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An analytic theory is presented that yields the maximum transmittable current across an anode- 
cathode gap that is embedded in an arbitrary transverse magnetic field ( B) . The limiting current 
is found to be relatively insensitive to B for all B < BH, where BH is the Hull cutoff magnetic 
field required for magnetic insulation. The classical Child-Langmuir solution is recovered in the 
limit B-+0. 

I. INTRODUCTION 

There are two mechanisms that limit the electron flow 
across an anode-cathode gap. The first is the self-potential 
associated with the electrons’ space charge within the gap. 
When the emitted current is too high, this self-potential is 
sufficient to prohibit beam propagation. The simplest form 
of this limiting current is the classical Child-Langmuir 
law.’ Because of its fundamental importance in electron- 
circuit interaction,2 the Child-Langmuir law has been ex- 
tended to the relativistic regime,3 to a time-varying gap 
voltage,4 and to nanostructures,’ where quantum effects 
become important. 

The second mechanism arises when there is an external 
magnetic field, B, parallel to the cathode surface.6*7 Under 
the direct current (dc) condition, an electron emitted from 
the cathode with initial velocity a0 would not be able to 
reach the anode if this transverse magnetic field B > B, , 
regardless of the amount of space charge within the gap. 
Here, 

is the Hull cutoff magnetic field,6 expressed in terms of the 
anode voltage V, gap separation l?, electron charge e and 
electron mass m. Since BH is independent of the emission 
current, it is derived from single particle orbit theory. 

In this paper, we generalize the classical Child- 
Langmuir law to include the effect of an arbitrary trans- 
verse magnetic field B and of an arbitrary initial velocity 
uo. While some of the equations and their solutions are 
well known,*-” we have gone a step further. We present a 
previously unknown analytic expression for the limiting 
current and, perhaps also for the first time, link this limit- 
ing current to the Hull cutoff, We show that the limiting 
current is relatively insensitive to B for all B < BH , espe- 
cially for the uosO case. For B> BH , the electrons fail to 
reach the anode, as expected. 

In Sec. II, we present the analytic theory, and in Sec. 
III, we discuss some of the implications. 

II. ANALYSIS 

Consider a time-independent, one-dimensional, nonrel- 
ativistic model. In the Cartesian coordinates, the cathode is 
located at the plane x=0 and the anode at x= D. An ex- 
ternal magnetic field 2B is imposed and the anode is held at 
a voltage I/ with respect to the cathode. We assume that all 
electrons are emitted with the same initial velocity $uo, 
carrying a current density ?J. We shall calculate the max- 
imum value of J (in terms of V, B, D, uo) if this monoen- 
ergetic beam is to reach the anode. Since we are consider- 
ing only a monoenergetic beam, the electrons will either all 
reach the anode or they will all return to the cathode. Thus 
it suffices to consider the orbit of a representative electron 
under the combined action of the external B field and the 
self-consistent electrostatic potential f$( x) . 

Let (zr,u,O) be the velocity of an electron and n be the 
electron number density. From conservation of energy, 

e+(x) =$m(u2ffi2x2) -4mu$ 

we may write the Poisson equation 

d2+ en J 
z?=<=gii 

in the following form: 

(21 

(31 

d du 
U& “-& +n2u=&g, 

i 1 

eJ 
(4) 

where Ck=eB/m is the cyclotron frequency. We have used 
the relation U=~X in Eq. (2) and the continuity equation 
J=enu=constant in Eq. (3). 

Equation (4) may be cast in the time domain with a 
change of variable t= $ dx/u. It then becomes a second- 
order ordinary differential equation with constant coeffi- 
cients which is simply the crossed-field analog of 
Llewellyn’s equation.* This equation may easily be solved 
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for u(t)-. In terms of no_ndimensional variables x=x/D, 
t=fit, J=eJ/mg Q3D, V=eV/mDb’, i&=u,,/RD, this 
solution reads 

C(T) =S+ (iTo-J>cos(;j +Fsin(i-j (5) 

which may be integrated to yield8 

Z(T) =E+ (Ue-?)sin(‘;, +cl: 1 -cos(T)]. (6) 

