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ABS11<ACT 

This paper proves the existence of a stationary distribution 

for a class of Markov voting models, We assume that alternatives to 

replace the current status quo arise probabilistically, with the 

probability distribution at time t+l having support set equal to the 

set of alternatives that defeat, according to some voting rule, the 

current status quo at time t. When preferences are based on Euclidean 

distance, it is shown that for a wide class of voting rules, a 

limiting distribution exists. For the special case of majority rule, 

not only does a limiting distribution always exist, but we obtain 

bounds for the concentration of the limiting distribution around a 

centrally located set, The implications are that under Markov voting 

models, small deviations from the conditions for a core point will 

still leave the limiting distribution quite concentrated around a 

generalized median point, Even though the majority relation is 

totally cyclic in such situations, our results show that such chaos is 

not probabilistically significant, 



LIMITING DIS1RIBUTIONS FOR CONTINUOUS STATE MARKOV V OTING MODELS 

John A. Ferejohn, Richard D. McKelvey, and Edward VI. Packel

1, IN1RODUCTION 

It is becoming increasingly evident that nondeterministic 

models of individual and group behavior have an important role to play 

in the social sciences, Such models can provide relief from 

impossibility results, and may yield equilibria not generally present 

in deterministic formulations, In the realm of game-theoretic models 

of committee voting there are an abundance of solution concepts, but 

none are fully adequate in that they can often fail to make a 

prediction (equilibria do not exist) or they predict indiscriminately 

(the set of solutions is unworkably large), Nondeterministic 

solutions, on the other l1and, afford the possibility of always 

existing while discriminating probabilistically over any set of 

possible outcomes, In addition, probabilistic solutions may reduce to 

nondeterministic solutions when the latter do exist and are 

appropriate, 

A natural and widely applicable means of generating 

probabilistic predictions is provided by Markov processes, For voters 

making a choice from a finite set of alternatives, a finite state 

discrete time Markov chain model of sequential voting is developed by 

Ferejohn, Fiorina, and Packel (1980], When the alternatives form a 

compact subset of 2m, a continuous state Markov process can be used to
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generate a probabilistic solution concept (Packel (1981]). Each of 

these models assumes that alternatives to replace the current status 

quo arise probabilistically, with the probability distribution of time 

t + 1 having support equal to the set of alternatives that defeat (by 

some voting rule) the current status quo at time t, Once this 

probability distribution is obtained, one can then try to determine 

the limiting distribution (i. e. ,  the steady state probabilities) for 

the Markov process. For a finite set of alternatives, this procedure 

is straightforward, When alternatives are a general subset of Rm, a 

number of interesting and important questions arise about the 

existence and structure of the limiting distribution. In this paper 

we formulate and address these questions, 

When the alternative space is compact and voter preferences 

are ''reasonable,'' it is shown in Packel [1981] that a limiting 

probability distribution must exist and will be concentrated at the 

strong equilibrium if suoh an equilibrium exists, In the absence of 

an equilibrium, however, one would like to know to what extent the 

distribution is concentrated in the Pareto set or some other centrally 

located region in the alternative space, 

If we allow the alternative space to be all of Rm, additional 

subtleties arise, A result by McKelvey (1976, 1979] shows that, for 

almost all distributions of voter preferences, any point in im can be 

reached from any other point by a finite sequence of majority rule 

votes, This result suggests that any of the following disjoint 

conclusions might plausibly hold: 



(a) The limiting distribution may fail to exist, 

(b) The limiting distribution will exist, but fail to 

(c) 

concentrate in the Pareto set, or in any centrally 

located region, 

The limiting distribution will exist and have most 

of its probability near some centrally located 

region in the Pareto set, 
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As we show in the final section, both (a) and (b) may occur if 

some contrived assumptions are made about the support sets for the 

transition probabilities, However, under more reasonable assumptions 

about the transition probabilities, and assuming circular preferences 

for the voters, we show that a limiting distribution must always 

exist. This is true regardless of the structure of the decisive 

coalitions which generate the social preference relation -- even, for 

example, if the underlying game is not proper, We can also obtain 

some weak bounds on the limiting probability distribution of such a 

process and its relation to the Pareto set, 

In the special case of majority rule, we get much stronger 

results, Here we not only get existence of the limiting distribution, 

but we can bound the limiting distribution in terms of its 

concentrations around a more centrally located set. It follows from 

the results here that if the distribution of voter ideal points is 

''close '' to symmetric, i.e. if it is close the situation when a core 

exists, then the limiting distribution will be quite concentrated near 

a ''generalized median.'' Even when there is less symmetry, the 

distribution will be concentrated around a centrally located region 

which for large numbers of voters will be contained in the Pareto set 

and will also contain Kramer's minimax set, Thus, the class of 

probabilistic solution concepts we consider are consistent with the 

chaos of total cyclicity suggested by McKelvey's theorem, but our 

results show that such chaos is not probabilistically significant, 

2. DEFINITIONS AND NOTATION 

We assume a set N = {1, 2,. . . ,n} of yoters, a set X � 1.m of 

alternatiyes, and, for each i a N, a complete binary relation 

Ri �X x X representing voter i's preferences. We interpret Ri as

weak preference, denoting its asymmetric part (strict preference) by 

Pi. Any nonempty subset C of N is called a coalition, with lcl 
denoting the number of members in C, For any x, y a X, preferences 

are defined for coalitions by, 

(2.1) 

We impose the structure of a simple game on N. Thus we are 

given a collection Jl. of subsets of N with the property that 

C e .J'l, C � C' => C' s J!. (2.2) 

The collection YI. can be thought of as the set of ' 'winning, '' or 

''decisive'' coalitions. (Note that we do not necessarily assume that 
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the set! is generated by a proper game.) 

