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Abstract—In this paper we study a continuous time random walk in a n-dimensional parallelepiped

with pairs of boundaries [ai, bi]. In a pair of boundaries the particle can move in any of two directions

with different velocities v
(1)
i and v

(2)
i . We consider a special type of boundary which can trap the

particle for a random time, and we found the limiting distribution of this random motion for the

position of the particle. Our formulation allows us to find the limiting distribution for a broad class of

alternating semi-Markov processes.

Key words and phrases: Random evolutions; semi-Markov processes; delaying boundaries;

random walk

1. INTRODUCTION

In 1951 S. Goldstein introduced the telegrapher’s stochastic process in his seminal paper
[1], which is a random motion driven by a homogeneous Poisson process. This basic
telegrapher process has been extended in many manners since then [2], [3], [4],
[5], and references therein. In this work we investigate the random motion driven by
the superposition of an alternating semi-Markov process in n-dimensional space. We
study the limiting distribution of a n-dimensional random motion performed with two
velocities, where the random times separating consecutive velocity changes perform an
alternating semi-Markov process.

We assume that the particle moves inside the parallelepiped
n∏

i=1

[ai, bi] ⊂ Rn, n ≥ 1,

with a vector of velocities

~v(t) = (v1(t), v2(t), . . . , vn(t)) =
n∑

i=1

vi(t)~ei,

where every vi(t) can take one of two values v
(1)
i > 0 or v

(2)
i < 0, and ~ei, i = 1, 2, . . . , n,

is a Cartesian basis. The motion is performed in the following manner: At each instant
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the particle moves according to one of two velocities, namely v
(1)
i or v

(2)
i . Starting at

the position

~x0 = (x0
1, x

0
2, . . . , x

0
n) ∈

n∏

i=1

[ai, bi]

the particle continues its motion with velocity v
(1)
i during random time τ

(1)
i , where

τ
(1)
i is a random variable with distribution function G

(1)
i (t). Afterwards the particle

moves with velocity v
(2)
i during random time τ

(2)
i , where τ

(2)
i is a random variable with

distribution function G
(2)
i (t). Furthermore, the particle moves with velocity v

(1)
i and

so on. When the particle reaches boundary ai or bi it will stay at that boundary a
random time given by the time the particle remains in the same direction up to the
time such a particle changes direction. So, ai and bi are two delaying boundaries of
direction ~ei. We assume that the random variables τ

(1)
i and τ

(2)
i are independent.

Similar partly reflecting (or trapping) boundaries have been considered in [6] for the
case of one-dimensional motion, and they may be found in optical photon propagation
in a turbid medium or chemical processes with sticky layers or boundaries. We believe
that our model is more realistic for these applications.

Our main contribution is to find the limiting stationary distribution of this continuous
time random walk when the sojourn times are generally distributed.

2. MATHEMATICAL MODEL

On the probability space (Ω,F , P) consider a collection of independent alternating semi-
Markov process {κi(t), t ≥ 0, i = 1, 2, . . . , n}, on the phase space E = {1, 2}, having
the sojourn time τ

(k)
i corresponding to the state k ∈ E, where

κi(t) =





1, if vi(t) = v
(1)
i

2, if vi(t) = v
(2)
i .

(1)

So, a sojourn time of κi(t) at state k has the distribution G
(k)
i (t), and transition

probability matrix of the embedded Markov chain

P =




0 1

1 0


 . (2)

Denote by x(t), t ≥ 0 the position of the particle at time t. Consider the function
Ci(x, k) on the space [ai, bi]× E which is defined as

Ci(x, k) :=





v
(1)
i , if ai < x < bi, k = 1;

v
(2)
i , if ai < x < bi, k = 2;
0, if (x = ai, k = 2) or (x = bi, k = 1).

(3)

The position of the particle at any time t is denoted as ~x(t) = (x1(t), x2(t), . . . , xn(t)),
and it is easily verified that it can be expressed by

xi(t) = x0
i +

∫ t

0

C(xi(s), κi(s)) ds, (4)
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where the starting point x0
i ∈ [ai, bi].

Eq. (4) determines the random evolution of the particle in the alternating semi-
Markov medium {κi(t), t ≥ 0} [7], [8]. So, our purpose is to calculate the stationary
measure of the process ~x(t).

