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LIMITING BEHAVIOR OF REGULAR FUNCTIONALS OF EMPIRICAL DISTRIBUTIONS
FOR STATIONARY *-MIXING PROCESSES!

By Pranab Kumar Sen

University of North Carolina, Chapel Hill

SUMMARY. For a stationary *-mixing stochastic process, the law of iterated
logarithm, asymptotic normality and weak convergence to Brownian motion processes
are established for von Mises' (1947) differentiable statistical functionals and

Hoeffding's (1948) U-statistics. A few applications are also sketched.

1. INTRODUCTION
Let {Xi,—w<i<w} be a stationary *-mixing stochastic process defined on a
probability space (2,.A,P). Thus, if M j; and64¢kin be respectively the o-fields
. k ©
generated by {Xi’ i<k} and {Xi,12k+n}, and if, AeA_ _ and BEJ%k+n, then for every

k (-o<k<~) and n
|p(aB) - P(A)P(B)| < ¥_ P(A)P(B), (1.1)

where wn ¥+ 0 as n t ©, Further conditions on {wn} will be stated as and when
necessary. We may refer to Blum, Hanson and Koopmans (1963) and Philipp
(1969 a,b,c) for detailed treatment of *-mixing processes in the context of the
limiting behavior of sums of the X

We denote the marginal distribution function (d.f.) of Xi by F(x), xeRp,

the p(>1)-dimensional Euclidean space. Consider then a functional

6(F) = fl;f,ﬁlf g(xp 5o X JAF G ). n dF(x ), (1.2)
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defined over F= {F: |6(F)|<®}, where g(xl,...,xm) is symmetric in its m(>1)
arguments. We consider here the following two estimators of O6(F). For a

sample {Xl,...,Xn}, the empirical d.f. is defined as

Fn(x) = n_l 2121 c(x—Xi), X€RP, (1.3)

where c(u) is equal to one only when all the p components of u are non-negative;
otherwise, c(u) = 0. Then, in the same fashion as in von Mises (1947), a dif-

ferentiable statistical functional G(Fn) is defined as

60(F) = [ b [ g(xyseensx MF (x))...dF_(x )

(1.4)
- in=1...21“=1 g(X, ,...,X, ), n>1,
1 m 1 m
which is the corresponding functional of the empirical d.f. Also, as in Hoeffding
(1948), we define a U-statistic
u = O I g(xil,...,xim), n>m, (1.5)
where the summation Z: extends over all possible 1<i,<...<i <nm.

Under suitable moment conditions on g and on {wn}, to be stated in section 2,
the following three problems are studied here: (i) asymptotic normality of
n%[G(Fn)—G(F)] and n%[Un—e(F)], (ii) the law of iterated logarithm for G(Fn) and
Un’ and (iii) weak convergence of continuous sample path versions of the processes
{n_%k[e(Fk)—G(F)], k>1} and {n_%k[Uk-B(F)], kz;} to processes of Brownian motion.
It may be noted that (i) is a special case of (iii), and is established under
less stringent conditions.

The main results along with the preliminary notions are presented in section 2.
Certain useful lemmas are considered in section 3, and with the aid of these, the

proofs of the main results are outlined in section 4. The last section deals



deals with a few applicatioms.

We may note that for m=1, 6(Fn)=Un=n_1 2121 g(Xi), and the corresponding

results have already been studied by Ibragimov (1962), Billingsley (1968),
Reznik (1968), and Philipp (1969a,b,c), among others. Hence, in the sequel

we shall exclusively consider the case of m>2. We may also remark that the

above mentioned authors have considered the general ¢-mixing processes [where the

right hand side of (1.1) is ¢nP(A), and ¢n+0 as n>°] which contain *-mixing

processes as special cases. The simple proof to be considered in the current

paper does not go through for a general ¢-mixing process. Also, the reverse

martingale property of Un [cf. Berk (1966)] or related properties for B(Fn)

do

not hold for ¢-mixing (or *-mixing) processes, so that an alternative approach

of Miller and Sen (1972), studied for independent processes, does not seem to be

seems to be needed for a general ¢-mixing process.