We can then define the group preference relation Pc X x  X by 

xPy <=> xPCy for some C s !· (2 . 3) 

Define for any x s X, and i s N, 

Pi(x) {y s XlyPix). (2.4) 

For any C 5::_ N, define

Pc(x) {y s XlyPcxl (2.5) 

and 

P (x) {y s XlyPx). (2, 6) 

A core point for the group preference relation, P, is any x s X for 

which P(x) = 6. Some of the results we obtain will require absolute 

majority rule for the group preference, In this case we define ! by 

w = { c c N: I c I > .!!] - - 2 '

and we denote t11e induced majority relation by PM, 

3 • TIIE MARKOV MODEL 

(2. 7) 

Let M denote the Lebesgue measurable subsets of X and let µ 

denote Lebesgue measure on im. We start with a function 

p : M x X -> R satisfying 
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(i) p(' ,x) is a probability measure on M for each x e X. 

(ii) p (A,') is a Lebesgue mensurable function for each 

A s !!. 

(iii) x BA and p(A,x) > 0 =) 3y B A such that yPx.

Conditions (i) and (ii) are standard assumptions for generating a 

Markov process with stationary transition probabilities, Thus the 

following interpretation is placed on p, Given that alternative 

(state) x has occurred nt time t and given A s !!. p(A,x) gives the

probability that an alternative will be selected from A at time 

t + 1 (t = 0,1,2,, , , ), Condition (iii) requires that a set A of 

alternatives excluding x, none of which is preferred to x, cannot have 

a positive transition probability from x. Intuitively, any new 

alternative selected at time t + 1 must defeat the status quo 

alternative of time t, Throughout, we will use the following 

notation, For each x s X, 

For each A s !!, 

Px IM-> i is the measure p(' ,x) 

PA X -> i is the function p(A, ' ) 

(3.1) 



We are concerned in this paper with the existence and 

properties of the limiting (or steady state) probability p• : M -> l 
of the Markov process determined by p. To define p•, we first obtain 

the k-step density functions inductively as follows: 
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(3.2) 

• We now define px by 

(3.3) 

provided this limit exists and that p• is a probability measure over 'X x 

for all x s X. In situations we shall be considering, p• will x 

frequently turn out to be independent of x, We can therefore regard 

p• as a function from M to R and for any measurable A 5::_X, p•(A)

denotes the limiting probability of the process ''ending up'' in A, 

When such a limiting distribution p• : M -> l exists, the

Markov process detern1ined by p is called stationary and p • is any 

probability measure defined recursively by the equation 

(3.4) 

We refer the reader to Doob (1953] for expository details of these 

Markov process ideas, 

Under specific assumptions on p, on the voting rule, and on 

the types of individual preferences, the probability measure 

determined by p is the end result of the voting models developed in 

Ferejohn, Fiorina and Packel [1980], and Packel [1981]. The solution 

concept obtained has been called the stochastic solution. In what 

follows, we examine the qualitative behavior of the stochastic 

solution and some of its natural extensions, 

4. SPECIAL ASSUMPTIONS

All of our results will require added structure on the Markov 

process p, as well as on individual preferences. For any A 5::. X, let 

XA : X -> (0, 1) denote the characteristic function of A: 

-
{ 1 if y sA 

XA(y) - 0 if y i A 

We make the following assumption for the transition function p. 

Assumption 1 (Preferred set Assumption): For all x s X and 

A e M, p (A,x) can be written in the form 

p (A, x) = PA(x) = px(A) = 

{ XA (x) 

� aj(x)µ(A n D.(x))
jkr J 

if P(x) 6 

if P(x) ;, 6 

where aj : X -> l is continuous with aj(x) > 0 for all x, and

U Pc(x) for all j = 1,2, • • •  ,J, and !!j 5::_ Ji., 
Ce!!j 

(4.1) 
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This assumption on p says that the transition probabilities 

from an x s X are determined by selecting various collections of 

winning coalitions, identifying the set of alternatives preferred to x 

by each such collection, and then taking some weighted combination of 

uniform distributions over these sets, It should be noted that many 

natural conditions imposed on group voting behavior in the literature 

can be captured under this assumption. We give three examples: 

PSAl: Let Ilj = {N} with J = 1, so that Dj(x) becomes the set PN(x) of

alternatives unanimously preferred to x. Then the form of p requires 

that, for an x outside the Pareto set, its successor will bo chosen by 

means of a uniform distribution on PN(x). For x in the Pareto set, 

the process stops (points in the Pareto set are absorbing states). In 

the limit one would expect this process to choose points from the 

Pareto set with probability one. 

PSA2: Let J = 1, and Hj = {C1, • •  , ,Cm} be the collection of minimal 

winning coalitions. Then D.(x) is the set P(x) of points which are J 
preferred by some winning coalitions to x. The resulting transition 

function is a uniform distribution over P(x). 

coalitions J = m, and let Ilj = {Cj}' Then D.(x) is the set Pc (x), J j 

For each x with P (x) f 6 and any j = 1,2, • • •  , J set 

aj(x) = 1/( 2 µ(D.(x))). The resulting transition function p assigns 
i=l 1 

probabilities weighted in proportion to the number of minimal winning 

coalitions preferring points to x. This is the form of the models 

developed in Ferejohn, Fiorina and Packel [1980] and Packel [1981]. 

Also, throughout the remainder of the paper, we require the 

following assumption on individual preferences. 

