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Abstract

We study the model of binary branching Brownian motion with spatially-inhomogene-

ous branching rate βδ0(·), where δ0(·) is the Dirac delta function and β is some positive

constant. We show that the distribution of the rightmost particle centred about β

2
t

converges to a mixture of Gumbel distributions according to a martingale limit. Our

results form a natural extension to S. Lalley and T. Sellke [10] for the degenerate case

of catalytic branching.
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1 Introduction and main results

1.1 Model

In this article we consider the model of branching Brownian motion with binary

splitting and spatially inhomogeneous branching rate βδ0(·), where δ0(·) is the Dirac

delta function and β > 0 is some constant.

In such a model we start with a single particle whose path (Xt)t≥0 is distributed like

a standard Brownian motion. Then, at a random time T (the branching time) satisfying

P

(

T > t
∣

∣ (Xs)s≥0

)

= e−βLt ,

where (Lt)t≥0 is the local time at 0 of (Xt)t≥0, the initial particle dies and is replaced

with two new particles, which independently repeat the behaviour of their parent (that

is, they move as Brownian motions until their split times when new particle emerge, etc.)

Informally, we can write Lt =
∫ t

0
δ0(Xs)ds thus justifying calling the branching rate

βδ0(·). Also, the branching in this model can only take place at the origin since (Lt)t≥0

only grows on the zero set of (Xt)t≥0 and stays constant elsewhere.

This model was first introduced by D.A. Dawson and K. Fleischmann in [3] and has

been mostly studied in the context of superprocesses. See for example papers of K.

Fleischmann and J-F. Le Gall [5] or J. Engländer and D. Turaev [4].
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Limiting distribution of the rightmost particle in catalytic BBM

1.2 Main result

Before we state the main result of this article (Theorem 1.1) let us define the notation

and recall some of the existing results for this catalytic model in [1].

Let us denote by P the probability measure associated to the branching process with

E the corresponding expectation. We denote the set of all the particles in the system

at time t by Nt. For every particle u ∈ Nt we denote by Xu
t its spatial position at time t.

Finally, we define

Rt := sup
u∈Nt

Xu
t , t ≥ 0

to be the rightmost particle.

Previously in [1] we have shown that

Rt

t
→ β

2
as t → ∞, P -a.s. (1.1)

In particular, we have shown that the particle that has maximal position at time t would

have typically stayed near the origin up until time t
2 by behaving like a Brownian motion

with drift of magnitude β towards the origin and then in the remaining time moved with

positive drift of magnitude β to reach the critical level
β
2 t.

The aim of this paper is to prove that Rt− β
2 t converges in distribution to a non-trivial

limit and to describe the limiting distribution.

Let us recall from [1] that the process

Mt := e−
β2

2 t
∑

u∈Nt

e−β|Xu
t | , t ≥ 0

is a P -martingale of mean 1 that converges almost surely to a strictly positive limit,

which we denote by M∞.

We are now in the position to state our main result.

Theorem 1.1. For a branching process initiated from x ∈ R and any y ∈ R we have

lim
t→∞

P x
(

Rt ≤
β

2
t+ y

)

= Ex exp
{

− e−βyM∞
}

(1.2)

The limiting distribution is thus an average over a family of Gumbel distributions

with scale parameter β−1 and random location β−1 logM∞.

1.3 Comparison with other branching Brownian motion models

A similar formula for branching Brownian motion with spatially-homogeneous branch-

ing rate β was proved by S. Lalley and T. Sellke in [9]. Another similar formula for a

general class of branching random walks in discrete time with spatially-homogeneous

branching rate was recently obtained by M. Bramson, J. Ding and O. Zeitouni in [2].

However of particular relevance to our result is the following theorem due to Lalley and

Sellke, which covers a certain class of spatially-inhomogeneous branching rates β(x),

not including the degenerate catalytic case βδ0(x).