2. STATEMENT OF THE RESULTS

For every c: 0<c<m, we let

8, (Kyseenx ) = fRﬁ'(&l-c)f g(x e e ex JAF(x 4g) e dF(x ),

so that g, = B8 (F) and g, = 8 Also, let

= - 92 .
& p = G n® = Elg (Key (K01 - 020, w20;

2 2 - ®
0% = o2(F) 0% 2 Zh=1 IR
Then, we assume that (i)

0<o?<e,

and (ii) for some r(>2),

readily adaptable. An altogether different and presumably more involved proof

(2.1)

(2.2)

(2.3)

(2.4)



v, = II;fnﬁf Ig(xl,---,xm)lr dF (x;) .. -dF (x ) <.

Finally, we define for every non-negative d,

d %

A @) = [ o0 G gl and ar) = I70 Ge)) Py,

Note that Ad(ll))<°‘> = Ad,(w)<oo for all 0<d'<d, and
[a,(¥)<=] = [A%(p)<e].
Then, we have the following two theorems.

Theorem 1. If_Am/2(¢)<w, (2.4) and (2.5) (with r=2) hold, then

. X
Lim 5 nli[e(Fn)—G(F)] < xmo} = et | i dt,

~»C0
n 00

for all x: ~< <®, and

1
né!G(Fn)—Un|+0, in probability, as m>e,

Hence, (2.8) also holds for 6(Fn) being replaced by Un.

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)

Theorem 2. If for m* = max[2,m/2], Am*(w)<w, (2.4) and (2.5) (with r=4) hold,

then

P{lim S:llp n;i[e(Fn)_e(F)]/m[2o,2 lOg 1og n]% = 1} =
p(tim 10F %6 (p )-6(F)1/m(20 log log n)* = -1} =
P{lim SEP n |9(Fn)_Un|/m[202 log log n];i = 0} =

and hence, (2.10) and (2.11) also hold for Un'

(2.10)

(2.11)

(2.12)

Consider now the space C[0,1] of all continuous real valued functions x(t),

0<t<1, and associate with it the uniform topology



p(X,Y) = supteIIX(t)—Y(t)l, I={t: inﬁl}, (2.13)
where both X and Y belong to C[0,1]. For every n>l, define then G(Fo) = 0, and

Yn(t) = {6(F ]) + (nt-[nt])[6(F - 0¢(

[nt [nt]+1’ Frae))

s (2.14)
- nt e(F)}/[mcn'!], tel,

where [s] denotes the largest integer contained in s. Similarly, replacing
G(Fk) by Uk for k>m and by 6(F) for k<m-1, we define Y:(t) as in (2.14). Then,

Y;(t) = 0 for 0<t<(m-1)/n. Also, let
Y o= {Yn(t),tsl}, Y* = {Y;(t),tel} and W = {W(t),tell}, (2.15)

where W is a standard Brownian motion. Then, we have the following.

Theorem 3. If for m* = max(2,m/2), Am*(w)<®, (2.4) and (2.5) (with r=4) hold,

then both Yn and Y: converge weakly in the uniform topology on C[0,1] to W, and

p(Yn,Y;)+0, in probability, as m>®. (2.16)

In fact, (2.16) holds even if (2.5) holds for r=2 and Am/z(w)<w.

The proofs of the theorems are postponed to section 4.

3. CERTAIN USEFUL LEMMAS
Let {Xi,—m<i<w} be a stationary *-mixing process, and for each j(=1,2,...),

let Z.. = h,(X,), -®x<i<wo, be zero-one valued random variables, where hl(u),

ji 371

hz(u),... are not identical, and

P{Zji=l} = 1'P{Zj1=°} =Py j>1. (3.1)



Lemma 3.1. If for some k>1, Ak/Z(W)<w, then

2k
lE{j£1[2121<zji-pj)1}| <0 Ky pyee Py (3.2)

where Kw(<w) depends only on {wn}.

Proof. We sketch the proof only for k=1 and 2; for k>3, the same proof (but,

evidently, requiring more tedious steps) holds. For k=1, we have

2 n n
n
IE{jgl[Zi=l[zji-pj)]}| 5_i£l jzl IE(zli—pl)(zzj-pz)I (3.3)

Now, by Lemma 1 of Philipp (1969c), under (1.1) and (3.1),

[B(2)3mp)) Coyp )l < V)| ElZy 72y [E1Z55-0)

(3.4)
Hence, (3.3) is bounded above by
n n n n *
Zi=l j=1 ¥ |i-7 | 4plp2 < 8P1P2 Zi=1 Zj=i wj—i < 8nPlP2 AO(W), (3.5)

and therefore, the proof follows by using (2.7). Actually, for k=1, we may
replace the condition A%(W)<w by A’é(w)<Oo or by Ao(w)<w.

