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Abstract

We consider the evolution of a compact segment of an analytic curve on the unit tangent
bundle of a hyperbolic n-manifold of finite volume under the geodesic flow. Suppose
that the curve is not contained in a stable leaf of the flow. It is shown that under the
geodesic flow, the normalized parameter measure on the curve gets asymptotically
equidistributed with respect to the normalized natural Riemannian measure on the
unit tangent bundle of a closed totally geodesically immersed submanifold.

Moreover, if this immersed submanifold is a proper subset, then a lift of the curve
to the universal covering space T1(Hn) is mapped into a proper subsphere of the ideal
boundary sphere ∂Hn under the visual map. This proper subsphere can be realized as
the ideal boundary of an isometrically embedded hyperbolic subspace in Hn covering
the closed immersed submanifold.

In particular, if the visual map does not send a lift of the curve into a proper
subsphere of ∂Hn, then under the geodesic flow the curve gets asymptotically equi-
distributed on the unit tangent bundle of the manifold with respect to the normalized
natural Riemannian measure.

The proof uses dynamical properties of unipotent flows on homogeneous spaces
of SO(n, 1) of finite volume.

1. Introduction

It is instructive to note the following dynamical property. Let ψ : I = [0, 1] → Rn

be a C2-curve such that for any proper rational hyperplane (say, H ) in Rn, the set
{s ∈ I : ψ(s) ∈ H } has null measure. Let Tn = Rn/Zn, and let π : Rn → Tn denote
the quotient map. Then for any continuous function f on Tn,

lim
α→∞

∫ 1

0
f

(
π(αψ(s))

)
ds =

∫
Tn

f (x) dx, (1)
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where dx denotes the normalized Haar integral on Tn. Using Fourier transforms, we
can verify (1) for the characters

fm(x) := exp
(
2π(m · x)

)
, ∀x ∈ T

n, where m ∈ Z
n.

The above observation was used in [10] for ψ(t) = (cos(2πt), sin(2πt)), the
unit circle in R2. Later we learned that a general result in this direction was obtained
earlier by Randol [13] in response to a question raised by Sullivan.

Now we ask a similar question for the hyperbolic spaces. Consider the unit ball
model Bn for the hyperbolic n-space Hn of constant curvature (−1). Let � ⊂ SO(n, 1)
be a discrete subgroup such that M := Hn/� is a hyperbolic manifold of finite
Riemannian volume. Let π : Hn → M be the quotient map. As a special case of a
more general result proved in [3] and [4], we have that, if we project the invariant
probability measure on the sphere αSn−1 ⊂ Bn for 0 < α < 1, under π to M ,
then asymptotically as α → 1−, the measure gets equidistributed with respect to the
normalized measure associated to the Riemannian volume form on M . The case of
n = 3 was proved earlier in [13].

In this article, we address the following much more refined problem: instead of
the invariant measure on the sphere, we take a smooth measure on a one-dimensional
curve on Sn−1 and describe the limiting distribution of the projection of its dilations
on αSn−1 as α → 1−.

THEOREM 1.1
Let ψ̄ : I = [0, 1] → Sn−1 be an analytic map. If ψ̄(I ) is not contained in a proper
subsphere in Sn−1, then for any f ∈ Cc(M),

lim
α→1−

∫
I

f
(
π(αψ̄(s))

)
ds =

∫
M

f (x) dx, (2)

where dx denotes the normalized integral associated to the Riemannian volume form
on M .

By a proper subsphere of Sn−1 ⊂ Rn we mean the intersection of Sn−1 with a proper
affine subspace of Rn.

Now we describe a generalization of the phenomenon observed in Theorem 1.1
in a suitable geometric framework. Let ∂Hn denote the ideal boundary of Hn. Let
T1(Hn) denote the unit tangent bundle on Hn. We identify ∂Hn with Sn−1. Let

Vis : T1(Hn) → ∂H
n ∼= S

n−1

denote the visual map sending a unit tangent vector to the equivalence class of the di-
rected geodesics tangent to it. Thus, any fiber of the visual map is a (weakly) stable leaf
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of the geodesic flow. Now, let M be any n-dimensional hyperbolic manifold (with con-
stant curvature −1) and of finite Riemannian volume, let T1(M) denote the unit tangent
bundle on M , and let {gt} denote the geodesic flow on T1(M). Let π : Hn → M be a
universal covering map, and let D π : T1(Hn) → T1(M) denote its derivative.

THEOREM 1.2
Let ψ : I = [a, b] → T1(M) be an analytic curve such that Vis(ψ̃(I )) is not a
singleton set, where ψ̃ : I → T1(Hn) denotes a lift of ψ to the covering space; that
is, D π ◦ ψ̃ = ψ . Then there exists a totally geodesic immersion � : M1 → M

of a hyperbolic manifold M1 of finite volume such that the following holds: ∀f ∈
Cc(T1(M)), we have

lim
t→∞

1

|I |
∫

I

f
(
gtψ(s)

)
ds =

∫
T1(M1)

f
(
(D �)(v)

)
dv, (3)

where |·| denotes the Lebesgue measure, and dv denotes the normalized integral on
T1(M1) associated to the Riemannian volume form on M1.

Moreover, if π ′ : Hm → M1 denotes a locally isometric covering map, then there
exists an isometric embedding �̃ : Hm ↪→ Hn such that

π ◦ �̃ = � ◦ π ′ and Vis
(
ψ̃(I )

) ⊂ ∂
(
�̃(Hm)

)
.

In order to describe the relation between Vis(ψ̃(I )) and the totally geodesic immersion
�, we recall the following.

THEOREM 1.3 (see [15], [16])
Let M be a hyperbolic manifold of finite Riemannian volume. For k ≥ 2, let 	 : Hk →
M be a totally geodesic immersion. Then there exists a totally geodesic immersion
� : M1 → M of a hyperbolic manifold M1 of finite Riemannian volume such that

	(Hk) = �(M1) and D 	
(

T1(Hk)
) = D �

(
T1(M1)

)
.

This result can be obtained as a direct consequence of the orbit closure theorem
for unipotent flows (Raghunathan’s conjecture) proved by Ratner [15] and, more
specifically, as a result of the fact that the closure of any SO(k, 1)-orbit in SO(n, 1)/�

is a closed orbit of a subgroup of the form Z · SO(m, 1), where Z is a compact
subgroup of the centralizer of SO(m, 1) in SO(n, 1).

Remark 1.1
Let notation be as in Theorem 1.2. Let Sk−1 be the smallest dimensional subsphere
of ∂Hn ∼= Sn−1 such that Vis(ψ̃(I )) ⊂ Sk−1. Since Vis(ψ̃(I )) is not a singleton set,
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we have 2 ≤ k ≤ n. Therefore, there exists an isometric embedding Hk ↪→ Hn such
that ∂Hk = Sk−1. If {g̃t} denotes the geodesic flow and d̃(·, ·) denotes the distance
function on T1(Hn), then

lim
t→∞

sup
s∈I

d̃
(
g̃t ψ̃(s), T1(Hk)

) = 0. (4)

Since π : Hk → M is a totally geodesic immersion, by Theorem 1.3 there
exists a totally geodesic immersion � : M1 → M of a hyperbolic manifold of finite
Riemannian volume such that

�(M1) = π(Hk). (5)

This describes the map � as involved in the statement of Theorem 1.2. Also, by (4)
and (5), if d(·, ·) denotes the distance function on M , then

lim
t→∞

sup
s∈I

d
(
gtψ(s), D �(T1(M1))

) = 0. (6)

We have the following consequences.

THEOREM 1.4
Let M be a hyperbolic Riemannian manifold of finite volume. Let ψ : I → M be
an analytic map such that Vis(ψ̃(I )) is not contained in a proper subsphere in ∂Hn,
where ψ̃ : I → T1(Hn) is a lift of ψ such that D π ◦ ψ̃ = ψ . Then, given any
f ∈ Cc(T1(M)), we have

lim
t→∞

1

|I |
∫

I

f
(
gtψ(s)

)
ds =

∫
T1(M)

f dv,

where dv is the normalized integral on T1(M) associated to the Riemannian volume
form on M .