In Eqs. (5) and (6), crepresents the initial acceleration of 
the electron, it is proportional to the electric field on the 
cathode surface. With the use of Eq. (5), c may be ex- 
pressed in terms of the transit time T and the final velocity 
Gf with which the electron reaches the anode. Upon sub- 
stituting this expression of Finto Eq. (6), Eq. (6) becomes 

0 0.2 0.4 0.6 0.6 1 1.2 
0li3, 

1.2 I t 
(b)j 

T= 
I- (&+uf)tan( T/2) 

T-2 tan( T/2) 
(7) 

when evaluated at t= ?, at which x( ?) = 1. From Eqs. ( 1) 
and (2), we obtain the useful relationships 

~~=(~~+2Y-l)“2~[(BH/B)2-1]l’2, (8) 

( B,/B)2=2F+ii;. (9) 

The limiting current is determined when Eq. (7) ad- 
mits no meaningful solution of T (i.e., when such solutions 
imply either x < 0 or dx/dt < 0). It is straightforward to 
show from Eq. (7) t&at this condition reads J= J,, where 
the limiting current J, is determined from 

0.6 

Jc’ JCL 
0.6 

01 t 
0 0.2 0.4 0.6 0.6 1 1.2 

Em" 

FIG. 1. The limiting current ?c, in units of the Child-Langmuir value 
J cL, as a function of the magnetic field B, in units of the Hull cutoff 
value B, . 

J,= - 
1 

T-sin(r) 
(10) 

able to transmit the fraction 9/4~=71.6% of the classical 
Child-Langmuir current’* as B approaches BH in this 
uo=O case.” 

Alternatively, we may show from Eqs. ( 10) and ( 11) 
that the ue=O curve in Fig. 1 (a) is given by 

and ?(O < f < 2~) is the solution of 

2 sin2( T/2) 
&=-ii()+ - 

T-sin(T) . 
(11) 

J, 9 Y2 7=- 
JCL 4 (1 +Y~)~‘~[~(Y) I2 ’ 

(13) 

where 

Before we proceed further, let us show that Eq. ( 10) 
igdeed reduces to th_e classical result as fi -+O. In this limit, 
T-+0, i+(i?;+2V)“’ according to the first half of Eq. 
(8). Equatmns ( 10) and ( 11) then yield J,-+6/r3 and 
iio+iip3/T, which may be combined to obtain th_e 
Child-Langmuir limiting current JCL upon eliminating T: 

B/BH 

y=y7i7zg 
(14) 

and h(y) is shown in Fig. 2. Asymptotically, h(y) Z 3y/2 

Jc-=$[&,+(~;+2V) ] . - l/2 3 (12) 

For nonzero values of 0, Eqs. ( 102 and ( 11) give the 
relation between the limiting current (J,) and the gap volt- 
age (through Zf) with T serving as a running parameter. 
The Child-Langmuir Law is recovered as T-+0, as we 
hav_e just shown, and the Hull cutoff condition is reached 
as T is increased to the value at which the right-hand side 
of Eq. (11) approaches zero [i.e., ,-,+O]. 

h(y) 

To see clearly the effect of the transverse magnetic field 
B on the limiting current, consider first the case u,=O. In 
@is case, the classical Child-Langmuir current becomes 
Jam= (219) (2V) 3/2 

i+ (2V- 1)“2, 
2nd Eqs. (8) and (9) give 

and V= ( B,/ B ) ‘/2. These relations then 
yield the limiting current as a function of magnetic field, as FIG. 2. The function h(y). Asymptotically, h(y) -+ 3y/2 for y< 1, and 
shown in the curve labeled ue=O in Fig. 1 (a). The diode is h(y) + \I?T/yfory%l. 
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fory<l andMy) = GyforyBl. Thefunctionx=h(y) 
is the inverse of the function y=f(x), where 

I $ [sin-l(x)-xv], O<yi5, 

Y=f(x) = 1 ‘iT 
22 ( 

-+cos-‘(x)+xJiz , 5<y< co. 
) 

n- 

(15) 
In Eq. ( 15), x ranges between zero and one and the prin- 
cipal values are to be used in the multivalued functions. 