Theorem 1.2 (S. Lalley, T. Sellke, [10]). Consider a binary branching Brownian motion

with branching rate β(x), where β(·) is a continuous function such that β(x) → 0 as

|x| → ∞ and
∫∞
−∞ β(x)dx < ∞. Let λ0 be the largest positive eigenvalue of the differential

operator L : g 7→ 1
2g

′′+βg with the corresponding unique eigenfunction ϕ0(·), normalised

so that ϕ0(0) = 1. Then

lim
t→∞

P
(

Rt ≤
√

λ0

2
t+ y

)

= E exp
{

− Z∞γe−
√
2λ0y

}

,
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Limiting distribution of the rightmost particle in catalytic BBM

where Z∞ is the a. s. limit of the martingale Zt = e−λ0t
( ∫∞

−∞ ϕ0(x)
2dx

)−1 ∑

u∈Nt
ϕ0(X

u
t ),

t ≥ 0, γ = 1
2λ0

∫∞
−∞ e

√
2λ0xβ(x)ν(dx) and ν(J) =

∫

J
ϕ0(x)dx.

The proof of Lalley and Sellke of Theorem 1.2 is based on stochastic comparison

of the branching process with a Poisson tidal wave and involves a coupling argument.

Rather than trying to adapt their proof to suit our model we take an alternative and

more direct approach which can be summarised as follows.

In Section 2 we establish a formula for second moments of quantities of the form
∑

u∈Nt
f(Xu

t ), which in itself is an interesting and useful result. We then use this

formula to give a lower bound on P (Rt >
β
2 t+ y) via the Paley-Zygmund inequality. The

corresponding upper bound trivially follows from the Markov inequality.

In Section 3, we can then show that if |x0(t)| is not too large and z(t) goes to infinity

not too fast, then

P x0(t)
(

Rt ≤
β

2
t+ z(t)

)

≈ 1− e−β|x0(t)|−βz(t) (1.3)

for t large, this being made precise in Proposition 3.1. Heuristically, this follows since

P 0
(

Rt >
β

2
t+ z

)

≈ E0

∣

∣

∣

∣

{

u ∈ Nt : X
u
t >

β

2
t+ z

}

∣

∣

∣

∣

∼ e−βz

when t and z are suitably large, and then, if T0 is the time the initial particle hits the

origin,

P x
(

Rt >
β

2
t+ z

)

≈ Ex
(

1{T0≤t} P
0
(

Rt−T0
>

β

2
(t− T0) + z +

β

2
T0

∣

∣

∣
T0

))

∼ Ex
(

1{T0≤t} e
−β(z+ β

2 T0)
)

≈ e−βzEx
(

e−
β2

2 T0

)

= e−βz−β|x|.

We can then conclude the proof of the main result by carefully using (1.3) in the

identity

P x
(

Rt ≤
β

2
t+ y

)

= Ex
[

∏

u∈Ns

PXu
s

(

Rt−s ≤
β

2
t+ y

)]

where, for s and t suitably large,

P x
(

Rt ≤
β

2
t+ y

)

= Ex
[

∏

u∈Ns

PXu
s

(

Rt−s ≤
β

2
(t− s) + y +

β

2
s
)]

≈ Ex
[

∏

u∈Ns

(1− e−β|Xu
s |−β(y+ β

2 s))
]

≈ Ex
[

exp
{

−
∑

u∈N(s)

e−β|Xu
s |−β(y+ β

2 s)
}]

→ Ex exp
{

− e−βyM∞
}

.

2 First and second moments computations

For λ ∈ R and t ≥ 0 let us define

Nλ
t := {u ∈ Nt : Xu

t ≥ λ}

to be the set of particles at time t which lie above level λ. In this section we are going to

study the asymptotic properties of the first two moments of |Nλ
t | for λ = β

2 t+ y.

2.1 ‘Many-to-One’ lemma and applications

Let us extend the branching process by introducing an infinite line of descent (a

sequence of particles) which we call the spine and which is chosen uniformly at random
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from all the possible lines of descent. More precisely, the spine starts with the initial

particle of the branching process. It continues with one of the children of the initial par-

ticle chosen with probability 1
2 , then with one of the chosen child’s child with probability

1
2 and so on.

We let P̃ be the extension of the probability measure P so that the branching process

under P̃ is defined together with the spine as described above. We denote the expectation

associated to P̃ by Ẽ. We also let ξt denote the position of the particle in the spine at

time t. It is not hard to see that (ξt)t≥0 is a Brownian Motion under P̃ . We let (L̃t)t≥0 be

the local time at 0 of (ξt)t≥0.

Recall a special case of the ‘Many-to-One’ Lemma, as was used extensively in [1].

Lemma 2.1 (‘Many-to-One’ Lemma). Suppose that f(·) : R → R is a non-negative

measurable function. Then

E
∑

u∈Nt

f(Xu
t ) = Ẽ

[

f(ξt)e
βL̃t

]

.