COROLLARY 1.5
Let M be a hyperbolic manifold of finite volume. Let x ∈ M , and let ψ : I = [a, b] →
T1

x(M) be an analytic map such that ψ(I ) is not contained in any proper subsphere
in T1

x(M). Then

lim
t→∞

1

|I |
∫

I

f
(
gtψ(s)

)
dt =

∫
T1(M)

f (v) dv, ∀f ∈ Cc

(
T1(M)

)
,

where dv is the normalized Riemannian volume integral on T1(M).
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It may be interesting to compare Theorem 1.2 with [20], where any rectifiable invariant
set for the geodesic flow is shown to be a conull subset of the unit tangent bundle of a
closed totally geodesic submanifold of finite volume.

1.1. Reformulation in terms of flows on homogeneous spaces
Let G = SO(n, 1), let P − be a minimal parabolic subgroup of G, and let K ∼= SO(n)
be a maximal compact subgroup of G. Then M := P − ∩ K ∼= SO(n − 1). Since
G = P −K , then

P −\G ∼= M\K ∼= SO(n − 1)\SO(n) ∼= S
n−1. (7)

We let I : G → Sn−1 denote the quotient map corresponding to (7). Let A be
a maximal connected R-diagonalizable subgroup of G contained in ZG(M) ∩ P −.
Since G is of R-rank 1, A is a one-parameter group, and the centralizer of A in G

is ZG(A) := MA. Let N− denote the unipotent radical of P −. Then P − = MAN−.
Define

A+ = {a ∈ A : akga−k → e as k → ∞ for any g ∈ N−}, (8)

and

N = {g ∈ G : a−kgak → e as k → ∞ for any a ∈ A+}. (9)

Let n denote the Lie algebra on N . Then n is abelian, and we identify it with Rn−1.
Let u : Rn−1 → N be the map u(v) = exp(v) for any v ∈ Rn−1 ∼= n.

Let α : A → R∗ be the character such that au(v)a−1 = u(α(a)v) for all
v ∈ Rn−1. Then A+ = {a ∈ A : α(a) > 1}.

Let � be a lattice in G, and let μG be the G-invariant probability measure on
G/�.

THEOREM 1.6
Let θ : I = [a, b] → G be an analytic map such that I(θ(I )) is not contained in a
subsphere of Sn−1. Then, given any f ∈ Cc(G/�), any compact set K ⊂ G/�, and
any ε > 0, there exists R > 0 such that for any a ∈ A+ with α(a) > R, we have

∣∣∣ 1

|I |
∫

I

f
(
aθ(t)x

)
dt −

∫
G/�

f dμG

∣∣∣ < ε, ∀x ∈ K. (10)

First, we consider the following crucial case of Theorem 1.6.

THEOREM 1.7
Let ϕ : I = [a, b] → Rn−1 be an analytic curve such that ϕ(I ) is not contained in

any sphere or an affine hyperplane. Let xi

i→∞−→ x be a convergent sequence in G/�,
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and let {ai}i∈N be a sequence in A+ such that α(ai)
i→∞−→ ∞. Then

lim
i→∞

1

|I |
∫

I

f
(
aiu(ϕ(t)xi)

)
dt =

∫
G/�

f dμG, ∀f ∈ Cc(G/�). (11)

We will deduce Theorem 1.7 from the following general statement, which is the main
result of this article.

THEOREM 1.8
Let ϕ : I → Rn−1 be a nonconstant analytic map, and let x ∈ G/�. Then there exist
a closed subgroup H of G, an analytic map ζ : I → M(= ZG(A) ∩ K), and h1 ∈ G

such that π(H ) is closed and admits a finite H -invariant measure (say, μH ), and the

following holds: for any sequence {ai}i∈N ⊂ A+, if α(ai)
i→∞−→ ∞, then

lim
i→∞

∫
I

f
(
aiu(ϕ(t))x

)
dt =

∫
t∈I

( ∫
y∈G/�

f (ζ (t)h1y) dμH

)
dt. (12)

Moreover, A ⊂ h1Hh−1
1 , N ∩ h1Hh−1

1 �= {e}, and there exists g ∈ G such that
x = π(g) and

u
(
ϕ(t)

)
g ∈ N−ζ (t)h1H, ∀t ∈ I. (13)

Remark 1.2
Suppose that we are given a convergent sequence xi → x in G/�. We consider (12)
for xi in place of x in the statement of Theorem 1.8. Then the limiting distribution
depends on the choice of the sequence {ai}. We can still conclude that the analogue
of (12) holds after passing to a subsequence.

Relation with unipotent flows
We now indicate how we involve unipotent flows to resolve our problem. For sim-
plicity, we assume that for any s ∈ I , the derivative ϕ̇(s) �= 0. Note that Ad(ZG(A))
acts transitively on Lie(N) � {0}. Therefore, there exists a continuous function z :
I → ZG(A) such that z(s)u(ϕ̇(s))z(s)−1 = u(e1), where e1 = (1, 0, . . . , 0) ∈ Rn−1.
By uniform continuity of f , given that ε > 0, there exists δ > 0 such that for any
subinterval J ⊂ I with |J | < δ and y ∈ G/�, we have

∣∣f (
z(s)aiu(ϕ(s))y

) − f
(
aiu(ϕ(s))y

)∣∣ < ε.

Note that it is enough to prove Theorem 1.7 for all intervals I of length less than
δ. Therefore, in view of the above observation, it is enough to show that if λi is
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the pushforward of the normalized Lebesgue measure on I under the map s �→
z(s)aiu(ϕ(s))xi , then λi → μG as i → ∞.

Now, suppose that we have shown that, after passing to a subsequence, λi → λ

weakly in the space of probability measures on G/�. Take any r ∈ R; we want to
show that u(re1)λ = λ. To see this, let s ∈ I , and let f ∈ Cc(G/�). Then

f
(
u(re1)z(s)aiu(ϕ(s))xi

)
= f

(
z(s)aiu(re−ti ϕ̇(s) + ϕ(s))xi

)
= f

(
z(s)aiu(ϕ(s + re−ti ) + O((re−ti )2))xi

)
(because ϕ is C2)

= f
(
u(O(r2e−ti ))z(s)aiu(ϕ(s + re−ti ))xi

)
≈ f

(
z(s)aiu(ϕ(s + re−ti ))xi

)
, ∀i � 0.

For i � 0, s + re−ti is a very small translate in the parameter s, and hence, λi →
u(re1)λ as i → ∞. Therefore, λ is invariant under the one-parameter subgroup
{u(re1) : r ∈ R} (see Theorem 3.1). We then apply Ratner’s theorem and linearization
technique in order to further analyze the measure λ. Using an observation on dynamics
of linear actions of SL(2, R) on vector spaces, we show that λ is indeed G-invariant.

2. Nondivergence of translated measures

Let ϕ : I → Rn−1 be a nonconstant analytic map. Let {ai} ⊂ A+ be a sequence such

that α(ai)
i→∞−→ ∞. Let xi

i→∞−→ x be a convergent sequence in G/�. For each i ∈ N,
let μi be the measure on G/� defined by

∫
G/�

f dμi := 1

|I |
∫

I

f
(
aiu(ϕ(t))xi

)
dt, ∀f ∈ Cc(G/�). (14)

This section is devoted to the proof of the following theorem.

THEOREM 2.1
Given ε > 0, there exists compact set K ⊂ G/� such that μi(K) ≥ 1 − ε for all
i ∈ N.

2.1. (C, α)-good family
Let V = ⊕dim g

d=1

∧d
g, and consider the linear action of any g ∈ G on V via⊕dim g

d=1

∧d Ad g.
Let ϒ : I → End(V ) be the map given by ϒ(s) = ∧

Ad
(
u(ϕ(s))

)
for all s ∈ I .

Fix s0 ∈ I , and let E be the smallest subspace of End(V ) such that ϒ(I ) ⊂ E +ϒ(s0).
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Then ϒ(I ) ⊂ E + ϒ(s) for all s ∈ I . For any s ∈ I , we have Es := span{ϒ (k)(s) :
k ≥ 1} ⊂ E , where ϒ (k)(s) denotes the kth derivative at s. Since ϒ is an analytic
function, we have ϒ(I ) ⊂ ϒ(s)+Es . Therefore, E ⊂ Es . Hence, Es = E for all s ∈ I .