Since x1(t), x2(t), . . . , xn(t) are independent we have

P{(x1(t), x2(t), . . . , xn(t)) ∈ d~x} =
n∏

i=1

P{xi(t) ∈ dxi}.

Now, to compute the stationary distribution of ~x(t) we must compute the stationary
distribution of xi(t) for all i = 1, 2, . . . , n.

We suppose that the distributions G
(1)
i (t) and G

(2)
i (t) are not degenerated. In addi-

tion, there exist the densities

g
(k)
i (t) =

dG
(k)
i (t)
dt

,

and the first moments

m
(k)
i =

∫ ∞

0

tg
(k)
i (t)dt,

for all k ∈ E. We also assume the existence of the hazard rate

r
(k)
i (t) =

g
(k)
i (t)

1−G
(k)
i (t)

.

Let us define
ζi(t) = t− sup

0≤u≤t
{κi(u) 6= κi(t)}.

Now, consider the three-component stochastic process {χi(t) = (ζi(t), xi(t), κi(t))}
on the phase space Zi = [0,∞) × [ai, bi] × {1, 2}, i = 1, 2, . . . , n. It is well-known
that for every i = 1, 2, . . . , n, the process χi(t) is a Markov process with the following
infinitesimal operator [7], [8], [9]:

Ai φ(ζ, x, s) =
∂

∂ζ
φ(ζ, x, s)+ r

(s)
i (ζ)[P φ(0, x, s)−φ(ζ, x, s)]+Ci(x, s)

∂

∂x
φ(ζ, x, s), (5)

where s = 1, 2. The boundary conditions are given by

φζ(ζ, ai, 1) = φζ(ζ, bi, 2) = 0,

where φ(ζ, x, s) is a continuously differentiable function with respect to ζ and x. It is
easy to see that

Pφ(0, x, 1) = φ(0, x, 2) and Pφ(0, x, 2) = φ(0, x, 1).

In the rest of the paper we will calculate the stationary distribution ρi(·) of χi(t).
The analysis of the properties of the process χi(t) leads up to the conclusion that the
stationary distribution ρi has atoms or singularities at points (ζ, ai, 2) and (ζ, bi, 1), and
we denote them as ρi[ζ, ai, 2] and ρi[ζ, bi, 1], respectively. The continuous part of ρi is
denoted as ρi(ζ, x, k), k ∈ E.
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Since ρi is the stationary distribution of χi(t) then for any function φ(·) from the
domain of the operator Ai we have

∫

Zi

Aiφ(z) ρi(dz) = 0. (6)

Now, let A∗i be the conjugate or adjoint operator of Ai. Then by changing the order
of integration in Eq. (6) (integrating by parts), we can obtain the following expressions
for the continuous part of A∗i ρi = 0

∂

∂ζ
ρi(ζ, x, k) + r

(k)
i (ζ)ρi(ζ, x, k) + v

(k)
i

∂

∂x
ρi(ζ, x, k) = 0, k = 1, 2. (7)

and ∫ ∞

0

r
(k)
i (ζ)ρi(ζ, x, k)dζ = ρi(0, x, j); j 6= k, j, k = 1, 2, (8)

with the limiting behavior ρi(+∞, x, 1) = ρi(+∞, x, 2) = 0, for all x ∈ [ai, bi].
For the atoms we have

∂

∂ζ
ρi[ζ, ai, 2] + r

(2)
i (ζ)ρi[ζ, ai, 2] + v

(2)
i ρi(ζ, ai+, 2) = 0 (9)

∂

∂ζ
ρi[ζ, bi, 1] + r

(1)
i (ζ)ρi[ζ, bi, 1]− v

(1)
i ρi(ζ, bi−, 1) = 0 (10)

where
ρi(ζ, bi−, k) := lim

x↑bi

ρi(ζ, x, k)

and
ρi(ζ, ai+, k) := lim

x↓ai

ρi(ζ, x, k),

for k = 1, 2. We also have

ρi[+∞, ai, 2] = ρi[0, ai, 2] = ρi[+∞, bi, 1] = ρi[0, bi, 1] = 0.