Let us also recall a standard result (see e.g. [8]) that if (Xt)t≥0 is a Brownian motion

under P and (Lt)t≥0 is its local time at 0 then the joint density of Xt and Lt at any time

t > 0 is

P
(

Xt ∈ dx, Lt ∈ dl
)

=
|x|+ l√
2πt3

exp
{

− (|x|+ l)2

2t

}

dxdl , x ∈ R, l > 0. (2.1)

Lemma 2.1 together with (2.1) yields the following simple formula for E
∣

∣Nλ
t

∣

∣.

Proposition 2.2. For λ > 0

E
∣

∣Nλ
t

∣

∣ = Φ
(

β
√
t− λ√

t

)

e−
β2

2 t−βλ , (2.2)

where Φ(x) = 1√
2π

∫ x

−∞ e−
y2

2 dy is the cumulative distribution function of a standard

normal. In particular, for t sufficiently large so that
β
2 t+ y > 0,

E
∣

∣N
β
2 t+y

t

∣

∣ = Φ
(β

2

√
t− y√

t

)

e−βy. (2.3)

Proof. Take f(·) = 1[λ,∞)(·) in Lemma 2.1. Then

E|Nλ
t | = E

[

∑

u∈Nt

1{Xu
t ≥λ}

]

= Ẽ
[

1{ξt≥λ} eβL̃t

]

.

Substituting the joint density of ξt and L̃t from (2.1) gives

E
∣

∣Nλ
t

∣

∣ =

∫ ∞

0

∫ ∞

λ

eβl
x+ l√
2πt3

exp
{

− (x+ l)2

2t

}

dxdl

=

∫ ∞

0

eβl
1√
2πt

exp
{

− (λ+ l)2

2t

}

dl

=

∫ ∞

0

1√
2πt

exp
{

− 1

2t

(

l − (βt− λ)
)2

+
β2

2
t− βλ

}

dl

= e
β2

2 t−βλ

∫ ∞

−(β
√
t− λ√

t
)

1√
2π

e−
z2

2 dz

= Φ
(

β
√
t− λ√

t

)

e−
β2

2 t−βλ.
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It follows from (2.3) that for any y ∈ R and t > − 2y
β

E
∣

∣N
β
2 t+y

t

∣

∣ ≤ e−βy (2.4)

and for a fixed y ∈ R

E
∣

∣N
β
2 t+y

t

∣

∣ → e−βy as t → ∞. (2.5)

2.2 ‘Many-to-Two’ lemma and applications

The second moment of |Nλ
t | is harder to deal with. Recently Harris and Roberts [7]

established a general ‘Many-to-Few’ lemma which allows computing kth moments of

branching processes in a systematic way.

We shall first state the special case of this formula for binary catalytic branching in

Lemma 2.3. Then we shall convert this formula into a more suitable form in Corollary

2.4 and then use this form to get a good estimate of E
[

|Nλ
t |2

]

.

For this subsection we need to extend the branching process by introducing two

independent spines. That is, we have two infinite lines of descent started from the initial

particle of the branching process which then with probability 1
2 independently of each

other choose to follow one of the initial particle’s children and so on. We let P̃ 2 be the

extension of the probability measure P under which the branching process is defined

with two independent spines.

Moreover, we want to define a new probability measure Q̃2 so that under Q̃2 the

branching process with the two spines can be described as follows.

• We begin with a single particle moving as a Brownian motion and carrying two

marks: 1 and 2.

• The particles in the system undergo binary fission and every time a particle

branches every mark carried by that particle (there could be 0, 1 or 2 such marks)

chooses to follow one of the children with probability 1
2 independently of the other

mark. Sequences of particles carrying marks 1 and 2 thus define two independent

spines.

• The difference from P̃ 2 is that under Q̃2 particles carrying two marks will branch

at rate 4βδ0(·), particles carrying one mark will branch at rate 2βδ0(·) and particles

carrying no marks will branch at rate βδ0(·).

We let ξ1t and ξ2t be the positions of particles carrying marks 1 and 2 respectively

so that (ξ1t )t≥0 and (ξ2t )t≥0 are two (correlated) Brownian motions. We let (L̃1
t )t≥0 and

(L̃2
t )t≥0 be the corresponding local times. We also let T be the time when the two marks

stop following the same particle (that is, the two spines separate from each other).