Assumption 2: X lm, and each voter has Type 1 preferences. I.e., 

for each i s N, 3 xi 
s X such that V x,y s X 

xRiy <=> llx - xiii i lly - xiii

Tho vector xi is called voter i's ideal point. 
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Assumption 2 is common in the voting literature, and says that 

each voter's utility is a monotone decreasing function of Euclidean 

distance from some ideal point. In other words indifference surfaces 

are spheres, 

The following lemma establishes continuity of the transition 

probability functions for any Markov voting process satisfying 

Assumptions 1 and 2. 

Lemma 4.1, Under Assumptions 1 and 2, for each A e M. PA(x) is a 

continuous function of x on the set {x s XI P (x) F 6}. 

Proof. Let lf(X) denote the measurable functions on X. It is easy to 

verify that, for each i, the mapping fi : X -> M(X) defined by

(4. 2) 

is continuous in the l 1 norm. Thus, for each j, the mapping 



11 

X -> M_(X) defined by

(4.3) 

is also continuous in the l1 norm. This follows because gj can be

written in the form 

where 

gj(x) = max fc(x), 
Ce]!j 

But then we can write, for any A s ,M, 

(4.4) 

(4.5) 

(4. 6) 

and it follows that µ(A n D.(x)) is continuous in x, because since J 
gj(x) is continuous, for any s > 0 and x0 s X, we can find a 

neighborhood N (x0) of x0 for which x s N(x0) implies 

But then 

lµ(A n D.(x)) - µ(An D.(x0>>1 J J 

So µ(A n Dj(x)) is continuous, 

Now 

k 

) aj(x)µ(A n Dj(x)) 
Jfri 
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(4.7) 

(4.8) 

which is the sum of the product of continuous functions, so the result 

follows. 

5. EXISTENCE OF A LIMITING PROBABILITY DIS1RIBUTION. 

Q.E.D. 

This section shows existence of a stationary distribution for 

any Markov voting process satisfying assumptions 1 and 2. In 

addition, we get some weak bounds on the concentration of the limiting 

probability distributions around the set of Pareto optimals. To do 

this, we define B0 to be a closed ball of minimal diameter containing

all ideal points. We then find bounds on the limiting probability 

distribution in terms of the proportion of the distribution which lies 

within a given distance from the center of B0, 

More specifically, we define 



(x s Im I llx - y•ll i max llxi - y•llJ 
isN 

where y• s Im is chosen to minimize max llxi - y•ll. Set 
isN 

t• = 2 max llxi - y•ll to be the diameter of B0, and define, for 
isN

j = 0, 1, 2, . .. 

Bj = (x e Im I 2llx - y•ll i (2j + l)t•}, 
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(5.1) 

(5.2) 

Let Aj denote the annulus in Im determined by Bj-l and Bj, so 

that Aj = Bj - Bj-l for j = 1, 2, • • •  (and set Ao= B0), See Figure 1 

for an example of this construction for a particular configuration of 

7 voters in two dimensions. 

For the following lemma, we define cID(t, t0) to be them­

dimensional cardioid whose boundary, in m-dimensional spherical 

coordinates is defined by the equation 

See Appendix A for a more rigorous definition of cID(t, t0).

(5.3) 

Setting a = sin-l ( :o), where -� i a if• it is shown in

Appendix A that the m dimensional Lebesgue content of cID(t, t0) is

given by: 

.ll. 
J! (t sin 01 + t0)ru cosm-2 e1de1, (5 .4) 
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When t0 "'0, (5.3) becomes the formula for a sphere, and µ[Cm(t, t0)J 

reduces to the m-dimensional Lebesgue content of a sphere of diameter 

t, In this case we write 

cID( t, 0) (5 .5) 

We now seek lower bounds on the limiting probability that the 

• process will end up within each ball Bj(i, e, , bounds on p (Bj)) for a 

transition density function satisfying Assumptions 1 and 2, This will 

tell us, for a general configuration of ideal points within B0, to 

what extent the limiting distribution is concentrated near the 

''centrally located ' '  region determined by the set B0, For each 

j, k = 0, 1, 2, , , , ,  define nonnegative real numbers qj, k by 

(5.6) 

The following lemma obtains bounds for the qj, k based on the above 

expressions for cID(t, t0) and Sm(t).

Lemma 5.1 Given Assumptions 1 and 2, the transition function p 

sa ti sf ies: 

(a) 

(b) 

(c) 

q 2. I' fSm( 2k+l l ] 
j, k µ[cID(2j+l,1)]

for 0 i k i j-2, j .L 2 
or k = j, j .L 1 

q 2. µ[Cm(Zi-1,-1)] for k = j - 1, j, k µ[Cm(2j+l,1)] 

for k > 



ANNULUS CONSTRUCTION FOR A 
PARTICULAR SET OF IDEAL POINTS 

Figure 1 
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Proof: Follows f rom Lemma Al and A2 of Appendix A, 

By using the qj, k estimates, we now bound the original 

continuous·state Markov process by a countably infinite state Markov 

chain. The states correspond to the annuli {Aj} J=O' In the

transition matrix S = [s ]� for the Markov chain, sj, k j , k  j, k=o 

represents the 1 step probability of reaching state k, given that j is 

the current state, We define S as follows: 

First, set 

I' [Sm( 2k+l)] 

µ [Cm(2j+l, 1)] 

11rcm<21 - 1.-1)] 

µ[Cm(2j + 1,1)]