For k=2, we have
4 n
|E{j21[zi=l(zji‘Pj)]}|

n n n n
< Lo L0 By Bply [BQpympy) @y (Byympg) (2gmpy) | 3.6

I A

0 ciciancacn |ECGaiPe) Paypg) BypPy) Cop o) |5



where (0,B,Y,0) is a permutation of (1,2,3,4), and the summation Z* extends
over all 4! permutations of this type. For simplicity, consider the particular

permutation a=1, B=2, y=3 and 6=4. Then, we have,

Licicickencn [E@137Pp) Bpympp) By mp3) (Zypp) |
(3.7)

f-zél) + 222) + 223) lE(Zli_pl)(ZZj_pZ)(Z3k_p3)(Z4l_p4)l’

where the summations zsl), Z§2) and 223) extend respectively over all 1<i<j<k<f<n
for which j-i = max(j-i,k-j,%-k), k-j = max(j-i,k-j,&~k) and 2-k = max(j-i,k-j,%-k).

Again, by Lemma 1 of Philipp (1969¢),

(1)
N lE(Zli—pl)(sz—pz)(z3k-P3)(242'P4)|

ed .
< I byg Elzy ey [E1@y ) 2gmpy) (200 | (3.8)

| A

1) _ _ _
2y I, Vyg Bl gyp)) By ) 2ygop)) |
as EIZji—ij = ij(l—pj), j>1. Also, by a few straight forward steps,

E[ (2,70, (g py) (24P, |

| A

k
B{| (2,57py) (25Po) [ELIZ, g-p, | 1,1}

| A

E{I(sz-pz)(z3k—p3)l[(l-p4)p4(1+w2_k) + p,(1-p,) (14, )1} (3.9)

A

20, (1 | IE[ (Zy4=P)) Zgympy) |

| A

8p2p3p4(1+wk_j)(l+wg_k).

Hence, by (3.9), (3.8) is bounded above by
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1)
16p10,P3P, Ly o Vo (W) 4y )
1
< 16p;p,p,p, (1+h)* Zé ) Vg
o (3.10)
< 16p1p,pqp, (1+h)* nf — (k+1)® y,
< 16p,p,P4P, n(l+)* A ),
where by (2.7), Af(w) <o whenever Al(w) <o, Similarly,
T NE@, -p.) @y =0, Zap) (2, 0-p,) |
n 1i P17 ¥p47Po) W8 TP/ 140 7Py,
(3.11)

< 16p;p,P4P, n(l+w0)2 A% (D).

Finally, by Lemma 1 of Philipp (1969c), and a few steps similar to those in

(3.9) and (3.10), we have

(2)
In lE(Zli‘Pl)(sz'pz)(z3k'p3)(z4z"’4)l

| A

(2)
Zn |[E(Zli—pl)(sz—pz)][E(Z3k-p3)(z42-p4)]l +

2) i
Ln” Viey BIG 5P ) @y P ) [EL 25y 3) (2 Pl

| A

(2) i i ] o
SR LI LI NN NS AR
(2) (3.12)
n wk-j(l+wj—i)(l+¢2-k)E|211'P1|P2E|Z3k'p3|P4
(2)
< 16p,p,p4p, L by gy *

4p P ,P4p, (14 )2 Zéz) Vi

fA

16p,p,040, 02 (Log¥y)? + 4P PPy, () (T, 2o (k) *y )

| A

* 2 2 * .
4np p,pp, [4n{AF())? + (14 2A1W)]
Thus, by (2.7), (3.10) and (3.11), whenever Al(w) <o, (3.7) is bounded above by

% n? % <oo, 3.13
Klp n°p P,P4P,> where Kw ( )



Since (3.13) does not depend on the order of the subscript 1,2,3,4 of the P>
repeating the steps for each permutation (a,B8,Y,68) of (1,2,3,4) and choosing
Kw = 24K*, it follows that (3.6) is bounded above by Kwn2p1p2p3p4, which completes

v
the proof for k=2.

Lemma 3.2. Let s, (>0), i=l,...,r(>1) be such that [,0; s;=2%k, k1. Then

Ak/z(w) <o implies that
r n sj K
|E{jgl[2i=l<zji-pj)1 H < xyn™ pyeeopps (3.14)

where K, (®) depends only on {wn}.

v

The proof is similar to that of Lemma 3.1, and hence, is omitted.