Let F denote the linear span of coordinate functions of ϒ .
By [8, Proposition 3.4], applied to the function s �→ ϒ(s) − ϒ(s0) from I to E ,

there exist constants C > 0 and α > 0 such that F consists of (C, α)-good functions;
that is, for any subinterval J ⊂ I , ξ ∈ F , and r > 0, we have

∣∣{s ∈ J : |ξ (s)| < r
}∣∣ ≤ C

( r

sups∈J |ξ (s)|
)α

|J |. (15)

It may be noted that (since I is compact) by the result quoted above, a priori (15) holds
only for subintervals J with |J | smaller than a fixed constant depending on ϒ and
I . Then by a straightforward argument using a finite covering of I by short intervals
of fixed length with half-length overlapping between two successive intervals, and by
applying equation (15) successively, we can choose a much larger C such that (15)
holds for all subintervals J ⊂ I .

Let F (G) be the collection of all functions ψ : I → G such that for any p ∈ V

and for any linear functional f on V , if we define ξ (s) = f (ψ(s)p) for all s ∈ I ,
then ξ ∈ F .

PROPOSITION 2.2 (see [1])
Fix any norm on V . Let d = dim N , and let p ∈ ∧d

n � {0}. There exists a finite set
� ⊂ G such that �� p is a discrete subset of V and the following holds: given ε > 0
and R > 0, there exists a compact set K ⊂ G/� such that for any ψ ∈ F (G) and a
subinterval J ⊂ I , one of the following holds:
(I) there exist γ ∈ � and σ ∈ � such that sups∈J ‖ψ(s)γ σ p‖ < R;
(II) |{s ∈ J : π(ψ(s)) ∈ K}| ≥ (1 − ε)|J |.

In Proposition 2.2, (σNσ−1) ∩ � is a cocompact lattice in σNσ−1 for each σ ∈ �.
Although the proof in [1] considers only the case of ψ(s) = u(s)h for some

h ∈ G, the proof only uses the property that, for any γ ∈ �, σ ∈ �, and a linear
functional f , if we define ξ (s) := f (ψ(s)γ σ p) for all s ∈ I , then ξ ∈ F ; hence,
(15) holds.

Now we make an observation that allows us to exclude possibility (I) of Propo-
sition 2.2 in the situation of our interest, namely, when ψ(s) = aiu(ϕ(s))g for some
fixed g ∈ G and large i ∈ N.
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2.2. Basic lemma
Consider a linear representation of SL(2, R) on a finite-dimensional vector space V .
Let a = (

α
α−1

)
for some α > 1, and define

V + = {v ∈ V : a−kv → 0 as k → ∞},
V 0 = {v ∈ V : av = v},
V − = {v ∈ V : akv → 0 as k → ∞}.

(16)

Then any v ∈ V can be uniquely expressed as v = v+ +v0 +v−, where v± ∈ V ± and
v0 ∈ V 0. We also write V +0 = V + + V 0 and V 0− = V 0 + V −. Let q+ : V → V +,
q0 : V → V 0, q+ 0 : V → V +0, and q0− : V → V 0− denote the projections
q+(v) = v+, q0(v) = v0, q+ 0(v) = v+ 0 := v+ + v0, and q0−(v) = v0− := v0 + v−

for all v ∈ V . We consider the Euclidean norm on V such that V +, V 0, and V − are
orthogonal.

LEMMA 2.3
Let u = (

1 t
0 1

)
for some t �= 0. Then there exists a constant κ = κ(t) > 0 such that

max
{‖v+‖, ‖(uv)+ 0‖} ≥ κ‖v‖, ∀v ∈ V. (17)

Proof
It is enough to prove the result for each of the irreducible SL(2, R)-submodules of V .
Therefore, we may assume that SL(2, R) acts irreducibly on V .

Let m = dim V − 1. Then m = 2r − 1 or m = 2r for some r ∈ N. Consider the
associated representation of the Lie algebra sl2(R) on V . Let e = (

0 1
0 0

)
, h = (

1
−1

)
,

and f = (
0 0
1 0

)
denote the standard sl2-triple. Then there exists a basis of V consisting

of elements v0, v1, . . . , vm such that

hvk = (m − 2k)vk and evk = kvk−1, ∀0 ≤ k ≤ m,

where v−1 = 0. Then

V + 0 = span{v0, . . . , vm−r} and V 0− = span{vr, . . . , vm}. (18)

Since u = exp(te), we have

uvk =
k∑

l=0

(
k

l

)
t k−lvl, 0 ≤ k ≤ m.

Let A denote the restriction of the map u from V + to V + with respect to the basis
{v0, . . . , vr−1}. Let B denote the matrix of the map q+ 0 ◦ u : V 0− → V + 0 with
respect to the basis given by (18).
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Next, we want to show that B is invertible. We write bl,k = t k−l
(
k

l

)
for r ≤ k ≤ m

and 0 ≤ l ≤ m− r . And for any r ≤ m1 ≤ m, we consider the (m1 − r + 1) × (m1 −
r + 1)-matrix

B(m1, r) = (bl,k)0≤l≤m1−r, r≤k≤m1 .

Then B = B(m, r). In view of the binomial relations(
k + 1

l + 1

)
−

(
k

l + 1

)
=

(
k

l

)
and bl+1,k+1 − tbl+1,k = bl,k,

we apply the column operations Ck+1 − tCk , successively, in the order k = (m1 −
1), . . . , r . We obtain

det B(m1, r) = t r det B(m1 − 1, r).

Since det B(r, r) = t r , we get

det B = det B(m, r) = t r(m−r+1).

Since t �= 0, B is invertible.
Now

‖(uv)+0‖ = ‖Av+ + Bv0−‖. (19)

Since A is a unipotent matrix, ‖A‖ ≥ 1. We put

κ = 1

3
min{1, ‖B−1‖−1‖A‖−1} ≤ 1

3
min{1, ‖B−1‖−1}. (20)

Now to prove (17), it is enough to consider the case when

‖v+‖ ≤ κ‖v‖ ≤ 1

3
‖v‖. (21)

In particular,

‖v0−‖ ≥ ‖v‖ − ‖v+‖ ≥ ‖v‖ − 1

3
‖v‖ = 2

3
‖v‖. (22)

Then by (19), (20), (22), and (21),

‖(uv)+ 0‖ ≥ ‖Bv0−‖ − ‖Av+‖
≥ ‖B−1‖−1‖v0−‖ − ‖A‖‖v+‖
≥ ‖B−1‖−1‖v0−‖ − κ‖A‖‖v‖
≥

(
‖B−1‖−1 − 3

2
κ‖A‖

)
‖v0−‖

≥ 1

2
‖B−1‖−1‖v0−‖

≥ 1

2
‖B−1‖−1 2

3
‖v‖

≥ κ‖v‖.
�



LIMITING DISTRIBUTIONS OF CURVES 261

COROLLARY 2.4
Let V be a finite-dimensional normed linear space. Consider a linear representation
of G = SO(n, 1) on V , where n ≥ 2. Let

V + = {v ∈ V : a−kv
k→∞−→ 0, ∀a ∈ A+},

V − = {v ∈ V : akv
k→∞−→ 0, ∀a ∈ A+},

V 0 = {v ∈ V : Av = v}.
(23)

Then given a compact set F ⊂ N � {e}, there exists a constant κ > 0 such that for
any u ∈ F ,

max
{‖v+‖, ‖(uv)+ 0‖} ≥ κ‖v‖, ∀v ∈ V. (24)

In particular, for any a ∈ A+, and any u ∈ F ,

max
{‖av‖, ‖auv‖} ≥ κ‖v‖, ∀v ∈ V.

Proof
Given any a ∈ A+ and u ∈ F , there exists a continuous homomorphism of SL(2, R)
into G such that a is the image of

(
α

α−1

)
for some α > 1, and u is the image of

(
1 t
0 1

)
for some t �= 0. We apply Lemma 2.3 to obtain a constant κ1 > 0 such that (24) holds
for u.

Now there exists a compact set Z1 ⊂ ZG(A) such that any u1 ∈ F is of the form
zuz−1 for some z ∈ Z1. Also, there exists a constant κ2 > 0 such that

κ2‖v‖ ≤ ‖zv‖ ≤ κ−1
2 ‖v‖, ∀z ∈ Z1, ∀v ∈ V.

