

2µ + λ

)−1
Rf+ 1

µ

(
" + z

µ

)−1
(I−R)f, (2.7)

whereR is given by (2.1) and

(" + z)−1f = ((" + z)−1 f1, (" + z)−1 f2, · · ·, (" + z)−1 fn).

Proof. Given f ∈ L2(Rn) we consider the resolvent operator ("∗ + zI)−1, and we
write

u = ("∗ + zI)−1f, (2.8)

or equivalently

("∗ + zI)u = f. (2.9)

Note that applying the projection R to both sides of this equation and, taking into

account that the operators R and "I commute, from (2.6) and (2.3), we get the

following vectorial equation:

(
" + z(2µ + λ)−1

)
Ru = (2µ + λ)−1Rf,

and therefore,

Ru = (2µ + λ)−1
(
" + z(2µ + λ)−1

)−1
Rf. (2.10)
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Arguing in a similar way with the operator I−R, from (2.6) and (2.5), we get

(" + zµ−1)(I−R)u = µ−1(I−R)f,

and therefore,

(I−R)u = µ−1
(
" + zµ−1

)−1
(I−R)f. (2.11)

Since u = Ru+ (I−R)u, the result follows from (2.8), (2.10) and (2.11).

As a consequence we give a precise description of the spectral measure of the

operator "∗.

Lemma 2.3. If the weak limiting absorption principle holds for the operator "∗
in a Banach space B(Rn), for f, g ∈ S(Rn) ∩ B(Rn), where S(Rn) denotes the
Schwartz class, we have that

−
∫

Rn

"∗f(x)g(x)dx =
∫ ∞

0

ω〈dPω(f), g〉.

〈dPω(f), g〉 is given by the density function,

〈dPω(f), g〉 =
〈

1√
λ + 2µ

d̂σ√
ω

λ+2µ
∗Rf+ 1√

µ
d̂σ√

ω
µ

∗ (f−Rf), g
〉

dω

2
√

ω
,

where 〈·, ·〉 denotes the scalar product inCn, dσk denotes the measure on the sphere
of radius k induced by the Lebesgue measure of Rn, R is defined by (2.1) and,

h ∗ f = (h ∗ f1, . . . , h ∗ fn).

Proof. By polarization we may reduce to the case g = f.
Recall Stone’s formula for the distribution function of the spectral projection

measures of any selfadjoint extension of −"∗. Let [a, b] ⊂ (0,∞), then

〈(P(b) − P(a))f, f〉

= lim
δ→0+

lim
ε→0+

1

2π i

∫ b+δ

a+δ

〈(
(−"∗−(ω + iε)I)−1− (−"∗ − (ω − iε)I)−1

)
f, f

〉
dω.

From (1.14), we have that

∣∣∣
〈
(−"∗ − (ω ± iε)I)−1f, f

〉∣∣∣ ≤ c ‖f‖2B,

and hence, using bounded convergence and the continuity of the spectrum,

〈(P(b) − P(a))f, f〉

= 1

2π i

∫ b

a

lim
ε→0+

〈(
(−"∗ − (ω + iε)I)−1− (−"∗− (ω − iε)I)−1

)
f, f

〉
dω.
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Then, using (2.7), together with the following distributional identity for k ∈ R

lim
ε→0+

(−" − k ± iε)−1h

= p.v.

∫

Rn

1

|ξ |2 − k
ĥ(ξ)eix ·ξ dξ ∓ iπ

2
√
k
χ{k>0}d̂σ√

k ∗ h(x),
(2.12)

where χ{k>0} takes the value 1 if k > 0 and 0 otherwise, we get that

〈(P(b) − P(a))f, f〉

=
∫ b

a

〈(
1√

λ + 2µ
d̂σ√

ω
λ+2µ

I ∗R+ 1√
µ
d̂σ√

ω
µ

I ∗ (I−R)

)
f, f

〉
dω

2
√

ω
.

Now we can reach the point a = 0 by monotone convergence, since the quantity

inside the previous integral is nonnegative.

Using the spectral operational calculus, the above description of the spectral

resolution allows us to define extensions of the operators given by spectral functions

f (ω) as, for instance, solutions of the initial value problem of the wave equation

(see Subsection 3.2) (
∂2

∂t2
− "∗

)
u = 0,

or of the Schrödinger equation. This formula reduces the operational calculus to the

study of Stein-Tomas operator given by convolution with 1√
k
d̂σ√

k . Boundedness

properties of this operator suggest the appropriate domains for selfadjoint exten-

sions of the operator "∗ itself.

3. Proofs

3.1. Spectral Navier equation

It is natural, after Lemma 2.2, to study the behavior of singular integrals in the

spaces considered in the statements of the theorems. We start by recalling some

definitions.