1 
0 

for O i k i j-2, j 2. 2 
or k = j, j 2. 1 

for k = j - 1 
J 2. 2 

for k > j 
otherwise 

Then define rj, k recursively such that 

and then, set 

if k = 0 

otherwise 

The rj, k give the cumulative densities for the transition process 

defined by sj, k' We must modify the natural bounds ;
j, k given in

(5. 7) 

(5.8) 

(5.9) 

(5.7) to those given by rj, k in (5.8) for technical reasons, which 

will become apparent in the proof of Theorem 1. The definition of S 

is motivated by the fact that its transition probabilities give� 

pull towards the center A0 and � pull outward than is present in 

the original Markov process, In other words, for all x E X, if

x a Aj, then 
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(5.10) 

We first find steady state probabilities for S and then prove that a 

stationary limiting distribution p• must exist for the original Markov 

process p, and further that p• is at least as concentrated as the 

limiting distribution generated by S, 

Lemma 5.2: The Markov chain S defined by (5.9) has a convergent 

limiting distribution. 

Proof: We use Theorem 7 of Kushner ([1971], p. 211, sec also the 

Corollary on the same page), Since all states communicate, we need 

only show that for all but a finite number of states, j, the expected 

state after one transition is less than or equal to j - 1, I.e., we 

must show, for all but a finite number of j, 

(5 .11) 

But 



Now 

j� j� 
(j + 1) [ 1 - 2_ s.k] + (j - 2) [ l sjk]kCO J k=O 

(j + 1) - 3rj,j-2

Assume the minimum is achieved at rj•,t•• Then there are four
possible oases, 

Case I. k• = j• - 2. (Note here, j = j•,) Then 

CZj• - 3)m = C2j - 3)m 
(2j• + 3)m (2j + 3)m 

Case II. k• = j• - 1, (Note here, j L j• L j - l,) Then

- µrrmc21• - 1. -1)1 L µCsmc21• - 3)1 rj•,k• = µ[cm(2j• + 1, l)] µ[Sm(2j• + 3)] 

CZj• - 3)m L C2j - 3)m 
(2j• + 3)m (2j + 3)m 
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(5.12) 

(5.13) 

(5.14) 

(5.15) 

Case III. k• = j•, (Note here. j L j• L j - 2.) Then

It follows that 

so 

so, for large j, 

L 1,rsm(2j• + 1)] 
µ[Sm(2j• + 3)] 

(Zj• + llm L C2j• - 3)m L (2j - 3)m 
(2j• + 3)m (2j• + 3)m (2j + 3)m 

- C2j - 3)m r .• t• = 1 L • 3 ' (2j + 3)m 

(Zj - 3)m r L --j,J-2 (2j + 3)m

rj,j-2 -> 1 as j -> m 

�� ksjk i (j + 1) - 3rj,j-Z � j - 1

as we wished to show, 
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(5.16) 

(5.17) 

(5 .18) 

(5.19) 

(5.20) 

Q.E, D, 
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We let s• = {si•}�=O denote the limiting distribution for the 

Markov chain S, It follows that for all k 

� SJ
.•sjk j�O 

(5.21) 

Further, let r• . "' . {ri}i=O be the cumulative density of s i,e,, for 

all k, 

k 

2 • 
Si i=O 

We can now present an existence theorem for the limiting 

distribution of the Markov voting models we are studying, 

Theorem 1: Given a Markov process p satisfying Assumptions 1 - 2, a 

limiting distribution p• exists, Furthermore, any limiting 

distribution p• is more concentrated on the sets Bk than the process 

S, I.e., for all k, 

(5. 22) 

Proof; If P(x0) = 6 for some x0 s Im, then set p•(A) = XA(x0), It 

follows easily that this is a stationary distribution for p. Further 

x0 s B0• Otherwise, taking x s B0 to minimize llx0 - xii, we have 

xPixO for all i s N, implying xPx0• But then p•(Bk) = 1 for all k,

and (5 .22) is satisfied, So we assume P(x) F 6 for all x & Im. Then, 
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the theorem follows by application of Corollary 1 of Green, McKelvey 

and Packel [1981], Thus S defines a Markov process s : Z. x 7. -> l on 

the Borel sets � o.f Z , (the natural numbers), where, for any A a Z, 
j 8 z. 

s (A, j) 

Let K X -> Z be the mapping 

K(x) k XA (x) 
k 

(5 .23) 

(5.24) 

By construction, under this mapping, for all x BX, if K(x) = j (i.e., 

x B Aj), then by ( 5 .10), p(Bk, x) 2. rj, k' In other words, letting 

Tk = { t B z I t i k},

-1 Px ° K (Tk) = Px (Bk) = p(Bk' x) (5, 25) 

2. rj,k = sK(x)(Tk) 

Thus, the Markov process s stochastically dominates p with respect to 

K. Further, by construction, if i 2. j, then rik i rjk for all k. So 

the process s is stochastically increasing, Finally, by Lemma 4,1, 

since P(x) F 6 for all x & Im, p(A,x) is a continuous function of x 

for each fixed A, Therefore, the theorem follows as a direct 

application of the cited corollary. 

Q.E.D. 



6, LIMITING DIS1RIBUTION S FOR MAJORITY PROCESSES. 

The previous section placed no restriction on the underlying 

coalition structure generating the Markov process, Here we assume 
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majority rule, and using methods very similar to the previous section, 

get considerably tighter bounds on the concentration of the limiting 

distribution, 

Assumption 3: P = pM, {x & X : P(x) = 6} = 6 and the transition 

function p has the form p(A,x) = a(x)•µ(A n D(x)) where 

D(x) = U Pc(x) and a(x) = 1/µ(D(x)). 
Cs.l\'. 

