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LIMITING DISTRIBUTIONS OF LEAST SQUARES ESTIMATES
OF UNSTABLE AUTOREGRESSIVE PROCESSES

By N. H. CHAN AND C. Z. WE!
Indiana University and University of Maryland

An autoregressive process ¥, = B;¥,_; + *** +8,¥,-, + &, is said to be
unstable if the characteristic polynomial ¢(2) =1~ 8,2 — --- —f,2” has
all roots on or outside the unit circle. The limiting distribution of the least
squares estimate of (8,,..., 8,) is derived and characterized as a functional
of stochastic integrals under a 2 + 8 moment assumption on &,. Up to the
present, distributional results were available only with substantial restric-
tions on the possible roots which did not suggest the form of the distribution
for the general case. To establish the limiting distribution, a result concerning
the weak convergence of a sequence of random variables to a stochastic
integral, which is of independent interest, is also developed.

1. Introduction. Consider the autoregressive AR( p) model
(11) In = Blyn—l t+ . +prn—p + ¢,

where y, is the observation, e, is the (unobservable) random disturbance (noise)
at time n, p is the order of the process and 8,,..., 8, are the parameters of the
model. Throughout the sequel, we shall assume that the initial conditions
Yo+ -+»Y1-p are fixed and {e,} is a martingale difference sequence with respect
to an increasing sequence of o-fields {#,}, ie., &, is %, -measurable and
E(e,|#,_,) = 0 as. for every n. An important example of {e,} is a sequence of
independent random variables with zero means. We shall also assume y,,..., y;_,
are %,-measurable so that y, is %, -measurable. Let

(1.2) ¢(2) =1-Pz— -+ —B,2"

denote the characteristic polynomial of the autoregressive model (1.1). When all
roots of ¢(z) are outside the unit circle, the model is said to be asymptotically
stationary. If all roots are on or outside the unit circle, the model is said to be
unstable. A commonly used estimate of the parameter vector § = (8,,..., 8,) is
the least squares estimate

n—~1 -1 4

(1.3) b, = ( Yyvy| XV n>p,
t=0 t=1

where

(1.4) y; = (yt"“’ yt—p+1)"
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The statistical properties of b, have been well studied in the literature for the
asymptotically stationary case. Recently, due to their importance in system
identification and control [Goodwin and Payne (1977), Ljung (1976) and Graupe
(1980)] and in modeling business and economic data [Anderson (1985), Phillips
(1985) and Box and Jenkins (1976)], research in nonstationary autoregressive
processes has been receiving considerable attention.

The consistency problem for b, was recently solved by Lai and Wei (1983).
They showed that irrespective of the location of the roots, b, is always strongly
consistent when E(£2|%,_,) = 62 ass. and sup E(|¢,|>*%.%,_,) < oo a.s. for some
8 > 0. However, the problem of finding the asymptotic distribution of b, under
the general nonstationarity assumption still remained open.

Mann and Wald (1943) first obtained the asymptotic distribution of b, when
¥, is asymptotically stationary. Under the assumption that the ¢,’s are i.i.d. with
all moments, they showed that

where 2 is a positive definite matrix. The higher moment assumption on the {e,}
was subsequently removed by Anderson (1959). For the unstable case, White
(1958) considered the AR(1) model with ii.d. N(0, 02) random errors ¢, and
B, = 1. He obtained the limiting moment generating function of n(b, — 1) and
claimed that

(1.6) n(b, ~ 1) = 7= J(W2(1) ~ 1)/ [ W)

where W(t) is a standard Brownian motion. Rao (1978) expressed 7 through
complicated special function expressions which he described as “formidable.”
Dickey and Fuller (1979) proved that