Definition 3.1. Let w be a measurable nonnegative function in L1(oc(Rn). For 1 <
p < ∞, we will say that w is a weight in the Ap class, and we will write w ∈ Ap,
if and only if for any cube Q in Rn we have that

(
1

|Q|

∫

Q

w

)(
1

|Q|

∫

Q

w−1/(p−1)
)p−1

≤ C

with C a constant independent of Q.
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We will say that w is a weight in the A1 class, and we will write w ∈ A1, if
and only if Mw(x) ≤ C w(x), for almost all x ∈ Rn, where M denotes the usual

Hardy-Littlewood maximal operator, defined for any g ∈ L1(oc(Rn) by

Mg(x) = sup
r>0

1

Br

∫

Br

|g(x − y)| dy,

where Br is the Euclidean ball centered at the origin with radius r.
For 1 ≤ p < ∞, the smallest constant C satisfying the corresponding previous

condition is called the Ap constant for w.

From this definition, it is easy to prove that Ap ⊂ Aq if p < q. For more
information about the Ap class see [11].

Lemma 3.2. Let 1 < p < ∞ and w ∈ Ap. For j = 1, . . . , n, the following
inequalities hold:

‖R j g‖X ≤ c ‖g‖X , (3.1)

‖R j g‖L p ≤ c ‖g‖L p , (3.2)

‖R j g‖L p(w) ≤ cw ‖g‖L p(w), (3.3)

where R j are the Riesz transforms, c is a constant independent of g, and cw is a

constant depending on the Ap constant for w but independent of g.

Proof. This lemma gathers several known estimates. The proofs of (3.2) and (3.3)

can be found in [5] and [9] respectively.

Let us prove (3.1) (see [21], where a very general class of spaces is considered).

For k ∈ Z, let χk = χCk ,where Ck is given by (1.17). With this notation, since
R j is a linear operator, we can write

g =
∑

k∈Z
gχk and R j g =

∑

k∈Z
R j (gχk),

and therefore,

‖R j g‖X =
∑

m∈Z
2(m+1)/2‖χmR j g‖L2

≤
∑

m∈Z
2(m+1)/2∑

k∈Z
‖χmR j (gχk)‖L2 .

(3.4)

On the other hand, taking into account that

R j g(x) = cn p.v.

∫

Rn

x j − y j

|x − y|n+1 g(y) dy,

where cn = 0((n + 1)/2)π−(n+1)/2, for m ∈ Z fixed, using the Cauchy-Schwarz

inequality, it is easy to prove that if x ∈ Cm, then

|R j (gχk)(x)| ≤
{
c 2−mn 2kn/2‖gχk‖L2 if k < m − 1,

c 2−kn/2‖gχk‖L2 if k > m + 1.
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Thus, if we split the second sum in (3.4) into three parts, for k < m − 1, for
m − 1 ≤ k ≤ m + 1 and for k > m + 1, we have that

‖R j g‖X ≤ c
∑

k∈Z
2kn/2‖gχk‖L2

∑

m>k+1
2−m(n−1)/2

+
∑

m∈Z
2(m+1)/2

m+1∑

k=m−1
‖R j (gχk)‖L2

+ c
∑

k∈Z
2−kn/2‖gχk‖L2

∑

m<k−1
2m(n+1)/2.

The result follows from here using (3.2) with p = 2.

Given a nonnegative function in a Morrey-Campanato space, the following

result (see [7, Lemma 1]) gives a method to construct a majorizing function in the

A1 class, and consequently in the A2 class, within the same Morrey-Campanato

space.

Lemma 3.3. Let V be a nonnegative function in Lα,r (Rn), with 0 < α < n and

1 < r ≤ n/α. If r1 is such that 1 < r1 < r, thenW = (MVr1)1/r1 ∈ A1∩Lα,r (Rn),
where M denotes the usual Hardy-Littlewood maximal operator.

Furthermore, there exists a constant c > 0 independent of V, such that the A1
constant for W is less than c and

‖W‖Lα,r ≤ c ‖V‖Lα,r . (3.5)

Remark 3.4. Observe that V (x) ≤ W (x) for almost all x ∈ Rn.

In order to construct a majorizing function in the A1 class for a nonnegative

function in a Dp(Rn) space, which is in the same Dp(Rn) space, we will need the
following results, that can be found in [12] and [14] respectively (see [12, Lemma

5.1 in Chapter IV] and [14, Corollary 2.1]).

Lemma 3.5 (Rubio de Francia algorithm). Let E be a normed space of complex

functions with norm ‖ · ‖E , and let S be a sublinear operator (i.e. |S(aF + bG)| ≤
|a||S(F)| + |b||S(G)|, ∀ a, b ∈ C, ∀ F,G ∈ E) bounded in E with norm ‖S‖. If
SF ≥ 0 for all F ∈ E, then for all nonnegative V in E, the function

W =
∞∑

j=0
(2‖S‖)− j S j V

is also a nonnegative function in E such that

(i) V (x) ≤ W (x) for almost all x ∈ Rn,
(ii) ‖W‖E ≤ 2‖V‖E ,
(iii) SW (x) ≤ C W (x) for almost all x ∈ Rn, with C = 2‖S‖.
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Lemma 3.6. If 1 < p ≤ ∞, then the usual Hardy-Littlewood maximal operator is
bounded on Dp(Rn).