Assumption 3 says that the voting rule is majority rule, and no 

majority rule core exists, which of course is the generic state of 

affairs, Also, when Assumption 2 is combined with Assumption 3 it 

follows from Theorem 1 of McKelvey [1976] that any point in X can be 

reached by a finite sequence of majority rule votes from any other 

point. Assumption 3 imposes a uniform distribution over the set of 

points that defeat a given point, as in example PSA2. 

Now, for any a B 1.m and c e I. write

II(a,c) 

(6.1) 

H(a,c) 

Tho hyperplane Il(a,c) is called a median hyperplane iff 
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(6.2) 

We now let B0 be a closed ball of minimum diameter such that 

every median hyperplane has a nonempty intersection with B0, Assume 

B0 can be written as follows. 

{x e l.m I 2llx - 'Yll i t} (6,3) 

As before, we define a series of concentric spheres around y as 

follows: For j = 0,1,,,. define 

Bj = {x s l.m I 2llx - 'Yll i (2j + l)t}, (6.4) 

and define 

(6,5) 

See Figure 2 for an example of this construction for a particular 

configuration of 7 voters in 2 dimensions, 

Now define, for each j,k = 0 ,1,2,, •• nonnegative real numbers 

(6,6) 

We then obtain the following analogue of Lemma 5.1: 

Lemma 6,1; Given Assumptions 1 - 3, the transition function p 



Figure 2 : ANN!JLus CONSTRUCTION FOR A PARTICULAR SET OF IDEAL POINTS UNDER MAJORITY RULE (ASSVMPTION 3) 
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satisfies: 

(a) 

(b) 

(c) 

q l µCsm(2k + 1)] 
j,k µ [c111(2j + 1, 1)] 

q 111Ci::
m

��U - 1, -1}] 
j,k µ[Cm(2j + 1, l)]

qj,k 1 

for 0 i k i j 2 I j l 2 
or k = j, j 11 

for k j - 1, j l 2 

for k > j 

Proof: The proof follows from Lemma Al and A3 of Appendix A, 

With the above Lemma in hand, we can use exactly the same 
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methods as in the previous section, Specifically, the countable state 

Markov chain defined by equations (5,7) - (5.9) can be used to bound 

the majority process as we11. I,e, for all x s X, if x e Aj' 

We then get the following Theorem for the majority process: 

(6.7) 

Theorem 2, Given a Markov process p satisfying Assumptions 1 - 3, a 

limiting distribution, p•, exists, Furthermore, the limiting 

distribution is more concentrated on the sets Bk than the process S. 

I.e., for a11 k 

Proof: If P(x0) = 6 for some x0 a Im, then p•(A) = X A(x0) is a 

stationary distribution, In this case, from Davis, Degroot and Hinich 
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[1972], it follows that x0 is a total median. Therefore Y• the center 

of B0 is at x0, and t. the diameter of B0 is zero. So p•(Bk) = 1 for 

all k, satisfying the inequality required. If P(x) F 6 for all 

x E Im, then replacing the sets Bk by Ilk and Ak by �· the proof is 

exactly the same as the proof of Theorem l, 

0, E, D, 

Since McKelvey' s theorem ensures that i.m itself will be the 

unique ergodic set for p (all states communicate), a direct 

consequence of Theorem 2 is that any subset of i.m with positive 

measure will be assigned positive probability under the stochastic 

solution, The final section looks at the concentration of this 

distribution. 

7 , CONCENmATION OF TIIE LIMITING DIS1RIBUTION 

We have shown that the limiting distribution, p•, of the 

Markov voting processes can be bounded by the cumulative density of 

the limiting distribution of the countable state Markov chain, S, 

defined by (5,7) - (5.9), For any process satisfying Assumptions 1 

and 2, we have, for all k, 

(7.1) 

and for majority processes, we have, for all k 
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(7.2) 

In this section, we compute numerical values for the r• to obtain 

bounds on the concentration of p•, 

For actual computation we approximate the countably infinite 

process S by a finite state process and we perform a numerical 

integration to approximate the quantities µ[c"°(j, k)] of (5.4), The 

limiting distribution of S can be approximated to any degree of 

accuracy by starting with a large enough finite ''truncation'' of S 

(with all ''excess'' probability thrown into the largest available 

state), The computational results of Table I indicate that, at least 

for Euclidean dimensions between m 2 and m = 8, a finite 

approximation with 30 states (inside the ball B30 in �m of radius 30,5 

Wet0) is more than adequate for three decimal place accuracy, 

therefore take the values in Table I as accurate estimates for the 

r: = ) s;, 
Jlk 

and hence, according to Theorems 1 and 2, as lower bounds 

of p•(Bk) or 

In the 

probability is 

two dimensional 

within B3 (or n3 
essentially all the probability 

higher dimensions appears to be 

case, note that over 72 percent of the 

if Assumption 3 is met) and that 

is within B8 , The situation for 

analogous. As might be expected, the 

distributions become less concentrated as m increases from 2 to 8; 

nevertheless, the results indicate that the entire distribution in Rm 

is essentially contained within the ball B2(ntl-2) having radius 

[2(mt2) + 1/2Jt0 , It seems unlikely that this exact pattern would 

continue in still higher dimensions, but we leave such investigation 
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for a later time and a larger computer budget, 

The above results give bounds on the percentage of the 

limiting distribution which must be within a given distance of the set 

B0 (or B0), It therefore is important to discuss the properties of 

the sets B0 and n0 as a function of the distribution of preferences. 