Let us now define for every c: 1<c<m,

() _ f... T B}
A R I L F(x,)]- (3.15)

j=1

Then, upon writing an = dF + d[Fn—F], we have from (1.4) and (3.15) that

_ m m (c)
o(F ) =0 + ] ) () Vv T, w2l (3.16)
Note that, by definition,
(1) _ -1 n _
v'i=nm Zigl[gl(xi) B(F)]. (3.17)

Lemma 3.3. If (2.5) holds for r=2, then for every c: 1<c<m, Ac/z(w) implies

that

(c) -c -
E(V_ 12 LKAV, K< (3.18)

where Kw depends only on {wn}.
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Proof. By (3.15) and the Fubini theorem,
gvi®12 = [o. o[ g (x x g (x %, )
n R2cp c 12t Be e+ T2
2¢c
E{'El d[Fn(xj)—F(xj)]}
J
(3.19)
R’zéﬁf B (KpseensX I8 (K gsee sy )
-2c 2c n
n ° E{ I (icy d[c(xj-Xi)-dF(xj)])}.
j=1
Thus, if we let Zji = d[c(xj—Xi)], i=1,2,...,n, j=1,2,...,2c, so that
P{Zji=l} = l—P{Zji=0} = dF(xj), j=1,...,2c, (3.20)
we obtain from Lemmas 3.1 and 3.2 that
2¢c n
B QG dlexy=X)=dF (x;) 1)}
h| (3.21)

< 0 K dF(x)) . dFGxy ),

are all distinct; otherwise ncKw dF(xl)...dF(xr), where

when x «sX

1" 2c

 SEREERL r>1, are the distinct set of values of KyseeesXy - Hence, by (3.19)

and (3.21),

B(v 1?2 <K, nC fﬁz&ﬁf ERCRISRCS N CINTPRT SNl ;i; dF (x,)
- K, n_c[féééf|gc(x1,...,xc)|dF(x1)...dF(xc)]2 (3.22)
< VK, n C. Q.E.D.
Lemma 3.4. If (2.5) holds for r=4 and Al(w) <ew, then
Elvr(lz)l" <Ky Y a Ky, < (3.23)
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where Kw depends only on‘{wn}.

The proof is similar to that of Lemma 3.3, and hence, is omitted.
We may rewrite (1.5) as

) m
U =n (m] ZP f.f)t:l'r g(xl,...,xm) I dle(x
n,m R :

: e SO

= -[m] so m - _
n an,m prmf 8%y seeesx ) jgl d[{c(xj Xij) F(xj)} + F(xj)] (3.24)
= 0(F) + zh:l (;1) Ul'(lh),

where P = {(il,...,im) : 15;1+...+1m§p}, n-[m] = {n...(n—m+1)}—1, and

-

A L) B R S S 1 dle(x,~X, )-F(x,)], h=1,...,m
n Pop gP™ Ch 1°°° % ju1 17 371 SRR L
Note that Vél) = Uil), so that by (3.16) and (3.24),

= tm moo(h) o (h)
[6(F )-U T =} 0 (IIV, -0 1. (3.26)

= (‘;) n—Z[nz[nzerZ)_n[Z]UI(lZ)] - (‘;) n-lUr(lz) + Zh'_‘_:3 (E) [Vr(lh)—Ur(lh)].

Now, by the same technique as in Lemma 3.3, for every h>1, Ahlz(w) <o implies

that

E[Ut(lh)]z <K oD <w, (3.27)

p V2 Ky

Also, writing Qn = n? Véz) - n[Z] Uéz), and rewriting it as

n
Q, = L IRZPI g, (x »x)dle(x)X,) = Fx)ldle@x,-X) - F(x,)],  (3.28)
we obtain by the same technique as in Lemma 3.3 that Al(w) <o implies that

EQrzl < Kw v, n, Kw <o, (3.29)



Thus, from (3.18), (3.26), (3.27), (3.28), (3.29) and the cr-inequality, we

. . <
obtain that if v2 o and Am/z(w) <o, then

E[e(Fn)-Un]2 < C\U n"3, cw <o,

These results are used in the next section, in the proof of the theorems.