Proof. (See [14] for general Herz spaces).

Consider 1 < p < ∞ (the proof for p = ∞ is easier). Arguing as in the proof

of (3.1), taking into account that M is a sublinear operator, we have that

‖Mg‖Dp ≤
∑

m∈Z
2m(p−n)/p ∑

k∈Z
‖χmM(gχk)‖L p . (3.6)

On the other hand, for m ∈ Z fixed, using the Holder inequality, it is easy to prove
that if x ∈ Cm, then

|M(gχk)(x)| ≤
{
c 2−mn 2kn(p−1)/p‖gχk‖L p if k < m − 1,

c 2−kn/p‖gχk‖L p if k > m + 1.

Thus, if we split the second sum in (3.6) into three parts, for k < m − 1, for
m − 1 ≤ k ≤ m + 1 and for k > m + 1, we have that

‖Mg‖Dp ≤ c
∑

k∈Z
2kn(p−1)/p‖gχk‖L p

∑

m>k+1
2−m(n−1)

+
∑

m∈Z
2m(p−n)/p

m+1∑

k=m−1
‖M(gχk)‖L p

+c
∑

k∈Z
2−kn/p‖gχk‖L p

∑

m<k−1
2m .

The result follows from here using the fact that M is a bounded operator on L p(Rn)
for 1 < p ≤ ∞.

Remark 3.7. From Lemma 3.6 we know that if 1 < p ≤ ∞ then, the usual

Hardy-Littlewood maximal operator, M, is bounded on Dp(Rn). Thus, we can
apply Lemma 3.5 to E = Dp(Rn) with 1 < p ≤ ∞ and S = M, to conclude
that given a nonnegative function V in Dp(Rn) there exists a nonnegative W in

Dp(Rn) ∩ A1, and therefore in Dp(Rn) ∩ A2, such that V (x) ≤ W (x) for almost
all x ∈ Rn.

Furthermore, there exists a constant c > 0 independent of V, such that the A1
constant for W is less than c and

‖W‖Dp ≤ c ‖V‖Dp , 1 < p ≤ ∞.

Moreover, since the Maximal function of a radial function is also a radial function,

if V is a radial function, then W is also a radial function.
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We will use the following estimates for the resolvent of the Laplacian:

Theorem 3.8. Let z = γ + iε with ε )= 0, 1
p

+ 1
q

= 1 with 2
n+1 ≤ 1

p
− 1

q
≤ 2

n

if n > 2, or 2
3

≤ 1
p

− 1
q

< 1 if n = 2, and let V1 be a nonnegative function in

L2,r (Rn) with (n − 1)/2 < r ≤ n/2 and n > 2, and V2 ∈ T (Rn). If g ∈ L2(Rn)
then, there exists a constant c > 0 independent of z, g, V1 and V2 such that the
following a priori estimates hold:

‖(" + z)−1g‖X∗ ≤ c |z|−1/2‖g‖X , (3.7)

‖(" + z)−1g‖Lq ≤ c |z|
n
2

(
1
p
− 1
q

)
−1‖g‖L p , (3.8)

‖(" + z)−1g‖L2(V1) ≤ c ‖V1‖L2,r ‖g‖L2(V−1
1 )

, (3.9)

‖(" + z)−1g‖L2(V2) ≤ c |z|−1/2|||V2||| ‖g‖
L2(V−1

2 )
. (3.10)

Besides, the weak limiting absorption principle holds for " in the spaces X (Rn),
Lq(Rn), L2(V1) and L

2(V2) for the Sommerfeld radiation condition (1.12).

Theorem 3.9. Let p such that 1
n+1 ≤ 1

p
− 1

2
≤ 1

n
, and let V1 be a nonnegative

function in L2,r (Rn) with (n − 1)/2 < r ≤ n/2 and n > 2, and V2 ∈ T (Rn). If
g ∈ C∞

0 (Rn) and we consider the unique solution v of equation (1.11) satisfying
(1.12), then, there exists a constant c > 0 independent of k, g, V1 and V2 such that
the following a priori estimates hold:

‖∇ v‖X∗ ≤ c ‖g‖X , (3.11)

sup
x0,R>0

1

R

∫

B(x0,R)
|v(x)|2dx ≤ c k

2n
(
1
p
− 1
2

)
−3‖g‖2L p , (3.12)

sup
x0,R>0

1

R

∫

B(x0,R)
|D1/2v(x)|2dx ≤ c ‖V1‖L2,r ‖g‖2L2(V−1

1 )
, (3.13)

‖∇ v‖L2(V2) ≤ c |||V2||| ‖g‖
L2(V−1

2 )
, (3.14)

where D1/2v is defined via the Fourier transform as (D1/2v)̂ (ξ) = |ξ |1/2v̂(ξ), ξ ∈
Rn.