For general processes, satisfying Assumptions 1 and 2, the 

limits are on the probabilities of lying in Bk' Here we recall that 

B0 is the smallest closed ball containing all ideal points, Of course 

the diameter of this set will always be large in relation to the 

distribution of ideal points, and the diameter of B0 will not decrease 

with the symmetry of the ideal points or with larger numbers of 

voters, Hence, the bounds on p•(Bk) are weak. The important fact

here, however is that these bounds hold regardless of the form of 

p(A, x), as long as Assumption 1 is met, even for processes generated 

by coalition structures that are not proper. 

For majority processes, the results are much stronger, Recoll 

that the set B0 is a minimal sphere which intersects with every median 

hyperplane, We can think of B0 as a ''generalized median''· When the 

distribution of ideal points is symmetric, then there will be a unique 

total median (See Davis, Degroot and H inich [1972)), implying that B0 
will be a singleton set, consisting of that point. In that case, of 

course, there is a core, and the limiting distribution will be the 

distribution assigning the core probability one and all other points 

probability zero, 

In the more usual case, when there is no total median, all 
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Dimensions 

Lower Bounds on 
General Majority 
Process Process 2 3 4 5 6 7 8 

p*(BO) P*CBo) .ooo .ooo .ooo .ooo .ooo .ooo .000 

p*(Bl) p*(Bl) .131 .024 .003 ,001 .ooo .000 ,000 

p*(B2) p* (B2) .432 .141 .037 .008 .002 .ooo .000 

p*(B3) p*CB3) .723 .364 .139 .043 .011 .003 .001 

p*(B4) r*CB4) .896 .613 .319 .133 .046 .014 .003 

p*(B5) P*CB5) .969 .805 .534 .284 .125 .046 .015 

p*(B6) r*(B6) .992 .917 . 724 .4 70 ,253 .115 .045 

p*(B7) p*(B7) .998 .970 .858 .652 .417 ,226 .106 

p*(B8) p*(B8) .999 .991 .936 .796 .587 .372 .203 

p*(B9) p*(B9) 1.0 .997 .975 .894 .736 .530 .333 

p*(BlO) p*(B10) .999 .991 .950 .84 7 .678 .4 79 

p*(Bll) p* (Bll) 1.0 .997 . 979 .919 .798 .623 

p*(Bl2) p*(Bl2) .999 .992 .961 .883 .748 

p*(Bl3) p*(B13) 1.0 .997 .983 .938 .844 

p*(Bl4) r*<B14) .999 .993 .970 .910 

p*(Bl5) p*(Bl5) 1.0 .997 .986 .952 

p* (Bl6) P*CB16) .999 .994 .976 

p*(Bl7) P*<B17) 1.0 .998 .989 

p*(BlB) p*(BlB) .999 .995 

p*(Bl9) p*CB19) 1.0 .998 

p*(B20) p*(B20) 
.999 

p*(B21) P* (B21) 
1.0 

TABLE l* 

Lower Bounds on the Limiting Distribution, p*, of the Markov Process 

* * 
*Entries in kth row of each column are rk = E s. of the dominating process s. 

j2_ k J 
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points communicate, and the results of the previous section apply. In 

this case, the set B0 will be a sphere whose diameter is a measure of

the degree of nonsymmetry present in the distribution of ideal points, 

Thus, the more symmetric the distribution, the smaller will be the 

diameter of B0 and the more concentrated will be the distribution of 

A second question concerns the location of the set B0 in the 

relation to the ideal points of the voters. Kramer [1977), in a 

recent article defines a set, called the minimax set, consisting of 

those points which can be beaten by the fewest number of votes, 

Kramer shows that the minimax set is a centrally located subset of the 

Pareto optimals, and shrinks to a point as the number of voters 

increases. It also follows, from results of his, that B0 has a 

nonempty intersection with the minimax set (see [Kramer 1981)), and 

that as n -> w the minimax set will be a strict subset of B0• It 

follows that the limiting distribution of the Markov process defined 

by p(•lx) will be centered around the minimax set, being more or less 

concentrated as the symmetry of the distribtion of ideal points 

increases, 

Finally, we note that all the above conclusions depend on the 

particular transition process assumed in Assumption 1, Changing these 

assumptions could drastically alter the above results. For example, 

it is possible to imagine alternative assumptions on the transition 

probability function p(' ,x) which would lead to situations where a 

limiting probability fails to exist, Let X = Im and assume that ideal 
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points are situated so that no majority rule equilibrium exists (this 

is ''almost always'' the case, as follows from Plott [1967)), Given 

X s Im, find a nonnegative integer j such that x B Aj. The theorem in 

McKelvey [1976) then ensures that there will be a subset Ax 5:. Aj+l of 

positive Lebesgue measure such that yPMx (:Y y s Ax). If we define 

p(' ,x) to have support set Ax, for all x 6 Im, it is clear that p( • ,x) 

fails to have a limiting distribution and its Markov process will be 

transient, By modifying the definition so that p('lx) has a larger 

support set intersecting Ak-l' Ak and Ak+l' we could arrange things so 

that p(' ,x) was either null recurrent (p• = 0) or so it was stationary 

with a limiting distribution requiring arbitrarily large balls Bk to 

contain most of the probability, 

We do not formalize the above ideas; but they do suggest, in 

line with llaKelvey' s result, that under sufficiently contrived 

assumptions about the transition process, literally anything can 

happen, Under more natural assumptions such as Assumption 1, however, 

a limiting probability must exist, and it will tend to concentrate 

near the Pareto set, While there are other reasonable assumptions 

about group preference besides that of Assumption 1 it seems they 

would generally lead to transition probabilities which are even more 

concentrated towards the minimax set, Accordingly our existence 

results still apply and even better lower bounds would be expected for 

limiting probabilities, 
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Af PENPIX A 