Therefore, (24) holds for any u1 ∈ F in place of u and κ := κ2
2 κ1. �

2.3. Proof of Theorem 2.1
Let t1, t2 ∈ I be such that u := u(ϕ(t2) − ϕ(t1))−1 �= e. By Corollary 2.4, there exists
κ > 0 such that

sup
{‖aiv‖, ‖aiuv‖} ≥ κ‖v‖, ∀v ∈ V, ∀i ∈ N. (25)

Let a sequence gi → g ∈ G be such that π(gi) = xi . By Proposition 2.2, �� p
is discrete in V . Therefore,

R1 := inf
{‖u(ϕ(t1))giγ σ p‖ : γ ∈ �, σ ∈ �

}
> 0.

For any γ ∈ �, σ ∈ � and i ∈ N, if we put v = u(ϕ(t1))giγ σ p in (25), then have

sup
t∈{t1,t2}

{∥∥aiu(ϕ(t))giγ σ p
∥∥} ≥ κ

∥∥u(ϕ(t1))giγ σ p
∥∥ ≥ κR1. (26)
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Given that ε > 0, we obtain a compact set K ⊂ G/� such that the conclusion of
Proposition 2.2 holds for R = (1/2)κR1. Then by (26), for any i ∈ N, possibility (I)
of Proposition 2.2 does not hold for h1 = ai and h2 = gi . Therefore, possibility (II)
of Proposition 2.2 must hold for all i. Thus, Theorem 2.1 follows.

We obtain the following immediate consequence of Theorem 2.1.

COROLLARY 2.5
After passing to a subsequence, μi → μ in the space of probability measures on G/�

with respect to the weak∗-topology; that is,

lim
i→∞

∫
G/�

f dμi =
∫

G/�

f dμ, ∀f ∈ Cc(G/�).

3. Invariance under a unipotent flow

Let I = [a, b] ⊂ R with a < b. Let ϕ : I → Rn−1 be a C2-curve such that ϕ̇(t) �= 0
for all t ∈ I , where ϕ̇(t) denotes the tangent to the curve ϕ at t . Fix w0 ∈ Rn−1 � {0},
and define

W = {
u(tw0) : t ∈ R

}
.

Consider the ZG(A)-action on Rn−1 via the correspondence u(zv) = zu(v)z−1 for
all v ∈ Rn−1 and z ∈ ZG(A). Then ZG(A) = MA acts transitively on Rn−1 � {0}.
Therefore, there exists a continuous function z : I → ZG(A) such that

z(t)ϕ̇(t) = w0, ∀t ∈ I. (27)

Now, assume that ϕ is analytic. Let a sequence {ai}i∈N ⊂ A+ be such that
α(ai) → ∞ as i → ∞. Let xi → x a convergent sequence in G/�. For each i ∈ N,
let λi be the probability measure on G/� such that

∫
G/�

f dλi = 1

|I |
∫

t∈I

f
(
z(t)aiu(ϕ(t))xi

)
dt, ∀f ∈ Cc(G/�). (28)

Since z(I ) is compact, by Theorem 2.1 there exists a probability measure λ on G/�

such that, after passing to a subsequence, λi → λ as i → ∞ in the space of finite
measures on G/� with respect to the weak∗-topology.
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THEOREM 3.1
The measure λ is W -invariant.

Proof (cf. [18])

We use the notation η1
ε≈ η2 to say |η1 − η2| ≤ ε.

Let both f ∈ Cc(G/�) and ε > 0 be given. Let � be a neighborhood of e in G

such that

f (ωy)
ε≈ f (y), ∀ω ∈ �2 and ∀y ∈ G/�. (29)

Let t0 ∈ R. Let t ∈ I = [a, b], and let i ∈ N. By (27),

u(t0w0)z(t)ai = z(t)aiu
(
α(ai)

−1t0z(t)−1 · w0

) = z(t)aiu
(
ξiϕ̇(t)

)
, (30)

where ξi := α(ai)−1t0. Since ϕ is a C2-map,

ϕ(t + ξi) = ϕ(t) + ξiϕ̇(t) + εi(t), (31)

where, by Taylor’s formula, there exists a constant M > 0 such that

|εi(t)| ≤ M|ξi |2 ≤ (M|t0|2)α(ai)
−2, ∀t ∈ [a, b]. (32)

As i → ∞, we have α(ai) → ∞, and hence ξi → 0 and α(ai)εi(t) → 0. Since
t �→ z(t) is continuous, there exists i0 ∈ N such that for all i ≥ i0,

z(t + ξi)z(t)−1 ∈ � and u
(
z(t) · (α(ai)εi(t))

) ∈ �. (33)

Therefore,

z(t + ξi) aiu
(
ϕ(t + ξi)

)
= (

z(t + ξi)z(t)−1
)
z(t)aiu

(
ϕ(t) + ξiϕ̇(t) + εi(t)

)
(by (31))

∈ �u
(
z(t) · (α(ai)εi(t))

)
z(t)ai

(
u(ϕ(t) + ξiϕ̇(t))

)
(34)

⊂ �2z(t)aiu
(
ξiϕ̇(t)

)
u
(
ϕ(t)

)
(by (33))

⊂ �2u(t0w0)z(t)aiu
(
ϕ(t)

)
(by (30)).

Therefore, by (29),

f
(
z(t + ξi)aiu(ϕ(t + ξi))xi

) ε≈ f
(
u(t0w0)z(t)aiu(ϕ(t))xi

)
. (35)
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Hence,
∫ b

a

f
(
z(t) aiu(ϕ(t))xi

)
dt

ξi sup|f |≈
∫ b−ξi

a

f
(
z(t + ξi)aiu(ϕ(t + ξi))xi

)
dt

ε|I |≈
∫ b−ξi

a

f
(
u(t0w0)z(t)aiu(ϕ(t))xi

)
dt (by (35))

ξi sup|f |≈
∫ b

a

f
(
u(s0w0)z(t)aiu(ϕ(t))xi

)
dt.

(36)

Therefore, since ε > 0 is chosen arbitrarily and since ξi → 0 as i → 0, we have
∫

G/�

f
(
u(s0w0)y

)
dλ(y) =

∫
G/�

f (y) dλ(y). (37)

�

4. Dynamical behavior of translated trajectories near singular sets

Let notation be as in Section 3. We further assume that ϕ : I → Rn−1 is an analytic
function. In this case, we also observe that the function z : I → ZG(A) such that
z(t)ϕ̇(t) = w0 for all t ∈ I is also an analytic function. Given a convergent sequence
xi → x in G/�, we obtain a sequence of measures {λi : i ∈ N} on G/� as defined
by (28). Due to Theorem 2.1, by passing to a subsequence we assume that λi → λ as
i → ∞, where λ is a probability measure on G/�. By Theorem 3.1, λ is invariant
under the action of the one-parameter subgroup W = {u(sw0) : s ∈ R}. We would
like to describe the measure λ using the description of ergodic invariant measures for
unipotent flows on homogeneous spaces due to Ratner [14].

4.1. Ratner’s theorem, singular sets, and linearization
Let H denote the collection of closed connected subgroups H of G such that H ∩ �

is a lattice in H , and suppose that a unipotent one-parameter subgroup of H acts
ergodically with respect to the H -invariant probability measure on H/H ∩ �. Then
H is a countable collection (see [17], [14]).

For a closed connected subgroup H of G, define

N(H, W ) = {g ∈ G : g−1Wg ⊂ H }.

Now, suppose that H ∈ H. We define the associated singular set

S(H, W ) =
⋃
F∈H
F�H

N(F, W ).
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Note that N(H, W ) NG(H ) = N(H, W ). By [11, Proposition 2.1, Lemma 2.4],

N(H, W ) ∩ N (H, W )γ ⊂ S(H, W ), ∀γ ∈ � � NG(H ). (38)

By Ratner’s theorem [14, Theorem 1], as explained in [11, Theorem 2.2], we have
the following.

THEOREM 4.1 (Ratner)
Given the W -invariant probability measure λ on G/�, there exists H ∈ H such that

λ
(
π(N (H, W ))

)
> 0 and λ

(
π(S(H, W ))

) = 0. (39)

Moreover, almost every W -ergodic component of λ on π(N(H, W )) is a measure of
the form gμH , where g ∈ N(H, W ) � S(H, W ), μH is a finite H -invariant measure
on π(H ) ∼= H/H ∩ �, and gμH (E) := μ(g−1E) for all Borel sets E ⊂ G/�.