The results given in (3.7) and (3.11) can be found essentially in [17] (see [17,

Lemma 2.4]). For a complete proof see [24] (see also [1] and [2]). The result given

in (3.8) can be found in [18] and, (3.9) and (3.13) in [28]. The result given in (3.12)

can be found in [27] (see also [23]). Finally, the results given in (3.10) and (3.14)

can be found in [4].

The estimates (3.10) and (3.14) are a generalization of (3.7) and (3.11) respec-

tively. Estimates related to (3.9) can be found in [8].

Remark 3.10. From (1.19), the estimates (3.10) and (3.14) also hold if we replace

|||V2||| with ‖V2‖Dr̃ , with r̃ > 2 and V2 being a radial function.
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Proof of Theorem 1.1. We start with the proof of (1.20). Given f ∈ L2(Rn), from
(2.7), it is enough to prove the result for the operator

(" + z)−1Rf. (3.15)

Using (2.2), the triangular inequality, (3.7) and (3.1) we have that

∥∥∥(" + z)−1Rf
∥∥∥
X∗ ≤

n∑

i=1

∥∥∥∥∥(" + z)−1 Ri

(
n∑

j=1
R j f j

)∥∥∥∥∥
X∗

≤ c |z|−1/2
∥∥∥∥∥Ri

(
n∑

j=1
R j f j

)∥∥∥∥∥
X

≤ c |z|−1/2‖f‖X.

We omit the proof of (1.21) since it is similar to the proof of (1.20), but using (3.8)

and (3.2) instead of (3.7) and (3.1). The proofs of (1.22) and (1.23) require an

additional argument because in order to use (3.3) for p = 2 we need a weight in the

A2 class.

As before, it is enough to prove (1.22) and (1.23) for the operator given in

(3.15).

Let W1 =
(
MV

r1
1

)1/r1 , with 1 < r1 < r. Observe that under the conditions of

the theorem, from Lemma 3.3 we know that W1 ∈ A2 ∩ L2,r (Rn).
Using (2.2) and the triangular inequality, since V1(x) ≤ W1(x), we have that

∥∥∥(" + z)−1Rf
∥∥∥
L2(V1)

≤
n∑

i=1

∥∥∥∥∥(" + z)−1 Ri

(
n∑

j=1
R j f j

)∥∥∥∥∥
L2(V1)

≤
n∑

i=1

∥∥∥∥∥(" + z)−1 Ri

(
n∑

j=1
R j f j

)∥∥∥∥∥
L2(W1)

.

From here, applying (3.9), (3.5) with α = 2, and (3.3) with p = 2 we have that

∥∥∥(" + z)−1Rf
∥∥∥
L2(V1)

≤ c ‖W1‖L2,r
n∑

i=1

∥∥∥∥∥Ri

(
n∑

j=1
R j f j

)∥∥∥∥∥
L2(W−1

1 )

≤ cW1 ‖V1‖L2,r ‖f‖L2(W−1
1 )

≤ cW1 ‖V1‖L2,r ‖f‖L2(V−1
1 )

.

Since from Lemma 3.3 we know that cW1 is less than a constant independent of V1,
estimate (1.22) follows from here.

Estimate (1.23) can be obtained in a similar way taking into account that, as

we explained in Remark 3.7, given V2 satisfying the hypotheses of the theorem,
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we can construct a majorizing function W2 ∈ Dp(Rn) ∩ A2 which properties are

similar to the properties of W1. In this case, instead of (3.9) we have to use (3.10)
and Remark 3.10.

The existence of the weak limit follows in a standard way (see [1]).

To finish the proof, it remains to show that for f ∈ C∞
0 (Rn), the solution

R(ω2 + i0)f defined by (1.15) satisfies the Kupradze radiation conditions, given in
(1.6) and (1.7).

Consider f ∈ C∞
0 (Rn), and write u = R(ω2 + i0)f. From (2.7), and using the

weak limiting absorption principle for the Helmholtz equation, we can write that

u = 1

2µ + λ
R(k2p + i0)Rf+ 1

µ
R(k2s + i0)(I−R)f, (3.16)

where kp and ks are defined by (1.3) and R(k2 + i0) by

R(k2 + i0)g := weak− lim
z→k2, -z>0

(" + z)−1g. (3.17)

As a consequence, since the operators R(k2 + i0) and R j , j = 1, . . . , n, commute
with the operators ∂α, α ∈ Rn, we know that u ∈ C∞(Rn).

On one hand, using the Fourier transform, it is easy to prove that ∇ div Rh =
∇ div h, for h in the appropriate space. Using this identity, since the operators
R(k2 + i0) commute with the operators ∂α, α ∈ Rn, from (3.16), we obtain that

up = − 1

k2p
∇ div u = − 1

ω2
R(k2p + i0)∇ div f.