1.7) n,—1) >, v=3(T*-1)/T,

where
- d k+1
T= % ‘/2—Ykaa T =Y vwZ;, v =2(-1)"""/(2k - D7
k=1 k=1

and the Z,’s are iid. N(0,1) random variables. Utilizing this formula, they
tabulated the percentiles of + by the Monte Carlo method. An analytic method
which involves the calculation of complex numbers was proposed by Evans and
Savin (1981). Extensions and applications of (1.7) have been carried out by
Phillips (1985), Dickey and Fuller (1981), Fuller and Hasza (1980) and Hasza and
Fuller (1979). Ahtola and Tiao (1987) considered the AR(2) model where ¢(z)
has a pair of complex roots e? and e . Under the assumption that 4 is a
rational multiple of 27, they characterized the limiting distribution of b,.
However, there are important time series models, e.g., seasonal models, where
¢(2z) may have several roots on the unit circle. In such cases, not only the
multiplicity of each root has to be handled, but also the relationship between
different roots has to be considered. Apparently, the results stated previously are
not adequate for such generality and a unified theory for the general unstable
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model is required. It is the objective of this paper to provide such a unified
theory under a 2 + 8§ moment condition (2.10) on ¢,. For related results under
the second moment assumption, see Anderson (1959), Stigum (1974) and Solo
(1984).

In the following, we shall use the functional central limit theorem to derive
the limiting distribution of b,. Apart from the moment generating function
method used by White (1958), the limiting distribution of b, is traditionally
obtained through quadratic form considerations. This approach can be easily
explained by an AR(1) model. In this case,

b, - B) = ) t—18¢ ) t2—1
(18) (b= )= Lo 22

= o’ ’ .
- erz‘4rt‘:"n/ean €,

where e, = (¢,...,¢,) and A, and B, are n X n matrices defined accordingly.
By finding the eigenvalues A;, and eigenvectors w;, of B,, one can express
Iy, as L%\, Z2, where Z, = e/u,,, which are iid. N(0,1) random
variables when the ¢,’s are standard normal random errors. Reexpressing A, in
terms of the eigenvectors of B, X7, ¥,_¢&, can then be represented as a weighted
sum of Z;,. Dickey and Fuller (1979), instead of establishing a direct connection
between 7 and », used this transformation to derive (1.7). A similar transforma-
tion was also used by Ahtola and Tiao (1987) to obtain their result. However,
instead of finding the eigenvalues and eigenvectors of B, in the first place, it is
equally plausible to obtain the eigenvalues and eigenvectors of A, first and
reexpress B, in terms of the eigenvectors of A,,. It is unclear a priori which of A4,
and B, should be chosen so that a convenient expansion can be achieved. This
ambiguity becomes more severe in the AR( p) case where more quadratic forms
are involved.

On the other hand, the functional central limit theorem approach enables us
to express the limiting distribution of b, in terms of functionals of standard
Brownian motions. Through series expansions of the underlying Brownian mo-
tions, the limiting distribution in turn can be expressed as a form similar to ».
This observation (see Corollary 3.1.3) establishes a direct connection between 7
and », which answers the question raised recently by Solo (1984). Moreover, it
also provides a “neater” series representation (see Corollary 3.3.8 and the remark
following it) for the distribution considered by Ahtola and Tiao (1987). Above all,
we believe the method developed herein can also be used to derive the limiting
distributions of the related test statistics for unstable AR( p) models discussed in
the literature. For an overview of the hypothesis testing problems and related
issues, see Fuller (1985).

Note that the functional central limit theorem is a common tool for deriving
limiting distributions in the statistical literature. For the nonstationary AR(1)
model, Solo (1984) and Phillips (1985) applied it even to cases with moving
average or mixing errors. However, their statistics (as in many other situations in
the literature) have to be expressed as a continuous functional on some function
spaces so that the continuous mapping theorem can be applied to obtain the
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limiting distributions. This is not the case for the AR( p) model. The functionals
involved in b, may not be continuous, so that the continuous mapping theorem
is no longer applicable. In Section 2, we shall develop some auxiliary probability
theorems to overcome this difficulty. In particular, Theorem 2.4 is of indepen-
dent interest since it gives a sufficient condition for a sequence of random
variables to converge in distribution to a stochastic integral. Section 3, the main
body of this paper, consists of applying such stochastic integrals to characterize
the limiting distribution of b,. A further discussion on some related topics is
briefly given in Section 4.

2. Auxiliary probability theorems.

THEOREM 2.1. Let {X,} be a sequence of random variables such that

) E|X,| = O(n®*) for some a > 0;
(2.1) (ii) there exist random variables A(n, m), B(n, m) and
) constants y>=0, §>0 and ¢>0 with |X,- X,| <
A(n, m)B(n, m);
(2.2) EA%(n,m)<ecn' and EB%*(n,m) < cn®(n — m) forn = m.
If 2a >y + 8 and e + 1, then

J
Z ethXt

t=1

(2.3) sup

l<j<n

=o0,(n**").