Let V be as in Section 2.1. Let d = dim H , and fix pH = ∧d
h � {0}.

As in [11, Section 3], we observe that for any g ∈ NG(H ), gpH = det(Ad g|h)pH .
Hence, the stabilizer of pH in G equals

N1
G(H ) := {

g ∈ NG(H ) : det((Ad g)|h) = 1
}
.

Recall that Lie(W ) = Rw0. Let

A = {v ∈ V : v ∧ w0 = 0}.

Then A is a linear subspace of V . We observe that

N(H, W ) = {
g ∈ G : w0 ∈ Ad(g)(h)

} = {g ∈ G : gpH ∈ A}. (40)

Now, assume that H ∈ H. If γ ∈ � ∩ NG(H ), then γπ(H ) = π(H ). Since
Vol(H/H ∩ �) is finite, |det((Ad γ )|h)| = 1. Therefore, (� ∩ NG(H ))pH = pH or
(� ∩ NG(H ))pH = {pH, −pH }.

PROPOSITION 4.2 ([2, Theorem 3.4])
The orbit �pH is a discrete subset of V .

Remark 4.1
Let H nc denote the subgroup of H generated by unipotent one-parameter subgroups of
G contained in H . Since H ∈ H, we have π(H nc) = π(H ). Now NG(H ) ⊂ NG(H nc).
If γ ∈ � ∩ NG(H nc), then

γπ(H ) = γπ(H nc) = π(H nc) = π(H ).
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Hence,

� ∩ NG(H nc) = � ∩ NG(H ). (41)

Also,

N(H nc, W ) = N(H, W ). (42)

Hence, by (40),

N(H, W ) = {g ∈ G : gpH nc ∈ A}. (43)

PROPOSITION 4.3
If G = SO(n, 1) and if H is reductive, then GpH nc is closed.

Proof
Note that H nc is conjugate to SO(k, 1). Since NG(SO(k, 1))0 is a symmetric subgroup
of SO(n, 1) (i.e., a subgroup of finite index in the set of fixed points of an involu-
tion; see [5, pages 284 – 285]), NG(H nc) is a symmetric subgroup of SO(n, 1). Since
NG(H nc)0pH nc = pH nc , by [7, Corollary 4.7] the orbit GpH nc is closed. �

COROLLARY 4.4
If G = SO(n, 1) and if H ∈ H is reductive, then �pH nc is discrete.

Proof
Since H� is closed and since N1

G(H nc)/H is compact, we have that N1
G(H nc)� is

closed. Therefore, � N1
G(H nc) is closed. Since GpH nc is closed and since N1

G(H nc) =
Stab(pH nc ), we conclude that �pH nc is closed and hence discrete. �

4.1.1. Linearization
Let p0 = pH , or let p0 = pH nc , and suppose that �p0 is closed. Given any compact
set D ⊂ A, we define

S(D) = {
g ∈ N(H, W ) : gγp0 ∈ D for some γ ∈ � � NG(H )

}
.

PROPOSITION 4.5 ([11, Proposition 3.2])
(1) We have S(D) ⊂ S(H, W ) and π(S(D)) is closed in G/�.

(2) For any compact set K ⊂ G/� � π(S(D)), there exists a neighborhood � of
D in V such that for any g ∈ G and γ1, γ2 ∈ �,

if π(g) ∈ K and {gγ1p0, gγ2p0} ⊂ �, then γ1p0 = ±γ2p0, (44)

where � denotes the closure of � in V .
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Proof
The proof can be deduced using the following two observations. First, since Gp0 is
discrete, the map G/ Stab(p0) ∩ � → G/� × V defined via g �→ (π(g), gp0) is
proper. Second, if gp0 ∈ D and if gγp0 ∈ D for some γ ∈ �, then by (40) or
(43), g ∈ N(H, W ) and gγ ∈ N(H, W ). If γp0 �= ±p0, then γ �∈ NG(H nc). Then
by (41), γ �∈ NG(H ). Since g ∈ N(H, W ) ∩ N(H, W )γ −1, by (38) we have g ∈
S(H, W ). �

Let F (G) be defined as in Section 2.1. We say that S ⊂ V is symmetric if S = −S.

PROPOSITION 4.6 (cf. [2])
Given a symmetric compact set C ⊂ A and ε > 0, there exists a symmetric compact
set D ⊂ A containing C such that, given a symmetric neighborhood � of D in V ,
there exists a symmetric neighborhood 	 of C in V contained in � such that for any
ψ ∈ F (G), for any v ∈ V , and for any interval J ⊂ I , one of the following holds:
(I) ψ(t)v ∈ � for all t ∈ J ;
(II) |{t ∈ J : ψ(t)v ∈ 	}| ≤ ε|{t ∈ J : ψ(t)v ∈ �}|.

Proof
The argument in the proof of [2, Proposition 4.2] goes through with straightforward
changes. Since A is a linear subspace of V , one can describe the neighborhoods of
subsets of A in V via linear functionals. Further, one uses the property (15) of the
functions in F instead of [2, Lemma 4.1] in the proof. �

4.2. Linear presentation of dynamics in injective neighborhoods of singular sets
PROPOSITION 4.7
Suppose that an ε > 0, a compact set K ⊂ G/�, open symmetric subsets � and 	 of
V , a countable set � ⊂ V , a bounded interval J , and a continuous map ψ : J → G

are chosen such that the following two conditions are satisfied.
(C1) For any g ∈ G and v1, v2 ∈ �,

if gv1, gv2 ∈ � and if π(g) ∈ K, then v1 = ±v2. (45)

(C2) For any v ∈ �, if we define

Ev = {
s ∈ J : ψ(s)v ∈ 	

}
and Fv = {

s ∈ J : ψ(s)v ∈ �
}
,

(46)

then |J1 ∩ Ev| ≤ ε|J1| for any connected component J1 of Fv .
Then

∣∣{t ∈ J : ψ(t)� ∩ 	 �= ∅, π(ψ(t)) ∈ K
}∣∣ ≤ 2ε|J |. (47)
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Proof
Let J ∗ = {t ∈ J : π(ψ(t)) ∈ K, ψ(t)� ∩	 �= ∅}. Let t ∈ J ∗. By (C1), there exists,
up to a ± sign, a unique vt ∈ � such that t ∈ Evt

. Let Jt be the component of Fvt

containing t . We claim that

J ∗ ∩ Jt = Evt
. (48)

To verify this, let s ∈ J ∗ ∩Jt . Then ψ(s)vs ∈ 	 and ψ(s)vt ∈ �. By (C1), vs = ±vt .
Hence, ψ(s)vt ∈ 	; that is, s ∈ Evt

. Therefore, by (C2), we get

|J ∗ ∩ Jt | ≤ |Evt
∩ Jt | ≤ ε|Jt |. (49)

As we have verified above, Js = Jt for all s ∈ J ∗ ∩ Jt . Therefore, there exists a
countable set J ∗ ⊂ J ∗ such that

J ∗ ⊂
⋃
t∈J ∗

Jt , (50)

and if t1 �= t2 in J ∗, then t1 �∈ Jt2 .
In particular, if t1 < t2 in J ∗, then Jt1 ∩ Jt2 ⊂ (t1, t2). Therefore, if t1 < t2 < t3

in J ∗, then

Jt1 ∩ Jt2 ∩ Jt3 = ∅.

Hence,

∑
t∈J ∗

|Jt | ≤ 2
∥∥∥⋃

t∈J ∗

∥∥∥Jt . (51)

Now by (49), (50), and (51), we have

|J ∗| ≤ ε
∑
t∈J ∗

|Jt | ≤ (2ε)|J |. �

4.3. Algebraic consequences of positive limit measure on singular sets

Let {ai} ⊂ A and xi

i→∞−→ x be the sequences involved in the definition of λi (see (28)).
In view of (23), V = V +⊕V 0⊕V −. Let q+ : V → V + and q+0 : V → V ++V 0

denote the corresponding projections.
We recall that after passing to a subsequence, λi → λ in the space of probability

measures on G/�, and by Theorems 3.1 and 4.1, we know that there exists H ∈ H
such that

λ
(
π(N(H, W ) � S(H, W ))

)
> 0. (52)
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The goal of this section is to analyze this condition using Proposition 4.7 and
Corollary 2.4 to obtain its following algebraic consequence.