Now, by taking into account boundary conditions we have
∫ ∞

0

r
(1)
i (ζ)ρi[ζ, bi, 1]dζ = −v

(2)
i

∫ ∞

0

ρi(ζ, bi−, 2)dζ (11)

and ∫ ∞

0

r
(2)
i (ζ)ρi[ζ, ai, 2]dζ = v

(1)
i

∫ ∞

0

ρi(ζ, ai+, 1)dζ. (12)

By solving Eqs. (7) we obtain

ρi(ζ, x, k) = f
(k)
i (x− v

(k)
i ζ) exp

(
−

∫ ζ

0

r
(k)
i (t)dt

)
, k = 1, 2, (13)

where f
(k)
i ∈ C1.

By substituting Eqs. (13) into Eqs. (8) and by noting that

exp

(
−

∫ ζ

0

r
(k)
i (t)dt

)
= 1−G

(k)
i (ζ)
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we obtain
∫ ∞

0

f
(k)
i (x− v

(k)
i ζ)g(k)

i (ζ)dζ = f
(j)
i (x), j 6= k; j, k = 1, 2. (14)

It follows from the two Eqs. (14) that
∫ ∞

0

∫ ∞

0

f
(k)
i (x− v

(1)
i ζ − v

(2)
i t)g(1)

i (ζ)g(2)
i (t)dζdt = f

(k)
i (x), k = 1, 2. (15)

From Eqs. (14) and (15) we can assume that the functions f
(k)
i (x) are of the form

f
(k)
i (x) = c

(k)
i eλix, k = 1, 2. (16)

Now, by substituting Eq. (16) into Eq. (15), we obtain

ĝ
(1)
i (λiv

(1)
i ) ĝ

(2)
i (λiv

(2)
i ) = 1, (17)

where

ĝ
(k)
i (s) =

∫ ∞

0

g
(k)
i (t)e−stdt

is the Laplace transform of g
(k)
i (t), k = 1, 2. The set of pdf’s for which Eq. (17) exists

is similar to the set of functions that satisfies the Cramér condition. Furthermore, we
need to answer the question: Is there a nonzero solution of Eq. (17) for the unknowns
λi?

Lemma. If
v
(1)
i m

(1)
i + v

(2)
i m

(2)
i 6= 0,

where

m
(k)
i =

∫ ∞

0

tg
(k)
i (t)dt,

and there exist `1 < `2, p1 < p2, σ1 > 0 and σ2 > 0 such that g
(1)
i (t) ≥ σ1, t ∈ [`1, `2],

g
(2)
i (t) ≥ σ2, t ∈ [p1, p2] and 0 < v

(1)
i `2 + v

(2)
i p2, 0 < −(v(1)

i `1 + v
(2)
i p1). Then, there

exists λ0
i 6= 0 that satisfies Eq. (17).

Proof. Let us define
p(λi) = ĝ

(1)
i (λiv

(1)
i ) ĝ

(2)
i (λiv

(2)
i ),

so
p′(0) = −(v(1)

i m
(1)
i + v

(2)
i m

(2)
i ) 6= 0.

Now, suppose
p′(0) = −(v(1)

i m
(1)
i + v

(2)
i m

(2)
i ) < 0

then

p(λi) ≥
∫ `2

`1

e−v
(1)
i λitg

(1)
i (t)dt

∫ p2

p1

e−v
(2)
i λitg

(2)
i (t)dt,

hence

p(λi) ≥ σ1σ2

v
(1)
i v

(2)
i

(
e−v

(1)
i λi`1 − e−v

(1)
i λi`2

)(
e−v

(2)
i λip1 − e−v

(2)
i λip2

)
→ +∞ as λi → +∞.
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The case
p′(0) = v

(1)
i m

(1)
i + v

(2)
i m

(2)
i > 0

can be reduced to the previous one by assuming s = −t and using 0 < v
(1)
i `

(2)
i + v

(2)
i p2.

Theorem. A) If
v
(1)
i m

(1)
i + v

(2)
i m

(2)
i 6= 0 and λ0

i 6= 0

is the solution for Eq. (17), and
∫ ∞

0

e−λ0
i v

(1)
i u(1−G

(1)
i (u))du < +∞,

then there exists a stationary distribution of χi(t) with the following continuous part:

ρi(ζ, x, 1) = cie
λ0

i (x−v
(1)
i ζ)(1−G

(1)
i (ζ)), (18)

ρi(ζ, x, 2) = ciĝ
(1)
i (λ0

i v
(1)
i )eλ0

i (x−v
(2)
i ζ)(1−G

(2)
i (ζ)) (19)

and singular parts:

ρi[ζ, bi, 1] = civ
(1)
i eλ0

i bi(1−G
(1)
i (ζ))

∫ ζ

0

e−λ0
i v

(1)
i dt, (20)

ρi[ζ, ai, 2] = civ
(2)
i eλ0

i ai ĝ
(1)
i (λ0

i v
(1)
i )(G(2)

i (ζ)− 1)
∫ ζ

0

e−λ0
i v

(2)
i dt. (21)

The normalization factor ci can be calculated from
∫

Zi

ρi(dz) = 1.