This appendix computes bounds for the transition probability 

Px(Bk)' To do this, we need to first develop limits on the set P(x) 

of points that beat a given point, It turns out that the set P(x) can 

be bounded, in a wide class of situations, by a pair of cardioids, So 

we first present general formuli for a cardioid in Im and for its 

volume, 

Let 0(x) = (01(x), 02(x), ,,,, 0m--l(x), p(x)) denote the m 

dimensional, spherical coordinates of the vector x s Im. Thus 

and, for 1 i i i m - 1, 

p(x) I lxl I 

sin-1 [ xi 
] p(x)lT cos 0.(x) 

j (i J 

Here, the 0j range between -� and �, except 0n-l' which ranges between 

-� and � · Now pick x•, y• B Im, t0 s l, and set t"' 2llx• - y•ll. 

Let Q be an m x m orthonormal rotation matrix such that 

write Q(x - x•) = Cz1, • • •  , zm) "' z. Then define 

ex•, y•(x) "'0(Q(y• - x•)) "'0(z). So ex•, y•(x) are m dimensional 

spherical coordinates of x which are centered at x• and have one axis 

orthogonal to the vector y• - x•, Now set 
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where -� i a i f. 
So that the above is also well defined for the case when lt01 2. t, we 

use the convention that, for r s I, lrl 2. 1, sin-1r � sgn r. We 

then set 

if m ) 2 

if m"' 2 

Then, define, for t0 s I, 

{x s X I 0 i p(z) i tsin01(z) + t0, 

and 

Thus, cmcx•, y•, to> is the m=dimensional cardioid which has cusp at x•,
t center at y•, eccentricity of t0, and .!'.fil!iil§. of 2 • See Figure Al. 

Note that if t0 "'O, then cfl(x•, y•, t0) becomes a sphere, with center 

at y• and diameter t. If t0 < O, then the resulting cardioid is 

contained in this sphere, otherwise it contains the sphere. Also note 

that if t0 < -t, then d11Cx•, y•, t0) "' 6. We adopt the following 

shorthand notation: If x0 = (0, 0, ,,,, 0), and yo"' (t, O ,  • • •  , O), then 

we write 

Note that for arbitrary x•, y• B Im, if t"' llx• - y•ll, then 



This follows because the transformation Q(x - x•) is just a 

translation and rotation, So we only need to compute µ[c1'1(t, t0)] . 

Now, using the fact that the Jacobian of the transformation to 

spherical coordinates is given by 

J = Pn-1 �cos n-i+19 
i�l i 

(See Kendall [1961] , p, 17), we get: 

.n. 

Sp s
t sin G1+to m-1 m-2 • • •

a o p cos e1 

J� cosm-3 G2 • • • cos 9n_2dG2 . • •  dGn_2 ] 
2 

m-1 .n. 
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(A6) 

2 (t sin 91 + t0)m 
- 2.zL.:_ J2 -----=----''--- cosm-2e d0 - r (nr;l) a m 1 1 (A7) 

Here, the evaluation of the m-2 fold integral in the last step follows 

from results of Kendall ( [1961] , p. 35). 
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We can now prove the following key lemma, For this 1 emma, the 

transition process p(A, x) and the sets Di(x), etc., are us defined in 

the text. ( See Assumption 1,) 

Lemma Al. Let Assumptions 1 and 2 be met, and assume there exists an 

y• s Im and t0 s I such that for all x e Im, and all 1 i i i J, 

Then, setting, for j 2.. 0 

and 

(where D_1 6), and defining, for j, k 2.. 0, 

it follows that 

(a) q 2.. I' [Cm(2k + 1,0)] 
j, k µ [c1'1(2j + 1,1)] 

(b) q 2.. Jl[Cm(2J - 1,-1)] 
j, k µ [c1'1(2j + 1, 1)]

(c) 

for 0 i k i j - 2 ,  j 2.. 2 
or k = j, j 2.. 1 

for k = j - 1 , j 2.. 2 

for k > j 

Proof, Note that if j 2.. 1, and x s Aj, then setting t 

we have t > t0• Dy assumption of the lemma, 



So 

for all 1 i i i J, But if µ[D1(x)] F 0 for all i, then we can write 

k 

� b1(x)pi(Bk,x) 
i{;l 

µ(Bk n D1Cx)) 
pi(Bk,x) = µ(D (x)) i 

Further } bi(x) = 1, so p(Bk,x) is a convex combinationn of the 

qi = inf pi(Bk,y),j,k 
A ys j 

when j L 1, it is sufficient to show that, for all i, the bounds in 
i (a), (b) and (c) hold for the qj,k' 
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Note that the only oase in whioh we can have j = 0, arises in 

(c), This will be treated as a separate subcase, In all other cases, 

since we only need to show that the inequalities of (a), (b), and (c) 

hold for the q�,k' we can drop the subscripts and superscripts on i, 

and assume, without loss of generality, that Pi(Bk,x) is of the form 

where 

D(x) 

We prove (a), (b) and (c) in turn, 

(a) I.et x s Aj. There are 2 cases.