PROPOSITION 4.8
The group H is reductive. Let p0 = pH , or let p0 = pH nc . Let g ∈ G be such that
x = π(g). Then there exists γ ∈ � such that

u
(
ϕ(t)

)
gγp0 ⊂ V 0 + V −, ∀t ∈ I. (53)

Proof
Let p0 = pH or let p0 = pH nc such that �p0 is discrete. By (52), there exists a compact
set C ⊂ N(H, W )�S(H, W ) such that λ(π(C)) > c0 > 0 for some constant c0 > 0.
Let C = Cp0 ∪ −Cp0. We fix 0 < ε < c0/2. We apply Proposition 4.6 to obtain a
symmetric compact set D ⊂ A. Therefore, by Proposition 4.5, there exists a compact
set K ⊂ G/� � π(S(D)) such that π(C) is contained in the interior of K. Also,
there exists a symmetric neighborhood � of D in V such that property (44) holds.
Then we obtain a symmetric neighborhood 	 of C in V such that the conclusion of
Proposition 4.6 holds. Let

O := {
π(h) : π(h) ∈ K, hp0 ∈ 	, h ∈ G

}
. (54)

Then O is a neighborhood of π(C) in G/�.
Choose i1 ∈ N such that

λi(O) > c0 for all i ≥ i1. (55)

Since xi

i→∞−→ x and since π(g) = x, there exists a convergent sequence gi

i→∞−→ g

in G such that π(gi) = xi for all i ∈ N. By (55) and (28), since z(t) ∈ ZG(A), we
have

∣∣{t ∈ I : π(aiz(t)u(ϕ(t))gi) ∈ O
}∣∣ > c0|I |, ∀i ≥ i1. (56)

We fix i ≥ i1, and we let ψ(t) = aiz(t)u(ϕ(t))gi for all t ∈ I . Then ψ ∈ F (G).
Let

� = {
v ∈ �p0 : ψ(I )v �⊂ �

}
.

For any v ∈ �, define Ev and Fv as in (46) for J = I . Then ψ(Fv) �⊂ �. Therefore, if
F1 is any connected component of Fv , then by our choice of 	, we have |Ev ∩ F1| ≤
ε|F1|. Therefore, the conditions of Proposition 4.7 are satisfied. If � = �p0, then by
(47),

∣∣{t ∈ I : π(ψ(t)) ∈ K, ψ(t)�p0 ∩ 	 �= ∅}∣∣ ≤ 2ε|I |. (57)
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In other words, since 2ε < c0, we have

∣∣{t ∈ I : π(ψ(t)) ∈ O
}∣∣ < c0|I |,

a contradiction of (56). Therefore, for each i ≥ i1, there exists γi ∈ � such that
γip0 �∈ �; that is,

aiz(t)u
(
ϕ(t)

)
giγip0 ∈ �, ∀t ∈ I. (58)

Since {z(t) : t ∈ I } is contained in a compact set, there exists R > 0 such that
z(I )−1� is contained in B(R), the ball of radius R centered at zero in V . Thus,

∥∥aiu(ϕ(t))giγip0

∥∥ ≤ R, ∀t ∈ I. (59)

Fix any t1 ∈ I . Since ϕ is a nonconstant function, by Corollary 2.4 there exists a
constant κ > 0 such that

sup
t∈I

∥∥q+0(u(ϕ(t))v)
∥∥ ≥ κ

∥∥u(ϕ(t1))v
∥∥, ∀v ∈ V. (60)

Let t ∈ I . Then by (59),

∥∥q+0(u(ϕ(t))giγip0)
∥∥ = ∥∥aiq

+0(u(ϕ(t))giγip0)
∥∥ ≤ ∥∥aiu(ϕ(t))giγip0

∥∥ ≤ R.

Therefore, by (60),

‖giγip0‖ ≤ κ−1
∥∥u(ϕ(t1))−1

∥∥R. (61)

Since �p0 is discrete and since gi

i→∞−→ g, due to (61) the set {γip0 : i ∈ N} is finite.
Therefore, by passing to a subsequence, there exists γ ∈ � such that γip0 = γp0 for
all i ∈ N, and hence,

aiz(t)u
(
ϕ(t)

)
giγp0 ∈ �, ∀i ∈ N. (62)

For each i ∈ N, if w+
i = q+(

z(t)u(ϕ(t))giγp0

) ∈ V +, then by (62) we have

lim supi→∞‖aiw
+
i ‖ < ∞. Since α(ai)

i→∞−→ ∞, we conclude that w+
i

i→∞−→ 0. Since

gi

i→∞−→ g, we have

q+(
z(t)u(ϕ(t))gγp0

) = lim
i→∞

q+(
z(t)u(ϕ(t))giγp0

) = lim
i→∞

w+
i = 0.

Hence, z(t)u(ϕ(t))gγp0 ⊂ V 0 + V −. Since ZG(A)(V 0 + V −) = V 0 + V − and
z(t) ∈ ZG(A), (53) follows.
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Due to (56) there exists t ∈ I such that aiz(t)u(ϕ(t))gγpH → gpH ∈ V 0 for
some g ∈ N(H, W ). Hence, A ⊂ g NG(H )g−1. Since G = SO(n, 1), this condition
implies that H is reductive. �

4.4. Intersection of N -orbits with weak stable subspace
PROPOSITION 4.9
Suppose that H is reductive, that H �= G, and that p0 = pH nc . For v ∈ Gp0, define

Sv = {
x ∈ R

n−1 : u(x)v ∈ V − + V 0
}
. (63)

Suppose also that Sv �= ∅. Then there exist g1 ∈ G and a simple subgroup F of G

containing A such that (g1Fg−1
1 )v = v and

Sv = {
x ∈ R

n−1 : u(x) ∈ P −Fg−1
1

}
, (64)

which is a subsphere of a sphere in Rn−1 or a proper affine subspace of Rn−1.

Proof
Let x1 ∈ Sv . Since Gv = Gp0 is closed, there exists h1 ∈ G such that
p1 := limi→∞ aiu(x1)v = h1p0. Then p1 is fixed by A. Let F = h1Hh−1

1 . Then
NG(F ) = Stab(p1), and since NG(F )/F is compact, A ⊂ F . Now g NG(F ) �→ gp :
G/ NG(F ) → Gp is a homeomorphism. Let g1 ∈ G be such that v = g1p1. Then for
every x ∈ Sv there exists ξ (x) ∈ G such that

aiu(x)g1p1
i→∞−−→ ξ (x)p1 and aiu(x)g1 NG(F )

i→∞−−→ ξ (x) NG(F ). (65)

Since A ⊂ F , there exists a Weyl group “element” w of G contained in F such
that w = w−1, waw−1 = a−1 for all a ∈ A, and G admits a Bruhat decomposition
(see [12, Section 12.14]):

G = P −wP − ∪ P − = P −N ∪ P −w. (66)

Let x ∈ Sv . Since w ∈ F , and since P − = N−AM , by (66) there exist n−(x) ∈
N−, ζ (x) ∈ M , b(x) ∈ A, and X ∈ n such that

u(x)g1F = n−(x)ζ (x)b(x) exp(X)F. (67)

Therefore,

aiu(x)g1p1 = (
ain

−(x)a−1
t

)
ζ (x)b(x) exp

(
Ad ai(X)

)
p1. (68)

Now ain
−(x)a−1

i → e as i → ∞. Therefore, by (65),

exp
(

Ad ai(X)
)
p1

t→∞−−→ b(x)−1ζ (x)−1ξ (x)p1. (69)
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Since N is a unipotent group, the orbit U+p1 is a closed affine variety, and hence the
map

h
(
N ∩ NG(F )

) �→ hp1 : N/
(
N ∩ NG(F )

) → V (70)

is proper. If exp(X) �∈ NG(F ), then exp(Ad ai(X))(N ∩ NG(F )) escapes to infinity in
N/(N ∩ NG(F )) as i → ∞. On the other hand, Mp1 is compact. Therefore, from
(69) we conclude that exp(X) ∈ NG(F ). Since NG(F )/F is compact, exp(X) ∈ F .
Therefore, by (67) we have

u(x)g1F = n−(x)ζ (x)F ⊂ P −F. (71)