In such a setup we have the following special case of a result from [7]:

Lemma 2.3 (‘Many-to-Two’ Lemma). Let f(·), g(·) : R → R be non-negative measurable

functions. Then

E
[(

∑

u∈Nt

f(Xu
t )
)(

∑

u∈Nt

g(Xu
t )
)]

= Q̃2
(

1{T>t}f(ξ
1
t )g(ξ

1
t )e

3βL̃1
t

)

+ Q̃2
(

1{T≤t}f(ξ
1
t )g(ξ

2
t )e

3βL̃1
T eβ(L̃

1
t−L̃1

T )eβ(L̃
2
t−L̃2

T )
)

.

(2.6)

To make explicit calculations easier we simplify (2.6) in the following form:

Proposition 2.4. Let f(·), g(·) : R → R be non-negative measurable functions and define

Sf (t) := E
(

∑

u∈Nt

f(Xu
t )
)
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to be the first moment of
∑

u∈Nt
f(Xu

t ). Then

E
[(

∑

u∈Nt

f(Xu
t )
)(

∑

u∈Nt

g(Xu
t )
)]

= Sfg(t) + 2

∫ t

0

Sf (t− s)Sg(t− s)
∂

∂s

(

2Φ(β
√
s)e

β2

2 s
)

ds.

(2.7)

Proof of Proposition 2.4. Note that, from the definition of Q̃2,

Q̃2
(

T > t
∣

∣ (ξ1s )s≥0

)

= e−2βL̃1
t . (2.8)

That is, the two spines will split apart at half of the branching rate 4βδ(·). Then the first

term of (2.6) is just

Q̃2
(

1{T>t}f(ξ
1
t )g(ξ

1
t )e

3βL̃1
t

)

= Q̃2
(

Q̃2
(

1{T>t}f(ξ
1
t )g(ξ

1
t )e

3βL̃1
t

∣

∣(ξ1s )s≥0

))

= Q̃2
(

f(ξ1t )g(ξ
1
t )e

3βL̃1
t e−2βL̃1

t

)

= Sfg(t) (2.9)

using Lemma 2.1 for the last equality. The second term is more complicated.

If we let ξ̂
1,2
t := ξ

1,2
T+t − ξ

1,2
T , t ≥ 0 and L̂

1,2
t := L̃

1,2
T+t − L̃

1,2
T then under Q̃2 by the strong

Markov property (ξ̂1,2t )t≥0 are two independent Brownian motions, both independent of

(ξ1t )0≤t≤T with (L̂1,2
t )t≥0 their local times. Thus, noting that ξ

1,2
T = 0, the second term in

(2.6) becomes

Q̃2
(

1{T≤t}f(ξ
1
t )g(ξ

2
t )e

3βL̃1
T eβ(L̃

1
t−L̃1

T )eβ(L̃
2
t−L̃2

T )
)

=Q̃2
(

1{T≤t}f(ξ̂
1
t−T )g(ξ̂

2
t−T )e

3βL̃1
T eβL̂

1
t−T eβL̂

2
t−T

)

=Q̃2
(

Q̃2
(

1{T≤t}f(ξ̂
1
t−T )g(ξ̂

2
t−T )e

3βL̃1
T eβL̂

1
t−T eβL̂

2
t−T

∣

∣ T, (ξ1t )0≤t≤T

))

=Q̃2
(

1{T≤t}e
3βL̃1

T Sf (t− T )Sg(t− T )
)

using Lemma 2.1 and independence of (ξ̂1t )t≥0 and (ξ̂2t )t≥0 of each other and of (ξ1t )0≤t≤T .

Then

Q̃2
(

1{T≤t}e
3βL̃1

T Sf (t− T )Sg(t− T )
)

=Q̃2
(

Q̃2
(

1{T≤t}e
3βL̃1

T Sf (t− T )Sg(t− T )
∣

∣ (ξ1s )s≥0

))

=Q̃2
(

∫ t

0

e3βL̃
1
sSf (t− s)Sg(t− s) d

(

− e−2βL̃1
s

)

)

,

where d
(

− e−2βL̃1
s

)

is the random probability measure induced by Q̃2
(

T ≤ t
∣

∣ (ξ1s )s≥0

)

=

1 − e−2βL̃1
t and we have used (2.8). Then noting that d

(

− e−2βL̃1
s

)