For f ∈ C∞
0 (Rn), we have that ∇ div f ∈ C∞

0 (Rn), and therefore, by Theorem 3.8

we know that for j = 1, . . . , n, R(k2p + i0) ∂ j div f satisfies the corresponding
Sommerfeld outgoing radiation condition, that is

(∂r − ikp)R(k2p + i0) ∂ j div f = o(r−(n−1)/2).

Hence, u satisfies the condition (1.6).

On the other hand, since u satisfies the equation (1.8), we have that

u = 1

ω2
f− µ

ω2
"Iu− (λ + µ)

ω2
∇ div u.

Using this identity, (1.3) and (2.6), we can write that

us = u− up = u− 1

k2p
∇ div u

= 1

ω2
f− µ

ω2
"Iu+ µ

ω2
∇ div u

= 1

ω2
f+ µ

ω2
"I(R− I)u.
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From here, using the identities (2.7), (2.5) and (2.4), we have that

us = 1

ω2
f+ 1

ω2
R(k2s + i0)"I(R− I)f

= 1

ω2
f+ 1

ω2
R(k2s + i0)(∇ div f− "If).

(3.18)

For f ∈ C∞
0 (Rn),we have that∇ div f−"If ∈ C∞

0 (Rn). From here and from (3.18)
we conclude that u satisfies condition (1.7) arguing as we did for the condition

(1.6).

Proof of Theorem 1.2. The proofs of (1.24) and (1.25) are similar to the proof of
(1.20), but using (3.11) and (3.12) instead of (3.7) respectively.

Finally, the proofs of (1.26) and (1.27) are similar to the proofs of (1.22) and

(1.23), but using (3.13) instead of (3.9) and (3.14) instead of (3.10) respectively.

Remark 3.11. We leave as an open question the extension of the results given in

(3.10) and (3.14) for the Helmholtz equation to the Navier equation. This is due to

the fact that (in the present work) given a radial nonnegative function with bounded

everywhere X-rays transform we need a majorizing function in the A2 class with

bounded everywhere X-rays transform.

3.2. Elasticity equation

Let us start by recalling that for a given nonnegative function V ∈ L2,r (Rn), with
(n − 1)/2 < r ≤ n/2, and n > 2, by taking the limiting absorption principle in the
sense of (3.9), if f ∈ L2(Rn) ∩ L2(V−1), for appropriate spectral functions h, we
can use the functional calculus to write that

h(−"∗)f =
∫ ∞

0

h(ω)dPω(f)(x),

where the projection operator is given by

dPω(f)= 1

2
√

λ+2µ√
ω

(
d̂σ√

ω
λ+2µ

∗Rf
)

+ 1

2
√

µ
√

ω

(
d̂σ√

ω
µ

∗ (I−R)f

)
. (3.19)

In particular, the solution of problem (1.33) with F = g = 0 is given by the evolu-

tion operator

S1(t)f = cos(t
√

−"∗)f =
∫ ∞

0

cos(t
√

ω)dPω(f), (3.20)

and with F = f = 0 by

S2(t)g = sin(t
√−"∗)√−"∗ g =

∫ ∞

0

sin(t
√

ω)√
ω

dPω(g). (3.21)
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Theorem 1.7 follows from the expression we obtained for the spectral measure

(only the control of the imaginary part of the resolvent is needed). We will use

the following weighted extension theorem for the Fourier transform and also the

endpoint trace lemma.

Lemma 3.12 (See [26]). Let Sn−1s be the sphere of radius s in Rn, and let V be a

nonnegative function in V ∈ L2,r (Rn) with (n− 1)/2 < r ≤ n/2 and n > 2. Then,
there exists a positive constant C only depending on n such that

‖ĝdσs‖L2(V ) ≤ C s1/2‖V‖L2,r ‖g‖
L2(Sn−1s )

. (3.22)

Lemma 3.13 (See [2]). Let Sn−1s be the sphere of radius s inRn. Then, there exists
a positive constant C only depending on n such that

sup
x0∈Rn,R>0

1

R

∫

B(x0,R)

∣∣∣∣

∫

Sn−1s

ei x ·ξ f (ξ)dσs(ξ)

∣∣∣∣
2

dx ≤ C

∫

Sn−1s

| f (ξ)|2dσs(ξ). (3.23)

Proof of Theorem 1.7. Assume g = 0. It is enough to prove (1.35), from (3.20) and

(3.19), for the following operator:

S̃1(t)f =
∫ ∞

0

eit
√

ω
(
d̂σ√

ω ∗Rf
) dω

2
√

ω

=
∫ ∞

0

eitω
(
d̂σω ∗Rf

)
dω

=
(
χ(0,∞)(·)(d̂σ (·) ∗Rf)

)̂
(−t).