Therefore, Sv ⊂ {x ∈ Rn−1 : u(x) ∈ P −Fg−1
1 }. The converse inclusion holds because

Fg−1
1 v = p1 ∈ V 0 and P −V 0 ⊂ V 0 + V −. Thus, (64) holds.
Let I : G → P −\G ∼= Sn−1 be the map as defined in Section 1.1. Let S :

Rn−1 → Sn−1 be the map defined by S(x) = I(u(x)) for all x ∈ Rn−1. Since
F is a proper noncompact simple subgroup of G = SO(n, 1) containing A, we
conclude that F = m SO(k, 1)m−1 for some 2 ≤ k ≤ n − 1 and that m ∈ M .
Hence, I(Fg−1

1 ) = I(SO(k, 1))mg−1
1 . Now I(SO(k, 1)) ∼= Sk−1, and the G-action

on Sn−1 ∼= P −\G from the right is conformal. Therefore, from (64) we deduce that

Sv = S−1
(
I(Fg−1

1 )
) = S−1(Sk−1mg−1

1 ) (72)

is a subsphere of a sphere in Rn−1 or a proper affine subspace of Rn−1. �

COROLLARY 4.10
Let notation be as in Proposition 4.9. Let g ∈ G be such that v = gp0. Then there
exists h1 ∈ G, and for every x ∈ Sgp0 there exists ζ (x) ∈ M such that A ⊂ h1Hh−1

1 ,

u(x)gH ⊂ N−ζ (x)h1H, (73)

and

lim
i→∞

aiu(x)gH = ζ (x)h1H. (74)

Proof
By (71), u(x)g1 = n−(x)ζ (x)F . Therefore,

lim
i→∞

aiu(x)g1F = ζ (x)F in G/F . (75)

Now gp0 = v = g1p1 = g1h1p0 and F = h1Hh−1
1 . Therefore, g−1g1h1 ∈ NG(H ).

Hence, replacing h1 by an appropriate element of h1 NG(H ), we may assume that
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g−1g1h1 ∈ H . Thus, we have gH = g1h1H and h1H = Fh1. Therefore, (75) and
(74) are equivalent. �

4.5. Algebraic description of the measure λ

If H = G, then λ is G-invariant. Therefore, we may assume that dim(H ) < dim(G).
By Proposition 4.8, H is reductive and u(ϕ(I ))gγpH nc ⊂ V 0 + V −. Hence, by
Proposition 4.9, ϕ(I ) is contained in a proper affine subspace or a subsphere of Rn−1.
Therefore, if ϕ does not satisfy this condition, then λ must be G-invariant.

Now, suppose that ϕ(I ) is contained in a proper affine subspace or a sphere in
Rn−1. Then we have assumed that xi = x for all i.

Consider the natural quotient map q : G/H ∩ � → G/� × G/H . For i = 1, 2,
let qi denote the projection on the ith factor. Let λ̃i be the probability measure on
G/H ∩ � defined by

∫
G/H∩�

f (y)λ̃i(y) := 1

|I |
∫

t∈I

f
(
z(t)aiu(ϕ(t))x

)
dt, ∀f ∈ Cc(G/H ∩ �). (76)

Then (q1)∗(λ̃i) = λi . In view of Corollary 4.10, let ν denote the probability measure
on G/H such that

∫
G/H

f dν = 1

|I |
∫

t∈I

f
(
z(s)ζ (ϕ(s))h1

)
ds.

Then by (74), we have (q2)∗(λ̃i) → ν. Therefore, there exists a probability measure
λ̃ on G/H ∩ � such that, by passing to a subsequence, λ̃i → λ̃. As we observed
previously, λ̃i is W -invariant. Therefore, ν is W -invariant. Hence, support of ν is
pointwise fixed by W . Therefore, ν is supported on N(H, W )/H . Hence, we con-
clude that λ̃ is supported on N(H, W )/(H ∩ �). Therefore, λ is concentrated on
π(N(H, W )) � π(S(H, W )). Therefore, by Ratner’s theorem, almost every ergodic
component of λ̃ is of the form gμH for some g ∈ N(H, W ). From this we conclude
that for any f ∈ Cc(G/�),

∫
G/�

f dλ = 1

|I |
∫

t∈I

( ∫
G/�

f
(
z(t)ζ (ϕ(t))h1y

)
dμH (y)

)
dt. (77)

As a consequence of this description of the measure λ, we deduce the following.
Recall that by (14) and Corollary 2.5, after passing to a subsequence, μi → μ as
i → ∞.

PROPOSITION 4.11
For any f ∈ Cc(G/�), we have

∫
G/�

f dμ = 1

|I |
∫

t∈I

∫
G/�

f
(
ζ (ϕ(t))h1y

)
dμH (y) dt. (78)
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In particular, if ϕ(I ) is not contained in a proper affine subspace or a sphere in
Rn−1, then H = G and hence μ = μG.

Proof
Let f ∈ Cc(G/�) and ε > 0 be given. Then there exists δ > 0 such that if J is any
subinterval of I with 0 < |J | < δ, then

∣∣f (z(t0) ∈ z(t)y) − f (y)
∣∣ ≤ ε, ∀t0, t ∈ J. (79)

We define the measures λJ
i as in (28) for J in place of I . Then after passing to

a subsequence, we may assume that λJ
i → λJ as i → ∞ and λJ is W -invariant.

We note that if λ
(
π(N(F, W ))

) = 0, then λJ
(
π(N(F, W ))

) = 0 for any F ∈ H.
Moreover, since ϕ is an analytic map, we also obtain that (77) holds for J in place of
I and λJ in place of λ.

Fix any t0 ∈ J , and let f0(y) = f (z(t0)−1y) for all y ∈ G/�. By (79),
∫

t∈J

f
(
ai u(ϕ(t))xi

)
dt

ε≈
∫

t∈J

f
(
z(t0)−1z(t)aiu(ϕ(t))xi

)
dt

= |J |
∫

G/�

f0(y) dλJ
i (y)

ε≈ |J |
∫

G/�

f0(y)λJ (y) (∀i ≥ iJ for some iJ )

=
∫

t∈J

( ∫
y∈G/�

f0

(
z(t)ζ (ϕ(t))h1y

)
dμH (y)

)
dt (by (77))

ε≈
∫

t∈J

( ∫
y∈G/�

f
(
ζ (ϕ(t))h1y

)
dμH (y)

)
dt.

(80)

Therefore, by partitioning I into finitely many subintervals J with 0 < |J | < δ,
we get

|I |
∫

G/�

f dμi

3ε≈
∫

t∈I

( ∫
G/�

f
(
ζ (ϕ(t))h1y

)
dμH (y)

)
dt. (81)

Since μi → μ as i → ∞, (78) follows. �

5. Proofs of results stated in the introduction

Proof of Theorem 1.8
Since ϕ is analytic and nonconstant, the set E := {t ∈ I : ϕ̇(t) = 0} is finite. It
is enough to prove the theorem for all compact intervals J contained in I � E with
nonempty interiors.
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Let {ai}i∈N and {bi}i∈N be sequences in A+ such that for any X ∈ Lie(N ),
Ad(ai)−1X → 0 and Ad(bi)−1(X) → 0 as i → ∞. We note that if J is a subinterval
of I with a nontrivial interior, and if μJ

i (and, resp., νJ
i ) denotes the measures as defined

in (14) for J in place of I (and, resp., bi in place of ai), then by Corollary 2.5, after
passing to subsequences, μJ

i → μJ and νJ
i → νJ as i → ∞. By Proposition 4.11,

μJ =
∫

t∈J

ζ1(t)h1μH1 dt and νJ =
∫

t∈J

ζ2(t)h2μH2 dt, (82)

where the hi’s and Hi’s satisfy the conditions of Corollary 4.10 and they are indepen-
dent of the choice of J . Again, due to Corollary 4.10, we see that νJ is concentrated
on ζ1(J )h1π(H1). Therefore,

ζ2(J )h2π(H2) ⊂ ζ1(J )h1π(H1).