= 2βe−2βL̃1
sdL̃1

s (see

e.g. [6], Chapter 0, Proposition 4.6) we get

Q̃2
(

∫ t

0

e3βL̃
1
sSf (t− s)Sg(t− s) d

(

− e−2βL̃1
s

)

)

=Q̃2
(

∫ t

0

e3βL̃
1
sSf (t− s)Sg(t− s)2βe−2βL̃1

sdL̃1
s

)

=2Q̃2
(

∫ t

0

Sf (t− s)Sg(t− s) d
(

eβL̃
1
s

)

)

.
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Finally, using integration-by-parts (see e.g. [6], Chapter 0, Proposition 4.5) and Fubini’s

theorem we get

2Q̃2
(

∫ t

0

Sf (t− s)Sg(t− s) d
(

eβL̃
1
s

)

)

=2Q̃2
(

f(0)g(0)eβL̃
1
t − Sf (t)Sg(t)−

∫ t

0

∂

∂s

(

Sf (t− s)Sg(t− s)
)

eβL̃
1
sds

)

=2
(

f(0)g(0)Q̃2
(

eβL̃
1
t

)

− Sf (t)Sg(t)−
∫ t

0

∂

∂s

(

Sf (t− s)Sg(t− s)
)

Q̃2
(

eβL̃
1
s

)

ds
)

=2

∫ t

0

Sf (t− s)Sg(t− s)
∂

∂s

(

Q̃2
(

eβL̃
1
s

)

)

ds

=2

∫ t

0

Sf (t− s)Sg(t− s)
∂

∂s

(

2Φ(β
√
s)e

β2

2 s
)

ds, (2.10)

which together with (2.9) gives the sought formula (2.7).

As a simple application of (2.7) we get the following useful inequality.

Proposition 2.5. For all y ∈ R, t > − 2y
β

E
[

∣

∣N
β
2 t+y

t

∣

∣

2
]

≤ e−βy + Ce−2βy, (2.11)

where C > 0 is some positive finite constant which doesn’t depend on t or y.

Remark 2.6. One can also show that for a fixed y ∈ R

lim
t→∞

E
[

∣

∣N
β
2 t+y

t

∣

∣

2
]

= e−βy + 2(1 +
√
2)e−2βy, (2.12)

but it’s not so important for this paper.

Proof of Proposition 2.5. We substitute f(·) = g(·) = 1[ β2 t+y,∞)(·) in (2.7) so that

E
[

∣

∣N
β
2 t+y

t

∣

∣

2
]

= E
∣

∣N
β
2 t+y

t

∣

∣+ 2

∫ t

0

[

E
∣

∣N
β
2 t+y

t−s

∣

∣

]2 ∂

∂s

(

2Φ(β
√
s)e

β2

2 s
)

ds.

From (2.4) we know that for t > − 2y
β
and s ∈ [0, t] (so that also t− s > − 2

β
(β2 s+ y))

E
∣

∣N
β
2 t+y

t

∣

∣ ≤ e−βy and E
∣

∣N
β
2 t+y

t−s

∣

∣ = E
∣

∣N
β
2 (t−s)+ β

2 s+y

t−s

∣

∣ ≤ e−β( β
2 s+y).

Thus, noting that ∂
∂s

(

2Φ(β
√
s)e

β2

2 s
)

> 0 since 2Φ(β
√
s)e

β2

2 s is increasing in s, we get

E
[

∣

∣N
β
2 t+y

t

∣

∣

2
]

≤ e−βy + e−2βy2

∫ t

0

e−β2s ∂

∂s

(

2Φ(β
√
s)e

β2

2 s
)

ds

≤ e−βy + Ce−2βy ∀t > −2y

β
,

where C = 2
∫∞
0

e−β2s ∂
∂s

(

2Φ(β
√
s)e

β2

2 s
)

ds < ∞.

Noting that {|N
β
2 t+y

t | > 0} = {Rt >
β
2 t+y} we establish the following simple corollary

of Proposition 2.2 and Proposition 2.5.

Corollary 2.7. For all y ∈ R, t > − 2y
β

e−βy(1− Ce−βy)Φ
(β

2

√
t− y√

t

)2

< P
(

Rt >
β

2
t+ y

)

< e−βy.
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Limiting distribution of the rightmost particle in catalytic BBM

So, in particular, lim inft→∞ P
(

Rt >
β
2 t + y

)

, lim supt→∞ P
(

Rt >
β
2 t + y

)

∼ e−βy as

y → ∞.