4. OUTLINE OF THE PROOFS OF THE THEOREMS

Let us first consider Theorem 1. By virtue of (3.16) and Lemma 3.3,

whenever Amlz(w) <o,

(h)
h=2 (h ¥

(h)]2

nE[0 (F_)-6 (F)-nv ]2 = nE(],"

A

n@-1) [,7, ()? EV,

-1
< * *
< n Kw v,, where Kw(<W) depends only on {wn}.

Thus, by (4.1) and the Chebychev inequality
L p
nﬂle(Fn) - 0(F) - mVél)' + 0, as no,

e 1y (1)
which implies that n [G(Fn)—G(F)] and mn n both have the same limiting

12

(3.30)

(4.1)

(4.2)

distribution, if they have one at all. Now, by (3.17) and the central limit

theorem for ¢-mixing (and hence, *-mixing) processes [cf. Billingsley (1968,

1
p. 174) and Philipp (1969%a)], mnﬁV§l) converges in law (whenever v2<w) to a

normal distribution with zero mean and variance m?c?, where 0% is defined by

(2.3) and it is assumed that (2.4) holds. This completes the proof of (2.8).

By virtue of (3.30) and the Chebychev inequality, (2.9) follows directly, and

this, in turn, implies that (2.8) also holds for Un'

Let us now consider Theorem 2. Here v4<w and Am*(w) <o imply, by virtue

of (3.23), that for every €>0,
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1
P{n6|V§2)|Zg, for at least one qipo}
k1 (2) ' -3
< Lop BNV e} < vk /e Zm ,
—0 o
which converges to 0 as no+W. Also, by Lemma 3.3, \)2<°° and Am*(w) <o
(=>A /2(¢)<w) imply that
L (h)
P{n |Z ( ) V |>€, for at least one n>n }
< Yiym m o (h)
—-znZPo Pln IZh=3 (h) Va |>e} (4.4)
< (K, Vv /e ) Z 2 +0 as n >
Y n>no :

Thus, for every €>0,
4 (1) Y S5 N
P{n [G(Fn)-e(F)-mVn 1/(2 log log n)* >¢ v2 for at least one n:po} >0 (4.5)

as no+w. Consequently, it suffices to prove (2.10) and (2.11) for [G(Fm)-B(F)]
being replaced by mVél). Since Vél) involves an average over a stationary
*-mixing (and hence, ¢-mixing) sequence of random variables, by Theorem 1 of
Reznik (1968) [see also Philipp (1969c)] that under conditions even less
stringent than the hypothesized ones, the law of iterated logarithm holds for

{Vél)}, i.e., (2.10) and (2.11) hold. Again by (3.30) and the Bonferroni

inequality, for every €>0,

1
P{n6|U -6(F_)|>e for at least one n>n }
n n - 0

g_anpo P{n%IUn—G(Fn)|>€} (4.6)

-2
n

<C >0 as n >>.

-2
)
] ano
1
Thus, nélUn-e(Fn)]+0 a.s. as n*©, which implies (2.12), and that in turn implies

that (2.10) and (2.11) hold for {Un}.



We now proceed to the proof of Theorem 3. Let us define on C[0,1] a

sequence of processes {Yz = [Yz(t),teI], n>1}, by

(1)

(¢9) (1)
[nt] v

0 —
Yn(t) = {v [nt]+1_ [nt]

+ (nt-]nt])[V

Since {gl(Xl),—w<i<w} is stationary *-mixing (and hence, ¢-mixing), and by

(2.4) and (2.5), 0<g2%<o, by Theorem 20.1 of Billingsley (1968, p. 174), it

follows that under AO(W) <co,

We complete the proof of the theorem by showing that as n»,
o] p o P
*
p(Yn,Yn) > 0 and p(Yn,Yn) > 0.
Now, by (2.14), (3.16) and (4.7),

o ma (1) s
p(Y_,Y) 5-15k§n k|6 (F, )-0 (F)-mv, = |/ {mn "0}

(1), m m m, _(h)
max k]Vk I(Z) max klzh=3(h)Vk |

1<k<n L 1<k<n L
—_ mon -_— mon

By Lemma 3.4 and the Bonferonni inequality, under (2.2) for r=4, for every

>0,

1
nax k(2)|V£l)l>€m0n6}

P{ljkin

zkzl P{k|Vé1)|>2€Gn%/(m—l)}

| A

IA

n
K, vA(m—l)“/(Ze“nz) Zk=1 Lo (K<)

= Kw V4(m—l)“/(2€“n)*0 as no.