ProOOF. Since 2a — (y + 8) > 0, for each n we can always choose N(n) + 1

integers n, with1 =ny<n, < .-+ < ny = n such that
(2.4) max{n,,; —n,:0 <k <N -1} = o(n?* *9)
and
(2.5) N = N(n)too, N(n) = o(n).
Let
n,—1
(2.6) Y,=Y(n)= Y eito(Xz - Xn,,_l)
t=ng_,
and
(2.7) s = s(j) = sup{k: n, <j}.
Then

t=1 t=n, k=1
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Since for any integers [ > m > 1,

&

= (e — e¥1%) /(1 — )] < 2/(1 ~ cos ),

we have that

s np—1
Ze‘“’X <):|X X |+ X XIX-X,
k=1 ng;_,
(2.8) +(2/(1 — cos 0)){1X,, | + 2| . )
N n—1 N
< L8 -x, /0 coso»(k): |x,,,,|).
=1 n,_, =1

Note that the right-hand side of (2.8) is independent of j. Consequently, by (2.1),
(2.2) and the Cauchy-Schwarz inequality, we obtain

N n,—1
E sup Z eX,|<EY Y A(t,n,_,)B(t,n,_,)
1<jsnjt=1 k=1 n,_,
N
+(2/(1 — cos 0))( Y E|Xnk|)
k=1
N np—1 V2 N ng-1 1/2
<| X X EA(t,n,_)’| | X X EB(t,n,,)
(29) k=1 n;, , k=1 n,_,
+O(Nn*®)
N 1/2
< (cn’”)l/z(c Y n¥(n,-n,)?| +o(n**?)
k=1
<cn*8+2/2 max (n, — n,_ 1)1/2 + o(n**1)
1<k=<N
= o(na+1)'

By Markov’s inequality, (2.3) is proved. O

REMARK. Suppose e # 1 and (i) holds. Then, by similar arguments, Theo-
rem 2.1 still holds if (ii) is replaced by:

(ii") There exist random variables A;(n, m), By(n, m) and

constants y; > 0,8; > Oforj = 1,...,gsuch that | X, - X, | <
jglA (n, m)B (n m), A2(n m) < en%, EBX(n,m) <
cnf(n—-m)forn>mandyj+8<2afor1—1 . q.

In the rest of this section, we shall consider several results related to the
functional central limit theorem. For definitions and background facts, we refer
the reader to Billingsley (1968).
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Throughout the sequel, we use D = D[0, 1] to designate the space of functions
x(¢) on [0,1] which are right continuous and have left-hand limits. D will be
equipped with the Skorokhod topology. The weak convergence (or the conver-
gence in distribution) of a sequence of random elements X, in D to a random
element X in D will be denoted by X, —», X.

THEOREM 2.2. Let {¢,} be a sequence of martingale differences with respect
to an increasing sequence of o-fields {%,} such that

E{%,_.} =1 a.s,

(2.10) sup E{l%l““l%—l} < o0 a.s. forsome a > 0.
n

Suppose {z,) is a sequence of random vectors in R? which satisfies

(2.11) z,=Az, , +¢,,

where z,= = (¢e,,0,...,0) and A is a q X q constant matrix with all
ezgenvalues lymg inside the unzt circle. Let 0, € (0, w) such that 8, + 0, if k +# j
fork, j= ., I. Consider the following random elements in (l_Iz”zD) X R

Xn(u,v, biyeoes byy) |
L [l]  [n0] [rt,]

B ﬁ Z ek, Z (_l)kek, Z ﬁSin kolek’
1 1

1
[nt,] [nty]

Y V2coskbe,,..., Z \/—coskﬂlsk,sz 18
1

(2.12)

We have

Xn _".?’( W1 N )1
where W is a standard Brownian motion of dimension 21l + 2 and N a normal
random vector which is independent of W and has zero mean and covariance
matrix 2 = XP_,Akee'(A')*, where ¢ = (1,0,...,0).

REMARK. The elements of (2.12) will be the basic processes corresponding to
various components with different unit roots.