Proof of Corollary 2.7. Paley-Zygmund and Markov inequality give

[

E
∣

∣N
β
2 t+y

t

∣

∣

]2

E
[

∣

∣N
β
2 t+y

t

∣

∣

2
] ≤ P

(

∣

∣N
β
2 t+y

t

∣

∣ > 0
)

≤ E
∣

∣N
β
2 t+y

t

∣

∣

Thus applying (2.3) and (2.11) to the lower bound and (2.4) to the upper bound gives us

Φ
(

β
2

√
t− y√

t

)2

e−2βy

e−βy + Ce−2βy
≤ P

(

∣

∣N
β
2 t+y

t

∣

∣ > 0
)

≤ e−βy.

Then the lower bound satisfies

Φ
(

β
2

√
t− y√

t

)2

e−2βy

e−βy + Ce−2βy
= e−βy

( 1

1 + Ce−βy

)

Φ
(β

2

√
t− y√

t

)2

≥ e−βy
(

1− Ce−βy
)

Φ
(β

2

√
t− y√

t

)2

,

which gives the desired inequality.

3 Limiting distribution of the rightmost particle

This section contains the proof of Theorem 1.1. An important preliminary step of the

proof is to establish the following consequence of Corollary 2.7.

Proposition 3.1. Let x0(t) and z(t) be such that |x0(t)| < 1
4β log t for t sufficiently large,

z(t) → ∞ and z(t) = o(log t) (that is, z(t)
log t

→ 0) as t → ∞. Then for t sufficiently large

1− θ1(t)e
−β|x0(t)|−βz(t) ≤ P x0(t)

(

Rt ≤
β

2
t+ z(t)

)

≤ 1− θ2(t)e
−β|x0(t)|−βz(t) (3.1)

for some functions θ1(·), θ2(·) such that θ1(t), θ2(t) → 1 as t → ∞.

Proof. Let T0 be the first time the initial particle of the branching process (started from

x0) hits the origin. We fix α ∈ (0, 1
2 ) and write

P x0(t)
(

Rt ≤
β

2
t+ z(t)

)

=P x0(t)
(

Rt ≤
β

2
t+ z(t), T0 ≤ αt

)

+P x0(t)
(

Rt ≤
β

2
t+ z(t), T0 > αt

)

(3.2)

(the choice of α will become clear later in the proof). Then the first term of (3.2) can be

written as

P x0(t)
(

Rt ≤
β

2
t+ z(t), T0 ≤ αt

)

= P x0(t)
(

R̃t−T0 ≤ β

2
t+ z(t), T0 ≤ αt

)

,

where R̃t := Rt+T0
, t ≥ 0 is the position of the rightmost particle of the subtree of the

original branching process started from the origin at time T0. Then conditioning on T0

and using the strong Markov property we get

P x0(t)
(

R̃t−T0
≤ β

2
t+ z(t), T0 ≤ αt

)

=Ex0(t)
[

Ex0(t)
(

1{R̃t−T0
≤ β

2 t+z(t)}1T0≤αt

∣

∣ T0

)]

=

∫ αt

0

P
(

Rt−s ≤
β

2
t+ z(t)

)

fT0
(s)ds , (3.3)
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where fT0(s) =
|x0|√
2πs3

e−
x2
0

2s is the probability density of T0.

Lower bound.

We first prove the lower bound of (3.1). From (3.2) and (3.3) we have

P x0(t)
(

Rt ≤
β

2
t+ z(t)

)

≥
∫ αt

0

P
(

Rt−s ≤
β

2
t+ z(t)

)

fT0(s)ds.

Then from Corollary 2.7 we know that for all t sufficiently large (so that t+ 2
β
z(t) > 0)

∫ αt

0

P
(

Rt−s ≤
β

2
t+ z(t)

)

fT0(s)ds ≥
∫ αt

0

(

1− exp
{

− β
(β

2
s+ z(t)

)}

)

fT0(s)ds

=P x0(t)(T0 ≤ αt)− e−βz(t)Ex0(t)
(

e−
β2

2 T01{T0≤αt}
)

≥P x0(t)(T0 ≤ αt)− e−βz(t)Ex0(t)
(

e−
β2

2 T0

)

=1− e−βz(t)−β|x0(t)| − P x0(t)(T0 > αt)

using the fact that Ex0(t)
(

e−
β2

2 T0
)

= e−β|x0(t)|. Then since P x0(t)(T0 > αt) ≤
√
2|x0(t)|√
παt

it

follows that

P x0(t)
(

Rt ≤
β

2
t+ z(t)

)

≥ 1− θ1(t)e
−β|x0(t)|−βz(t),

where θ1(t) = 1 + P x0(t)(T0 > αt)eβ|x0(t)|+βz(t) → 1 as t → ∞ due to assumption that

|x0(t)| < 1
4β log t for large enough t and z(t) = o(log t) as t → ∞.