1
1}/on?, tel, v

14

(4.7)

(4.8)

(4.9)

(4.10)

(4.11)
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Similarly, under (2.2) for r=2, by Lemma 3.3 and the cr—inequality, for every

>0,

max

%)
lﬁkﬁp

p{ kL2, (E)véh)l > emo n

f‘zkzl sz[thB (E)Véh)]z/[ezmzczn] (4.12)

Kt < (C log n)/(ne?)*0 as mw.

| A

2 n
(c/ne?) I, 4

Thus, (4.10) converges in probability to zero as nm>®. Hence, by (4.8),

Yni-)*w as n>o, (4.13)

Since W is a standard Brownian motion and m/n>0 as n»,

P
sup
0<t<m/n |Yn(t)| + 0 as mo, (4.14)

P
Hence, to show that p(Y:,Yz) + 0, we use the triangular inequality
o o
* < *
P(IX,Y ) W_p(Yn,Yn) + p(Yn,Yn), (4.15)

and for the first term on the right hand side of (4.15), we have by (4.14)

that we are only to show that

m;l_la{;n Ik(Uk"e (Fk)l/[mc /n] E 0 as nro, (4.16)

By (3.30) and the Bonferroni inequality, for every >0,
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m
P{m§;§p |k, -6 (F,))| > emo Va}

< L2 k@0 )| > eno val

{Clp/ (e®m®0%nk) }
(4.17)

2.2.2y Ly 0
/m*e%0®) n zk=m

{A

n
Zk=m

L]

(Cw

(C./m2e202) (n"! log n)+0 as mn,

{A

b

p
Thus, p(Y:,Yn) + 0 as n**®, and hence, by (4.15), p(Yg,Yg) g Q0 as n+=, and thereby

(4.8) implies that
YY)
Y: -+ W as e, (4.18)

which completes the proof. Note that in (4,17), we have made use only of (2.2)
with r=2 and Am/z(w) <o, which are less restrictive than the hypothesized con-

ditions,

5. A FEW APPLICATIONS
(1) L (2),
1

For illustration, we consider the following functional. Let Xi = (Xi ,

have the d.f. F(x,y), and define
o) =12 [ [ [F(x,®) - %]{F(x,y) - %1dF(x,y), (5.1)

(2)

which is known as the grade correlation of X(l) and X . We have then

o) =12 [ [ [F o) - MIE () - HIdF, ()
1200 [R R -G - (5.2)

(1-n'2)Rg + 302,

where Rg is the classical Spearman rank correlation i.e.,
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R = 12/n@*-DILY R - D6, - 5. (5.3)
Thus, for large n, both G(Fn) and Rg have the same properties. Now, as in
Hoeffding (1948), we have
-[31  §
R =n g(X ,X,,X ), (5.4)
g o 61Y=1 TRy
where
g(xl’XZ’XB) = %[S(xil)—xél))s(x{2)~x§2)) + s(x{l)—xgl))s(xiz)—xéz))
+ s(xél)-x{l))s(xéz)—xgz)) + s(xgl)—xgl))s(xéz)-xiz)) + (5.5)

s(xgl)—x{l))s(xgz)—xéz)) + s(xél)wxél))s(xéz)—x{2>)],

and s(u) = 1, 0 or -1 according as u is >, = or < 0. Since m=3 and g is a
bounded kernel, (2.5) holds for every r>0. Hence, under (2.4) and the stated
conditions on {wn}, all the three theorems of section 2 hold. Other examples
are easy to construct.

Let us now consider the case of random sample sizes. For every r, let
Nr be a positive integer valued random variable such that there is a sequence

{nr} of positive numbers for which

n *° but N R 1 as 1o, (5.6)
T r/n

Then, using Lemmas 3.3 and 3.5, it can be shown that under (5.6), (4.2) readily
extends to n being replaced by Nr where r»»°, Also, (4.6) insures that

i
N;]UN —G(FN )[+0 a.s. as ro>o, Further, (4.11), (4.12) and (4.17) can be easily
r r

adjusted to random sample sizes. Consequently, using Theorem 20.3 of Billingsley

(1968, p. 180) for {Vél)}, we conclude that both Theorems 1 and 3 remain valid
r
for random sample sizes satisfying (5.6).
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The theory developed here is of interest in the developing area of

asymptotic sequential inference procedures based on {G(Fn)} or {Un}.
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