By symmetry, we have equality in the above expression. Since the interval J is
arbitrary, we deduce that

ζ2(t)h2π(H2) = ζ1(t)h1π(H1), ∀t ∈ I.

Hence, by (82), we have μI = νI . Combining this information with Corollary 4.10,
it is straightforward to deduce all the conclusions of the theorem. �

Proof of Theorem 1.7
In view of the argument as in the proof of Theorem 1.8, the result follows from the
first paragraph of Section 4.5. �

Proof of Theorem 1.2
Let G = SO(n, 1), let K = SO(n), and let P − be a maximal parabolic subgroup of
G such that P − ∩ K = SO(n − 1). Let A be the maximal R-diagonalizable subgroup
of G centralizing P − ∩ K . Then A ⊂ P −. Now G admits a transitive right action
on T1(Hn) via isometries. We fix x̃0 ∈ Hn such that K = StabG(x̃0), and we fix
v0 ∈ Sx̃0 (H

n) such that

K0 := StabK (v0) = ZG(A) ∩ K.

Thus, T1(Hn) ∼= K0 \G and Sx̃0 (H
n) ∼= K0 \K . Under this isomorphism, the geodesic

flow {g̃t} on T1(Hn) corresponds to the action of {at} = A on K0 \G by left multipli-
cations, where α(at ) = eτt for all t ∈ R and some τ > 0.

There exists a discrete subgroup � of G such that π : Hn → M fac-
tors through Hn/� and M ∼= Hn/� as isometric Riemannian manifolds. Hence,
T1(M) ∼= K0 \G/�, and the geodesic flow {gt} on T1(M) corresponds to the left
action of {at} on K0 \G/�.

There exists an analytic map θ : I → G such that

ψ(t) = D π
(
v0θ(t)

)
, ∀t ∈ I.
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Let ϕ : I → Rn−1 be the map such that θ(t) ⊂ P −u(ϕ(t)) for all t ∈ I . Then by
Theorem 1.8 for x = e� ∈ G/�, there exist H ∈ H, h1 ∈ G, and γ ∈ � such that
Ah1 ⊂ h1H , and by (13), u(ϕ(I )) ⊂ P −h1Hγ −1. Therefore,

θ(t) ⊂ P −u
(
ϕ(t)

) ⊂ P −h1γ
−1 = K0N

−h1Hγ −1, ∀t ∈ I. (83)

Therefore, since π(v0K0g�) = π(v0g), we have

π
(
v0θ(t)

) ⊂ π(v0N
−h1H ), A ⊂ h1Hh−1

1 , and N ∩ h1Hh−1
1 �= {e}.

Therefore, there exists k1 ∈ K0 such that

K0 k1h1Hh−1
1 k−1

1 = K0 SO(m, 1), where 2 ≤ m ≤ n.

Now v0 SO(m, 1) ∼= T1(Hm), where Hm is isometrically embedded in Hn. Since
H�/� is a closed subset of G/�,

π(v0h1H ) = π
(
v0 SO(m, 1)k1h1

) = π
(

T1(Hm)h2

)

is a closed subset of M , where h2 = k1h1 ∈ G. Therefore, K0 h1H/(H ∩ �) cor-
responds to the embedding of D �(T1(M1)) in T1(M), where � is a totally geodesic
immersion of a hyperbolic manifold M1 in M (see [16, Section 2] for the details). It
may also be noted that the projection of h1Hh−1

1 -invariant probability measure (say,
μ1) on h1H/(H ∩�) onto K0 \G/� ∼= M (say, μ̄1) is the same as the projection under
D � of the normalized measure on T1(M1) associated to the Riemannian volume form
on M1.

By (12) of Theorem 1.8, for any subinterval J of I with nonempty interior and
for any f ∈ Cc(K0 \G/�), we have

lim
t→∞

1

|J |
∫

J

f
(

K0 atu(ϕ(s))�
)

ds =
∫

K0 h1H�/�

f (y) dμ̄1(y). (84)

Recall that θ(s) ∈ P −u(ϕ(s)) for all s ∈ I and that μ̄1 is ZG(A)-invariant with respect
to the left action. Therefore, by the uniform continuity argument as in the proof of
Proposition 4.11, we deduce that

lim
t→∞

1

|I |
∫

I

f
(

K0 atθ(s)�
)

ds =
∫

K0 h1H�/�

f (y) dμ̄1(y). (85)

Now, in view of the relation between the closed h1Hh−1
1 -orbits with totally

geodesic immersions of hyperbolic manifolds of finite volume as described above,
(85) implies (3). �
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Proof of Corollary 1.5
Let x̃ ∈ Hn such that x = π(x̃). We can identify T1

x(M), the unit tangent sphere at
x, with T1

x̃(Hn), which in turn identifies with the ideal boundary sphere ∂Hn via the
visual map. Since all these identifications are conformal, we conclude that Vis(θ̃ (I ))
is not contained in any proper subsphere of ∂Hn. Therefore, in terms of the notation
in Remark 1.1, Sk−1 = ∂Hn, and we conclude that M1 = M and that � is the identity
map. Now the conclusion follows from Theorem 1.6. �

Proof of Theorem 1.4
The proof is similar to the proof of Corollary 1.5. �

Proof of Theorem 1.1
We identify Sn−1 with a hyperbolic sphere of radius 1 centered at zero in Hn (in the
unit ball Bn-model)—say, S—and treat ψ̄ as a map from I to S. For any s ∈ I , let
vs ∈ T1

ψ̄(s)(Hn) be the unit vector normal to S which is also a tangent to the directed
geodesic from zero to ψ̄(s). We define an analytic curve ψ : I → T1(M) by

ψ(s) = (
π(ψ̄(s)), D π(vs)

)
, ∀s ∈ I.

Therefore, the condition of Theorem 1.4 is satisfied because

Vis
(
ψ̃(s)

) = Vis
(
(ψ̄(s), vs)

) = ψ̄(s), ∀s ∈ I,

and hence, Vis(ψ̃(s)) is not contained in a proper subsphere of ∂Hn.
For any α > 0, we have π(αψ̄(s)) = gt(α)π(ψ(s)) for some t(α) > 0 such that

t(α) → ∞ as α → 1−. Therefore, (2) follows from Theorem 1.4. �

6. Scope for generalizations and applications

The results of this article lead to obvious similar questions about expanding translates
of smooth curves on horospherical subgroups of general semisimple Lie groups.
Especially, the affirmative answer to the following question has interesting applications
to problems in Diophantine approximation (see [8], [9]).

QUESTION 6.1
Let G = SL(n + m, R), let � = SL(m + n, Z), and let μG denote the G-invariant
probability measure on G/�. Let

u(v) = (
Im v
0 In

)
, ∀v ∈ Mm,n(R), and let a(t) =

(
et/mIm

e−t/nIn

)
, ∀t ∈ R.

Let ϕ : [0, 1] → Mm,n(R) be a smooth curve. What should be the algebraic or
geometric condition on the image of the curve so that for any x ∈ G/� and any
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f ∈ Cc(G/�),

lim
t→∞

∫ 1

0
f

(
a(t)u(ϕ(s))x

)
ds =

∫
G/�

f dμG ? (86)

When m = 1 and ϕ is analytic, we consider the condition that that ϕ(I ) is not
contained in a proper affine subspace. In this case, [8, Proposition 2.3] provides a very
good estimate for the rate of nondivergence of this translated measure. The method of
this article is applicable to show that, after a suitable twist of the curve by elements
from the centralizer of {a(t)}, the limiting measure is invariant under a unipotent
one-parameter subgroup of the form {u(sw0)} for some w0 ∈ Rn � {0}. Also, the
method to study behavior of expanded trajectories near the singular sets is applicable
here. Obtaining an analogue of Lemma 2.3 in order to derive algebraic consequences
of Proposition 4.7 is the main difficulty in this problem. Since the initial submission
of this article, we have answered Question 6.1 in the case where m = 1 and ϕ is an
analytic curve (see [19]).

In another direction, it is still an open question to prove the exact analogue
of Theorem 1.4 for the actions of SO(n, 1) on homogeneous spaces of larger Lie
group G containing SO(n, 1) (see [6]). Essentially, what we need is the analogue of
Proposition 4.9 without any condition on V and p.

The generalizations of the main results of this article for smooth curves are
considered in a subsequent article.
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