Upper bound.

The upper bound of 3.1 is proved similarly. From (3.2) and (3.3) we have

P x0(t)
(

Rt ≤
β

2
t+ z(t)

)

≤
∫ αt

0

P
(

Rt−s ≤
β

2
t+ z(t)

)

fT0
(s)ds+ P x0(t)

(

T0 > αt
)

.

From Corollary 2.7 we know that for all t sufficiently large (so that t+ 2
β
z(t) > 0)

∫ αt

0

P
(

Rt−s ≤
β

2
t+ z(t)

)

fT0(s)ds ≤
∫ αt

0

[

1− exp
{

− β2

2
s− βz(t)

}

(

1−

C exp
{

− β2

2
s− βz(t)

}

)

Φ
(β

2

√
t− s−

β
2 s+ z(t)√

t− s

)2]

fT0
(s)ds

≤
∫ αt

0

[

1− exp
{

− β2

2
s− βz(t)

}

(

1−

C exp
{

− βz(t)
}

)

Φ
(β

2

√
1− α

√
t− βα

√
t

2
√
1− α

− z(t)√
1− α

√
t

)2]

fT0
(s)ds

≤1− θ̂2(t) exp{−βz(t)}
∫ αt

0

e−
β2

2 sfT0
(s)ds ,

where

θ̂2(t) =
(

1− C exp
{

− βz(t)
}

)

Φ
(β

2

√
1− α

√
t− βα

2
√
1− α

√
t− z(t)√

1− α
√
t

)2

→ 1
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as t → ∞ due to the choice of α < 1
2 . Thus

P x0(t)
(

Rt ≤
β

2
t+ z(t)

)

≤1− θ̂2(t) exp{−βz(t)}
∫ αt

0

e−
β2

2 sfT0(s)ds+ P x0(t)
(

T0 > αt
)

=1− θ̂2(t) exp{−βz(t)}
[

Ex0(t)e−
β2

2 T0 − Ex0(t)
(

1{T0>αt}e
− β2

2 T0

)]

+ P x0(t)
(

T0 > αt
)

≤1− θ̂2(t) exp{−βz(t)}
[

Ex0(t)e−
β2

2 T0 − P x0(t)
(

T0 > αt
)]

+ P x0(t)
(

T0 > αt
)

=1− θ2(t)e
−β|x0(t)|−βz(t) ,

where

θ2(t) = θ̂2(t)
(

1− eβ|x0(t)|P x0(t)
(

T0 > αt
)

)

− eβ|x0(t)|+βz(t)P x0(t)
(

T0 > αt
)

→ 1

as t → ∞ since P x0(t)(T0 > αt) ≤
√
2|x0(t)|√
παt

, |x0(t)| < 1
4β log t for large enough t and

z(t) = o(log t) as t → ∞ and this completes the proof of Proposition 3.1.

Let us now prove the main result of this paper. Namely, that for any x, y ∈ R

lim
t→∞

P x
(

Rt ≤
β

2
t+ y

)

= Ex exp
{

−M∞e−βy
}

.

Proof of Theorem 1.1. Let us first assume that the branching process starts from 0. Note

that for any t > 0 and s < t by the Markov property we can write

P
(

Rt ≤
β

2
t+ y

)

= E
(

∏

u∈Ns

PXu
s

(

Rt−s ≤
β

2
t+ y

)

)

= E
(

∏

u∈Ns

PXu
s

(

Rt−s ≤
β

2
(t− s) +

β

2
s+ y

)

)

.

We take s(t) =
√
log t in the above formula so that conditions of Proposition 3.1 will apply.