Proor. It is known [Lai and Wei (1985)] that under (2.10),

(2.13) ' Zz,z =3 as.
n—-+oo n
Note that for 8, 8 € [0,27),
1 [nt]
lim — Z cos kfsin k6 = 0
n—oo N
and
1 [nt] 1 [nt]
lim — Z coskfcos kS = lim — Y sin k@ sin k8 =0, if 6 # 8.

n—oo N n—oo 1
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Furthermore, by (2.13), lim,, , .(1/n)X7_,||2.l|* = ¢ a.s. Hence,

lim max ||zk||2 - 0 a.s.

n—oo lgk<
In view of this, (2.11) and the strong law of large numbers,
1 J
_ Z zk0 = _ Z etkOAzk . 4 - Z etk0
N nopa N

(1 d 1 1
—_ etﬂA{_ Z ezkﬂzk} _ L(J+1)0Az 4+ — Z ezkﬂ
nog_ n nopo

. (1 4.
= e‘oA{— Y e‘kozk} + o(1) as.
np=1 .

Hence, with probability 1, every limit point of {(1/ n)Li* e*fz,: n > 1} satisfies
z = e%(Az). Since e~ is not an eigenvalue of A, z = 0. Consequently,

1 [z£]
lim — ) ez, =0 as.

n—-oo N 1

Moreover, by the conditional Markov inequality and (2.10), for all & > 0,

Y E(lzgen il [l125epsll > VR bles, ..., )

k=1

n
< ( )y ||zk||2+m)n_"‘/2 8 *K (for some K > 0)

a/2
( z ||zk||2)(— max ||zk||2) 57K

=o(n) as.

Now, applying the standard functional central limit theorem [Helland (1982),
Theorem 3.3], the proof is complete. O

THEOREM 2.3. Let {X,} and X be random elements taking values in I17.,D
For each u € [0,1] and any continuous function f: R™ — R, define

Y(u) = (XX(u),..., X™(u)) and Z(t) = fo‘f(y(u)) du.
Similarly, we can define Y, and Z,. If X, =, X, then (X, Z,) —4 (X, Z).

ProOF. It is clear that the processes defined in Theorem 2.3 are taking
values in D. Now consider the mapping g: [1™ D — [1"'D, defined by

£(x)(s,2) = (x(s), [1(5(w) du),

m
vxe [[D,vse[0,1]"and V ¢ € [0,1].
i=1
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Since f is continuous, g is continuous. By the continuous mapping theorem
[Billingsley (1968), Theorem 5.1], the result is established. O

THEOREM 24. Let {X,} and {Y,} be two sequences of random variables. Let
Uy(t) = TV X, V(8) = £, and S(t) = X,y Assume one of the following
two conditions holds:

(i) There is a, 1 co such that
(a7'S,, n7Y2V,) - (S, W),

where W is the standard Brownian motion with respect to an increasing
sequence of o-fields 9, and S is 9-adaptive. ‘

(ii) There are increasing o-fields %, such that (X,,Y,) is a sequence of
martingale differences with respect to %,. Moreover,

(2.14) E(X2+ Y%, ,) <c a.s. for some constantc > 0
and
(2.15) n_1/2(Un’ V.) 2¢(B, W), ’

where B and W are two Brownian motions with respect to an increasing
sequence of o-fields 9,.

Then
PRt k 1
(2.16) b, 'U,, n"V?,,(n"%,) ¥ Un(;)YkH —>3,(H, W, f HdW),
. k=1 0
where b, = na,, and H(t) = [¢S(u)du in (i) and b, = n'/? and H = B in (ii).
REMARK. In Section 3, Theorem 2.4(i) will be applied to the case where S is
a functional of W. Hence, we can choose 9, = o{W(s): s < t}. Theorem 2.4(ii)

will be applied to the cases where either H = Wor H and W are independent. In
both cases, we can choose ¥, = o{ H(s), W(s): s < ¢}.

Proor. Suppose condition (i) holds.
Note that U (k/n) = L£X,. Summation by parts gives

n—1

n—1 k k n-—1
e1) T UL |- - T u()xe ( > Xk)v,,(l).
Let F(t) = [}f(s) ds. Since the functional
K(1,8) = (F.&.~ ['8()1(s) ds + 20)F(0))

is a continuous functional from D X D into D X D X R, by the continuous
mapping theorem and Theorem 2.3,

sl (kR
(bn_lun’ n_l/zv;v(nl/zbn) ' z Un(;)Yk+1) —).Q’(H’ W’ L)’
k=1
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where H(t) = [§S(u) du and
L=- /0 “W(£)S(¢) dt + H(1)W(1).