Equation ( 13) may be generalized to nonzero values of 
&,. In this case, 

J,=1/2YMYd12, (16) 

where 

y,= l/[&f JaG7E-1 (17) 

and the function h(y) is the same as that given in Fig. 2. 
The ratio TJ2cL may then be constructed upon using Eqs. 
(12) and (16).TheresultsareshowninFig. l(a) for&&l 
and in Fig. 1 (b) for Go> 1. We have checked that these 
curves are reproduced by using Eqs. ( 10) and ( 11) with T 
serving as a running parameter. 

From Fig. 1, we see that the transverse magnetic field 
. B has only a very weak effect on the transmittable current, 

for all values of B up to B, , in particular in the physically 
significant case uo=O. As B exceeds BH, steady current 
transmission to the anode is impossible, as expected [cf. 
Eq. (8)]; oscillatory transmission may occur, as in the 
unmagnetized diode for J> J, . 

Ill. REMARKS 

The curves shown in Fig. 1 all have an infinite slope as 
B- BH. This statement is proved in the Appendix. The 
implication is that a little adjustment of the magnetic field 
would cause a large jump in the transmittable current 
when B is in the immediate vicinity of BH . This observa- 
tion ties the limiting current to the Hull cutoff condition, 
which itself does not depend on the electron density [cf. 
Eq. ( 1 )]. Indeed, the onset of a new state for B > BH has 
already been strongly hinted by the theory, experiment, 
and particle simulation done by Pollack.” In contrast to an 
unmagnetized diode, which is known to possess two criti- 
cal currents (one physical and the other not realizable; see 
p. 72 of Ref. 8, for example), the properties of such critical 
currents for the case of a magnetized diode have not been 
adequately studied; but we conjecture that the one pre- 
sented in this paper is the physically realizable branch. The 
stability of the crossed-field diode is an interesting subject 
but is beyond the scope of this paper; i.e., there is a need for 
numerical simulation. 

The result that the limiting current, in the physically 
significant case uozO, is insensitive to the magnetic field 
(up to BH) does not imply that the dynamic behavior of a 
high current crossed-field gap is necessarily similar to an 
ordinary gap (one without a transverse magnetic field). 
For example, in a crossed-field gap, the x-component ve- 
locity of an electron could be substantially reduced because 

of the presence of the transverse magnetic field, the instan- 
taneous power transfer to that electron by the x component 
of the electric field would then be significantly different 
from that in an ordinary gap. This, of course, is merely a 
reiteration of the well-known fact* that crossed-field de- 
vices are markedly different from “O-type” devices. The 
latter include the traveling wave tube, gyrotron, klystron, 
free-electron laser, virtual cathode oscillator, etc., which 
do not possess a transverse magnetic field. 

To summarize this paper, we have presented an ana- 
lytic theory which bridges the gap between the classical 
Child-Langmuir law and the Hull cutoff condition. We 
have found that the limiting current is not significantly 
affected by the magnetic field, B, as long as B is below the 
Hull cutoff value, if the electrons are released into the gap 
with negligible initial velocity. 
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APPENDIX: PROOF THAT aJ&!B= 00 AS B-B, 

There are several ways to prove that the curves in Fig. 
1 have an infinite slope as B-+ B, . For the uo= 0 curve in 
Fig. 1 (a), we may use the asymptotic expression 

hlY)=E (1-Q Y-+00 (AlI 

in Eq. ( 13). It is then straightforward to show from Eq. 
(13) that ~~J&IB=cQ as ~400, i.e., as B-+BH by Eq. 
( 14). Equation (A 1) is easily established from Eq. ( 15). 

For general values of uo, we may use Eqs. ( 10) and 
(11) to write 

am. (53). (A21 

The last set of parentheses tends to infinity as B-+ BH by 
virtue of Eq. (8). The first set of parentheses is nonzero, 
according to Eqs. ( 10) and ( 11) . This completes the proof. 
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