Taking into account that

D
γ
x

(
d̂σω ∗ f

)
= ωγ

(
d̂σω ∗ f

)
, (3.24)

we have that

D
γ
x S̃1(t)f(x) =

(
(·)γ χ(0,∞)(·)(d̂σ (·) ∗Rf)(x)

)̂
(−t).

Therefore, using Fubini, Plancherel’s identity and (3.22) we can write

∫ ∞

0

‖Dγ
x S̃1(t)f‖2L2(V )

dt =
∥∥∥∥∥

(∫ ∞

0

|tγ (d̂σ t ∗Rf)|2dt
)1/2∥∥∥∥∥

2

L2(V )

=
∫ ∞

0

t2γ
∥∥∥(R̂fdσt )

̂(−x)
∥∥∥
2

L2(V )
dt

≤ C ‖V‖L2,r
∫ ∞

0

t2γ+1
∫

|ξ |=t

∣∣∣R̂f(ξ)
∣∣∣
2
dσt (ξ)dt

= C ‖V‖L2,r
∫ ∞

0

∫

|ξ |=t

∣∣∣(Dγ+1/2Rf)̂ (ξ)
∣∣∣
2
dσt (ξ)dt.
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Using polar coordinates, the fact that the operator R commutes with the operators

Dγ , γ ∈ R, Plancherel’s identity, (2.2) and (3.2) for p = 2, we get

∫ ∞

0

‖Dγ
x S̃1(t)f‖2L2(V )

dt ≤ C ‖V‖L2,r
∫

Rn

∣∣∣(RDγ+1/2f)̂ (ξ)
∣∣∣
2
dξ

≤ C ‖V‖L2,r ‖Dγ+1/2f‖2
L2

.

Estimate (1.36) can be proved in a similar way, but using (3.23) instead of (3.22).

We omit the proof of Theorem 1.7 in the case f = 0 because, from (3.21) and

(3.19), it is similar to the above case but using the operator

S̃2(t)g =
∫ ∞

0

eit
√

ω
(
d̂σ√

ω ∗Rg
) dω

2ω
.

Proof of Theorem 1.6. This theorem requires the estimates for the whole resolvent.
Causality suggests the use of the outgoing resolvent to obtain the solution of the

forward wave problem (1.33). In a similar fashion the solution of the backward

problem would be given by the incoming resolvent. In fact, it is clear, using Fourier

transform and assuming F to be in an appropriate space, that

u(x, t) = lim
ε→0−

∫

R
eitτ

(
"∗ + (τ + iε)2I

)−1
((G(·, ·))̂ (τ ))(x)dτ, (3.25)

whereG(x, t) = F(x, t)χ(0,∞)(t), is solution of (1.33). The only thing that remains
to be proved is that this solution satisfies the initial conditions given in (1.33).

Using the functional calculus and complex integration, since G(x, t) = 0 for

t < 0, we have that

u(x, 0) = lim
ε→0−

∫

R

(
"∗ + (τ + iε)2I

)−1
((G(·, ·))̂ (τ ))(x)dτ

= lim
ε→0−

∫

R

∫

R
e−i tτ

∫ ∞

0

1

−ω + (τ + iε)2
dPω(G(·, t))(x)dτdt

=
∫

R

∫ ∞

0

lim
ε→0−

∫

R
e−i tτ

1

−ω + (τ + iε)2
dτ dPω(G(·, t))(x)dt

=
∫

R

∫ ∞

0

sin(t
√

ω)

2
√

ω
χ(−∞,0)(t)dPω(G(·, t))(x)dt = 0.

In a similar way it can be proved that ut (x, 0) = 0.
On the other hand,

D
1/2
x u(x, t)= lim

ε→0−

∫

R
eitτD

1/2
x

(
"∗ + (τ + iε)2I

)−1
((G(·, ·))̂ (τ ))(x)dτ

= lim
ε→0−

(Hε(·, x))̂ (−t),
(3.26)

where Hε(τ, x) = D
1/2
x

(
"∗ + (τ + iε)2I

)−1
((G(·, ·))̂ (τ ))(x).
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Using Plancherel’s identity, Fubini and (1.26) we can write

sup
x0∈Rn, R>0

1

R

∫

B(x0,R)

∫

R

∣∣(Hε(·, x))̂ (−t)
∣∣2 dtdx

= sup
x0∈Rn, R>0

1

R

∫

B(x0,R)

∫

R

∣∣∣∣D
1/2
x

(
"∗ + (τ + iε)2I

)−1
((G(·, ·))̂ (τ ))(x)

∣∣∣∣
2

dτdx

≤ C ‖V‖L2,r
∫

R

∫

Rn

∣∣((G(·, ·))̂ (τ ))(x)
∣∣2 V−1(x)dx dτ

= C ‖V‖L2,r
∫ ∞

0

‖F(·, t)‖2
L2(V−1)dt.