Since S € D, ||S||,, < % a.s. This implies that H is continuous and of bounded
variation. Consequently, H is a semimartingale with respect to G, and

L=- jo 'WdH + HQ)W(1)
= fo "Haw,

by integration by parts [Elliott (1982), page 141].

Now assume condition (ii) holds. -

Since with probability 1, B and W have continuous paths, the convergence in
the Skorokhod topology is equivalent to uniform convergence [Billingsley (1968),
page 112]. Furthermore, we can equip D with a complete metric so that the
induced topology is equivalent to the Skorokhod topology [Billingsley (1968),
pages 114-115]). By the Skorokhod representation theorem [Skorokhod (1956)],
there are a probability space € and random elements U”, V" in D[0,1] such
that

(2.18) U v") - (B,W)ll, >0 as.
and
(Un’ Vn) =z n_l/z(Un’ Vn)

Let
n-1 k kR+1 k
(2.19) G" = k{le (;)(V ( ~ )— 14 (-’;))
and
1271 k
Gn= ;kglvn(;)yk+l’
Then

(U™, V", G") =o(n~/?U,, n"/?V,,G,).
In order to show (2.16), it is sufficient to show that
1
(2.20) G" >, fo BdW.
By (2.18) and Egorov’s theorem, given & > 0, there is an event 2, C @ such that
P(Q,)>1—¢and
2:21) sup{|(U™(w), V(@) = (B(w), W(©))ll,: © € &} =8, 0.

Note that 8, is a sequence of constants. We can choose integers N(n)1 o0 such
that

(2.22) N(n)82—-0 and N(n)/n - 0.
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For each n, we can further choose a partition {¢,,..., IN(my) Of [0,1] such that

(2.23) 0=t¢,<t(n)= % < ty(n) = %3 < <ty = T _ g,
(2.24) max(|¢;,, — ¢]: 0 < i< N(n) — 1} = o(1).
We first claim that
N(n) ’
(2.25) G"= Y U™ty )(V™(&) - V™(t,_,)) + 0,(1).
k=1
Clearly,
N(n)
J, = G" - Z Un(tk—l)(Vn(tk) - Vn(tk—l))
k=1 .
(2.26) Ny [ mpe1 ol ) D
S L2 (o) el - vl

Using the fact that (X, Y,) are martingale differences and (2.14), we have

pre Ng) 'El E(U"(%) ~ U"(tk_l))z(V"(izl) _ V,,(i))z

k=1 i=n,_, n

N(n) n,—1 i n 1
B
k=1 i=n;_, n n n
2 N(n)
c 2
== (np—n4y)
n” p_y
n Ry _
<c¢? max {—k - -k 1} -0, by (2.24).
l<sk<Nn)\ R n

By the Markov inequality, (2.25) is proved.
Next, we show that
N(n)
Io, Y UMt (V&) — V(1))

1

(2.27) Now

=1I, 21: B(t,_)(V™(t) — V™(t,_1)) + 0,(1).

Note that by the Cauchy-Schwarz inequality and (2.21),

N(n)
; [U™(t,-) - B(tk—1)]Is2,(Vn(tk) 4 ()

2

N(n) . N(n) .
= Avl‘.. [U™(t-y) - B(tk—1)]21sz, ; (VA1) = V™(,-,))
N(n)

< N(n)82 X (V(8) - V(t,1))”
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By (2.22),

N(n) 5 N(n) 9
E{N(n) 82 Y, (V™(#) — V™(t4-1) } = N(n) 8} ; E(V™(t,) = V™(t5-1))
N(n)

= N(n) 8} 21: (8 — te—r)

= N(n)82 - 0.
This shows (2.27).
Now, summation by parts gives
N(nr)
Z B(tk—l)(Vn(tk) - Vn(tk—l))

N(n)
- ; V™(8,)(B(t) — B(#;_,)) + B()V™(1).

By a similar argument, we can replace V*(¢,) by W(t,) and obtain

N(n) .
I, 21: B(t,_)(V™(8) — V™(t,-1))

= —In,Ng) W(t,)(B(t,) — B(£,-1)) + LB(YW(1) + 0,(1)

(2.28)
N(r)

= I, ; B(t, ) (W(t) — W(t,_1)) + 0,(1)

- I, /(') 'B(t) dW(¢) + o,(1).