B) If
v
(1)
i m

(1)
i + v

(2)
i m

(2)
i = 0

and there exists the second moments

M
(k)
i =

∫ ∞

0

t2g
(k)
i (t)dt, k ∈ E,

then the stationary measure of χi(t) is as follows

ρi(ζ, x, 1) = di(1−G
(1)
i (ζ)), ρi(ζ, x, 2) = di(1−G

(2)
i (ζ)) (22)

with atoms

ρi[ζ, bi, 1] = div
(1)
i ζ(1−G

(1)
i (ζ)), ρi[ζ, ai, 2] = div

(2)
i ζ(G(2)

i (ζ)− 1), (23)

where

di =

[
(m(1)

i + m
(2)
i )(bi − ai) + v

(1)
i

M
(1)
i

2
− v

(2)
i

M
(2)
i

2

]−1

.
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Proof. A) It is easy to see that

f
(1)
i (x) = cie

λ0
i x and f

(2)
i (x) = ciĝ

(1)
i (λ0

i v
(1)
i )eλ0

i x

satisfy Eq. (14). Substituting these functions f
(k)
i (x) into Eqs. (13) we obtain Eqs.

(18) and (19). Therefore we substitute Eqs. (18) and (19) into Eqs. (9) and (10), then
by solving these equations we obtain Eqs. (20) and (21).

It can be easily verified that if v
(1)
i m

(1)
i +v

(2)
i m

(2)
i 6= 0 then the value λ0

i 6= 0, such that
ĝ
(1)
i (λ0

i v
(1)
i )ĝ(2)

i (λ0
i v

(2)
i ) = 1, also satisfies Eqs. (11) and (12). If v

(1)
i m

(1)
i + v

(2)
i m

(2)
i = 0

then λ0
i = 0 satisfies Eqs. (11) and (12).

B) Similarly, for v
(1)
i m

(1)
i + v

(2)
i m

(2)
i = 0 we obtain Eqs. (22) and (23) in the same

manner as for the case v
(1)
i m

(1)
i + v

(2)
i m

(2)
i 6= 0 when it is considered that λ0

i = 0. This
concludes the proof.

We should notice that the stationary measure of the particle position xi(t) is deter-
mined by the following relations

ρi(x) =
∫ ∞

0

(ρi(ζ, x, 1) + ρi(ζ, x, 2)) dζ, for x ∈ (ai, bi), (24)

ρi[ai, 2] =
∫ ∞

0

ρi[ζ, ai, 2]dζ, ρi[bi, 1] =
∫ ∞

0

ρi[ζ, bi, 1]dζ. (25)

The limiting distribution ρ(x1, x2, . . . , xn) of ~x(t) = (x1(t), x2(t), . . . , xn(t)) can be
written as follows

ρ(x1, x2, . . . , xn) =
n∏

i=0

ρi(xi). (26)

Therefore, by using Eqs. (18)-(23) we can compute ρ(x1, x2, . . . , xn) for all

(x1, x2, . . . , xn) ∈
n∏

i=0

[ai, bi].

3. CONCLUSIONS

The two-states continuous time random walk has been studied by many researchers
for the Markov case and only a few have studied for non-Markovian processes [10].
This basic model has many applications in physics, biology, chemistry, and engineering.
Most of the former models were oriented to solve the boundary-free particle motion.
Recently this basic model has been extended in several directions, such as two and
three dimensions, with reflecting and absorbing boundaries. Only a few of these works
consider partly reflecting boundaries [6], [10], and references therein. However, in none
of these previous works a stationary distribution for the particle position is presented, as
we did in this paper. In this paper we have found the limiting distribution of a particle
moving according to a semi-Markov evolution in a n-dimensional parallelepiped.
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