The result follows taking the limit as ε → 0− and, using (3.26) and (1.26).

4. Appendix

In this section we will show that estimate (1.23) does not hold for r̃ ≤ 2. To do so,
we will prove that:

‖R(ω2 + i0)f‖L2(V ) ≤ c ω−1‖V‖Dr̃ ‖f‖L2(V−1),

does not hold for r̃ ≤ 2, where R(ω2 + i0)f is the solution of equation (1.8) given
by (1.15).

From (1.18), it is enough to prove the result for r̃ = 2.
We will consider the case where the Navier equation (1.8) is the Helmholtz

equation (1.11), that is, the case where µ + λ = 0 in (1.2), f is a scalar function g

and ω = k.
Taking into account the following identity, which can be obtained from (2.12)

and (3.17),

R(k2+i0)g(x)=p.v.
∫

Rn

1

−|ξ |2+k2 ĝ(ξ)eix ·ξ dξ+ iπ

2k
χ{k>0}d̂σk∗g(x), x ∈ Rn,

we claim that it is enough to prove that the following estimate does not hold:

‖d̂σk ∗ g‖L2(V ) ≤ c ‖V‖D2‖g‖L2(V−1). (4.1)

A scaling argument shows that we may assume k = 1 without loss of generality.

Notation. Throughout this section, for nonnegative quantities X and Y we will

write X ! Y (X " Y ) to denote the existence of a positive constant C , depending

only on the dimension n, such that X ≤ CY (X ≥ CY ). We will write X ∼ Y if

both X ! Y and X " Y hold.

The following lemma proves that (4.1) does not hold.
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Theorem 4.1. Given a natural number N sufficiently large, there exist a nonnega-

tive radial function VN in D2(Rn), n ≥ 2, with ‖VN‖D2 = 1, and a function gN in

L2(V−1
N ) such that

‖d̂σ ∗ gN‖2
L2(VN )

" log N ‖gN‖2
L2(V−1

N )
,

where dσ denotes the induced Lebesgue measure on the unit sphere.

In order to prove Theorem 4.1 we need the following technical results that

can be found in [4, 10] and [3] (see [4, Lemma 5] or estimate [10, (2.4.2)] and, [3,

Section 2]).

Lemma 4.2. For k = 0, 1, 2, . . . , let {Y km /m = 1, 2, . . . , ak} be an orthonormal
basis of spherical harmonics of degree k. Given a nonnegative radial function V
and a function g in L2(Rn), n ≥ 2, we have that

‖d̂σ ∗ g‖2
L2(VN )

=
∞∑

k=0

ak∑

m=1

∣∣∣∣

∫ ∞

0

tn/2 Jν(k)(t)gkm(t) dt

∣∣∣∣
2 ∫ ∞

0

|Jν(k)(r)|2 r V (r) dr,
(4.2)

where ν(k) = k + (n − 2)/2, Jν denotes the Bessel function of order ν, and gkm
are the coefficients of g in its spherical harmonic expansion, i.e.

g(x) =
∞∑

k=0

ak∑

m=1
gkm(|x |)Y km

(
x

|x |

)
, x ∈ Rn.

Lemma 4.3. Given ν ≥ 1/2, let K be the unique natural number such that ν2/3 ≤
2K ≤ 2ν2/3. Then, for 1 ≤ p < ∞, we have that

∫ 2ν

ν+ν1/3
|Jν(r)|p dr ∼ ν(1−p)/3

K∑

j=0
2 j (1−p/4). (4.3)

Lemma 4.4. Given ν ≥ 1/2, there exists a positive constant A independent of ν
such that if r ∈

[
ν + ν1/3, 2ν

]
, then

Jν(r) = cos θν(r)√
2π (r2 − ν2)1/4

+ γν(r), (4.4)

where

θν(r) = (r2 − ν2)1/2 − ν arccos
(ν

r
− π

4

)
(4.5)

and

|γν(r)| ≤ A

(
ν2

(r2 − ν2)7/4
+ 1

r

)
. (4.6)
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Proof of Theorem 4.1. For N is sufficiently large, we can write ν = ν(N ) =
ν(() = ( + (n − 2)/2 with ( ∈ N such that 2N ≤ ν ≤ 2N+1.

For |x | ∈
[
2N , 2N+2] , let VN (x) = CNhN (|x |) where

hN (r) = |r − ν|−1/2
[
log

(
4ν

|r − ν|

)]−1
χ[2N ,2N+2](r)

and CN = 1/(2‖hN‖D2); and for |x | /∈
[
2N , 2N+2] , we define VN (x) as a nonneg-

ative radial function such that VN ∈ D2(Rn) and ‖VN‖D2 = 1.

Observe that since ‖hN‖D2 ∼ 2N/2 ∼ ν1/2, then

CN ∼ ν−1/2. (4.7)

For x ∈ Rn, we also define,

gN (x) = χ[ν+ν1/3,2ν](|x |) sign (Jν(|x |)) Y (
1

(
x

|x |

)
.