µ(Bk n D(x)) 
µ(D(x)) 

Case I: 0 i k i j - 2 ,  j L 2 ,  Here, 

but then 

p(Bk,x) 
µ [D(x) n Bk ] 

µ [D(x) 1 
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Since µ[cIDC2llx - y•ll,t0)J is monotone increasing in llx - y•ll, 
to 

it follows that this is maximized when llx - y•ll = jt0 + z-· So 



= 11£Cm(2k + 1,0)] 
µ [c;'ll(2j + 1, 1)]

Case II, k = j, j l 2. 
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Here, the worst case occurs when x is on the outside boundary of 

Aj' so D(x) - Bk is as large as possible, Since D(x) must be 

starlike from x, this worst case occurs when 

µ [D(x) n Bk] µ [Cm(x, y•, t0) n Bk] 
µ [D(x)] L µ[Cm(x, y•, to> l 

µ [Bk] 
= 11[Cm(2k + 1,0)] 

µ [Cm((2J + l)t0, t0)J µ [Cm(2j + 1,1)]

Since the above holds for all x s Aj, the result follows,

(b) k =j - 1, jl2. 

Let x s Aj, Also pick x1 s Aj and x2 e Aj (here A denotes the 

closure of A) such that 

( j - !.) t 2 0 

�nd such that for some r1,r2 e I+, 

x1 = y• + r1(x - y•) 

x2 = y• + r2(x - y•) 

It follows that 

Also 

Hence 

µ [D(x) n Bk] µ [Cm(x1, y•, -t0) n Bk] 
µ(D{x)] l 

µ [Cm{{2J - l)to, to> l = 11rcmc21 - 1.l)J 
µ [c;'ll((2J + l)t0 , t0> J  µ [c;'ll(2J + 1, 1)J 

So the result follows, 

(c) k > j, Here there are two subcases,

Case I. j 'I O. 

Pick x s Aj' Then 
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But then 

µ[Bk n D(x)] 
µ[D(x)] ufD(x)] µ [D(x)] 1 

Since this is true for all x, the result follows. 

Case II. j O. 
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Here we cannot write p(Bk, x) as a convex combination of the 

p(Bk, x) ' ai(x)µ(D1.(x) n Bk) 
i�l 

But now, for all x s A0 B0, we have, by the assumptions of the 

Lemma, 

So 

Lemma A2, Let Assumptions 1 and 2 be met, Let 

Q,E,D. 

B0 = {x e l.m I 2 1 Ix - y•l I .S. t0} for y• s l.m and t0 e I. and assume 

xi B B0 for all i e N. Then for all x e l.m and for all 1 .S. j .S. J, 

Proof: Pick x e l.m, Without loss of generality, we can assume the 

coordinate system is such that 

Y• _ llx - y•ll x = (0,, , , , 0), - ( 2 , 0, , ., , 0). Now, by assumption 2, for 

each i e N, 

where ti = 2llx - xiii. Using the fact that xi B B0, it can be

verified that 

I.e. for all i s N 

But then, since for any C 5:_ N, PC(x) = n P1(x), it follows that, for 
ieC 

any C, 

F inally, since Dj(x) = U Pc(x)
Ce.fli

38 



39 

Q. E.D. 

Lemma A3, Let Assumptions 1 - 3 be met. Let 

B0 = (x elm I 2llx - yll i t}, for y e lm, and t el. Assume that 

for every hyperplane ll(a,c), with a elm, c al, if ll(a,c) is a median 

hyperplane, then nca,c> n i0 � �. Then 

d11(x,y,-t) :::_ P(x) :::_ d11(x,y,t). 

Proof: Pick x elm. Let t =  llx - yll. We choose coordinates so that 

B0 is centered at (f,o, . • •  ,O), ( which translates to (�10, • • •  ,0,f) in 

spherical coordinates), and so that x is at the origin. Now 01 (or 

actually � - 01) measures the angle an arbitrary point 

Y = (01'''''0n-l'r) makes with the axis between the origin and the 

center of B0• If we consider all points on the ray from the origin 

thru y, we oan easily characterize those points which can be in P(x). 

As illustrated in Figure Al, any median hyperplane in the direction y 

must be between the two extreme possibilities illustrated by � and 

H2, whicl1 are tangent to n0• 

For example, in the illustration, H is a possible median, But 

the set of points on the ray, L, which beat x are the points up to but 

not including the point on L which is twice the distance from x to the 

median hyperplane. In fact this point, indicated by the point b in 

the diagram, divides the set of points on L which beat x from those 

which are beate11 by x. We want to find limits on where this dividing 
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point occurs. This will clearly be the segment between 2b1 and 2b2, 

To obtain formulas for these points, note that the distance to c is 
t given by 2 sin 01, so we have, adding the radius of B0 , that 

t to b2 = 2 sin 01 + �· or 

Similarly 

(A2) 

(A3) 

Now p(01) = t sin 01 + t0 is simply the formula for an n 

dimensional cardioid with cusp at the orgin with underlying diameter 

of t and eccentricity of t0• It follows, from the above argument that 

in any other direction, at angle 01 from the origin, the same 

reasoning applies, so that the set of points that is majority 

preferred to x will be some set whose boundary lies between the inner 

and outer cardioids defined by equations (A2) and (A3), and whose 

boundary intersects each half ray through the origin at most once. 

Figure A2 illustates a possible set in the two dimensional case. 

Clearly the same exact argument applies in the m dimensional case. 

Further, it follows that the outer cardioid is an ''upper bound'' on how 

big this set can be, while the inner cardioid is a ' 'lower bound''· The 

volumes of these sets provide upper and lower bounds for the volume of 

the set P(x), Summarizing we have 
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Figure Al 

Figure A2 
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cD1(x,y,-t) � P (x) � cD1(x,y,t), 

which is what we wanted to show. 

Q.E.D. 
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