Then fixing an arbitrary ǫ > 0 we write

∏

u∈Ns(t)

PXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)

=1{Rs(t)≤( β
2 +ǫ)s(t)}

∏

u∈Ns(t)

PXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)

+1{Rs(t)>( β
2 +ǫ)s(t)}

∏

u∈Ns(t)

PXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)

and as we know from (1.1), 1{Rs(t)>( β
2 +ǫ)s(t)} → 0 almost surely and hence also

1{Rs(t)>( β
2 +ǫ)s(t)}

∏

u∈Ns(t)

PXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)

≤ 1{Rs(t)>( β
2 +ǫ)s(t)} → 0

almost surely as t → ∞. On the other hand, we would like to show that on the event

{Rs(t) ≤ (β2 + ǫ)s(t)}
∏

u∈Ns(t)

PXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)

→ exp{−e−βyM∞} (3.4)
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Upper bound of (3.4). On the event {Rs(t) ≤ (β2 + ǫ)s(t)} we have

∏

u∈Ns(t)

PXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)

=exp
{

∑

u∈Ns(t)

logPXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)}

≤ exp
{

∑

u∈Ns(t)

log
(

1− θ2
(

t− s(t)
)

e−β|Xu
s(t)|−

β2

2 s(t)−βy
)}

for t large enough and where θ2(t) → 1 as t → ∞ according to Proposition 3.1. Then

since log(1− x) ≤ −x for all x ∈ R we get (on the event {Rs(t) ≤ (β2 + ǫ)s(t)})
∏

u∈Ns(t)

PXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)

≤ exp
{

− θ2
(

t− s(t)
)

e−βy
∑

u∈Ns(t)

e−β|Xu
s(t)|−

β2

2 s(t)
}

=exp
{

− θ2
(

t− s(t)
)

e−βyMs(t)

}

→ exp
{

− e−βyM∞
}

.

Lower bound of (3.4). Similarly, on the event {Rs(t) ≤ (β2 + ǫ)s(t)} we have that |Xu
s(t)| ≤

(β2 + ǫ)s(t) = (β2 + ǫ)
√
log t for all u ∈ Ns(t) and so by Proposition 3.1

∏

u∈Ns(t)

PXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)

≥ exp
{

∑

u∈Ns(t)

log
(

1− θ1
(

t− s(t)
)

e−β|Xu
s(t)|−

β2

2 s(t)−βy
)}

for t large enough and where θ1(t) → 1 as t → ∞. Then since log(1 − x) ≥ log(1−x∗)
x∗

x

for all x ∈ [0, x∗] we get by taking x = θ1
(

t − s(t)
)

e−β|Xu
s(t)|−

β2

2 s(t)−βy and x∗ = θ1
(

t −
s(t)

)

e−
β2

2 s(t)−βy that

∏

u∈Ns(t)

PXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)

≥ exp
{ log

(

1− θ1
(

t− s(t)
)

e−
β2

2 s(t)−βy
)

θ1
(

t− s(t)
)

e−
β2

2 s(t)−βy
θ1
(

t− s(t)
)

e−βy
∑

u∈Ns(t)

e−β|Xu
s(t)|−

β2

2 s(t)
}

→ exp
{

− e−βyM∞
}

using L’Hopitale’s rule when taking the limit of the fraction. So we have proved that

1{Rs(t)≤( β
2 +ǫ)s(t)}

∏

u∈Ns(t)

PXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)

→ exp
{

− e−βyM∞
}

.

Thus also almost surely

∏

u∈Ns(t)

PXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)

→ exp
{

− e−βyM∞
}
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and by bounded convergence

E
[

∏

u∈Ns(t)

PXu
s(t)

(

Rt−s(t) ≤
β

2
(t− s(t)) +

β

2
s(t) + y

)]

→ E
[

exp
{

− e−βyM∞
}]

.

For an arbitrary starting point x let T0 be the time the initial particle first hits the origin,

R̃t := Rt+T0
and M̃t := e

β2

2 T0Mt+T0
, t ≥ 0. Then by the strong Markov property we get

P x
(

Rt ≤
β

2
t+ y

)

= P x
(

Rt ≤
β

2
t+ y, T0 > t

)

+ P x
(

Rt ≤
β

2
t+ y, T0 ≤ t

)

= P x
(

Rt ≤
β

2
t+ y, T0 > t

)

+ P x
(

R̃t−T0
≤ β

2
(t− T0) +

β

2
T0 + y, T0 ≤ t

)

→ 0 + Ex
(

exp
{

− e−
β2

2 T0−βyM̃∞
})

= Ex
(

exp
{

− e−βyM∞
})

.
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