It is easy to see that

‖gN‖2
L2(V−1

N )
! νn+1,

and therefore, it is enough to prove that

‖d̂σ ∗ gN‖2
L2(VN )

" log N νn+1.

Using (4.2) and (4.3) with p = 1, for this particular function gN , we can write

‖d̂σ ∗ gN‖2
L2(VN )

=
(∫ 2ν

ν+ν1/3
tn/2|Jν(t)| dt

)2 ∫ ∞

0

|Jν(r)|2 r VN (r) dr

∼ νn

(
K∑

j=0
23 j/4

)2 ∫ ∞

0

|Jν(r)|2 r VN (r) dr,

where K is the unique natural number such that ν2/3 ≤ 2K ≤ 2ν2/3. Therefore,

‖d̂σ ∗ gN‖2
L2(VN )

∼ νn+1
∫ ∞

0

|Jν(r)|2 r VN (r) dr

" νn+2
K−2∑

j=0

∫ ν+2 j+1ν1/3

ν+2 jν1/3
|Jν(r)|2 VN (r) dr.

Using (4.4) and (4.7), for this particular function VN , we have that

‖d̂σ ∗ gN‖2
L2(VN )

" νn+2/3
K−2∑

j=0
2− j

[
log

(
ν2/32− j

)]−1
I j , (4.8)
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where

I j =
∫ ν+2 j+1ν1/3

ν+2 jν1/3
| cos θ(r)+

√
2π(r2−ν2)1/4hν(r)|2 dr, j = 0, . . . , K−2. (4.9)

For each j, we define

Bj =
{
r ∈

[
ν + 2 jν1/3, ν + 2 j+1ν1/3

]
: |cos θν(r)| ≥ 1/2

}
, (4.10)

where θν(r) is given by (4.5).

For any natural number m such that m ≤ K − 2 (this is possible for N large

enough), using (4.6), one can prove that if r ∈
[
ν + 2mν1/3, ν + 2K−1ν1/3

]
, then

|
√
2π(r2 − ν2)1/4hν(r)| ≤ 4

√
π A2−3m/4. (4.11)

Therefore, if we choose the natural number m such that 4
√

π A2−3m/4 ≤ 1/4
(again, this is possible for N large enough), from (4.9), (4.10) and (4.11), we have

that

I j "
∫

Bj

dr ∼ 2 jν1/3, j = m, . . . , K − 2.

Using this estimate in (4.8), and the fact that ν2/3 ∼ 2K ∼ 22N/3, we get that

‖d̂σ ∗ gN‖2
L2(VN )

" νn+1
K−2∑

j=m

(
log 2K− j

)−1
∼ νn+1 log K ∼ νn+1 log N ,

whenever K ≥ m/2 (as before, this is possible for N large enough).

Remark 4.5. Notice that the weights VN defined in the proof of Theorem 4.1 do

not belong to Dp if p > 2.

Remark 4.6. [4, Theorem 3] gives a characterization of the weights that belong to

T in terms of a restriction theorem for spheres. More precisely, Theorem 3 states

that for n ≥ 2, V ∈ T if and only if

‖d̂σk ∗ g‖L2(V ) ! |||V ||| ‖g‖L2(V−1). (4.12)

As a consequence of Theorem 4.1 and (4.12), we have that if p ≤ 2, Dp is not

continuously included in T .
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[18] C. KENIG, A. RUIZ and C. SOGGE, Uniform Sobolev inequalities and unique continuation
for second order constant coefficient differential operators, Duke Math. J. 55 (1987), 329–
347.

[19] V. D. KUPRADZE, “Three-Dimensional Problems of Elasticity and Thermoelasticity”,
North-Holland, Amsterdam, 1979.

[20] R. LEIS, “Initial Boundary Value Problems in Mathematical Physics”, John Wiley & Sons,
New York, 1986.

[21] X. LI and D. YANG, Boundedness of some sublinear operators on Herz spaces, Illinois J.
Math. 40 (1996), 484–501.

[22] B. PERTHAME and L. VEGA, Morrey-Campanato estimates for Helmholtz equations, J.
Funct. Anal. 164 (1999), 340–355.

[23] A. RUIZ, Recovery of the singluarities of a potential from fixed angle scattering data,
Comm. Partial Differential Equations 26 (2001), 1721–1738.

[24] A. RUIZ, Harmonic analysis and inverse problems,
http://web.uam.es/gruposinv/inversos/publicaciones/Inverseproblems.pdf

[25] A. RUIZ and A. VARGAS, Partial recovery of a potential from backscattering data, Comm.
Partial Differential Equations 30 (2005), 67–96.
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28040 Madrid, Spain
juanantonio.barcelo@upm.es

Instituto de Matemáticas
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Instituto de Matemáticas Unidad Cuernavaca
Universidad Nacional Autónoma de México
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