The last identity is insured by the fact that

N(n) 1 2
E( L Bt )(W(t) - W) - [[B() dW(t))

N(n) : 2
=E( ; f, (B(#:-1) — B(?)) dW(t))

N(n)

= Z ftk (tk_t)dt
1. “fp—a

< t, —t,_,) =o0(1).
lsﬁalg(n)(k 2-1) = 0(1)

Combining (2.28), (2.25) and (2.27), our theorem is proved. O

REMARK. By a similar argument, (2.16) can be generalized to the high
dimension case. More precisely, assume that there exist increasing o-fields %,
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such that X, = (X,(1),..., X,(!)) is a sequence of martingale differences with
respect to %,. Define

(=] (4] ,
U,(t) = n‘1/2( E,le(l),..., kngk(l))
and
n—1 k ’
G,(i, j) =n"" El {[ ngu(i)]Xm(j)}-

Assume that U, -, W = (W,,..., W), where W,,..., W, are ! Brownian mo-
tions with respect to increasing o¢-fields ¢,. Then

(Un’ Gn) _).Q’(W’ G)’
where G(i, j) = [;W,dW,
3. Main results. The distribution of b, will be obtained through several
stages. First, since time series with different characteristic roots are expected to
behave differently, we transform the original time series into several components

so that each component has its own characteristic root. More precisely, we
express the characteristic polynomial ¢(z) in (1.2) as

l
(3.1) o(z) = (1 -2)%1+ z)bkE[l(l — 2c0s 0,z + 2%) *y(2),

where a, b, I and d, are nonnegative integers, 6, € (0, 7) and ¥(2) is a
polynomial of order g=p — (¢ + b+ 2d; + - -+ +2d;) which has all roots
outside the unit circle. Let

u,= [¢(B)(1 - B) "],

o= [o(B)1+B) ]y,

2= [o®)(v(®) ],
and for k =1,...,1,

x,(k) = [¢(IB)(1 — 2cos 0,B + IBZ)_d"]yt,
where B is the backshift operator. Then (1 — B)u,=¢, (1 + B)%, =
&, (1 — 2cos 6,B + B2)%x,(k) = ¢, and ¢(B)z, = ¢,. Define

u,=(uyeeoy Uy gir)s
Vv, =(04---30_p41)s
x(k) = (2(R),... %,_3a,41(k))
and
2, = (200,24 g41)

It is not difficult to see that there is a p X p matrix @ (see Appendix 1) such
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that

32 Qy, = (w,,v/,x4(1),...,x4(1),2}),

where y, is defined in (1.4). Next, we introduce block diagonal matrices (see
Section 3.4)

J 0 0 o o
0o K, -
L1
(33) 6, - w .
LD
0 0 o0 0o M,

where J,, K,, L,(1),...,L,(l) and M, are a X a, b X b, 2d, X 2d,,...,2d; X
2d,; and g X g matrices to be chosen later. In Section 3.4, we shall show that if
we normalize QX1y,y,/Q’ by G, then the cross product terms vanish as n — oo.
Specifically,

n
IYuauw,J, 0 .- 0
1

(34) G.Q Z vy, @G, ~ P
1 n
0 M, z,2.M,
1

This indicates that different components are asymptotically uncorrelated. Fur-
thermore, in Section 3.5, we shall also show that (3.4) converges in distribution to
a random matrix which is positive definite a.s. This not only implies that @ and
G, are invertible, but also reduces our problem to a componentwise problem.
More precisely,

_.ln

(Jn’)‘l( nilutu’t) Zut——let
(3.5) (QG;) (b, - B8) ~, :

-1 n—1 -1,
(M) ( Z ztz;) Zzt—let
1 1
If we observe that
n—1 -1 5
(3.6) b,—-B= ( Z Yth') Zyt—lsﬂ
1 1
it is clear that each component in (3.5) is a least squares estimate after
normalization. From Sections 3.1-3.3, we will consider each component sep-

arately. In fact, each component will be shown to be a functional of the
corresponding component of the random element X, in (2.12). Since the limiting
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process of X, has independent components, the componentwise limiting distri-
bution of (3.5) characterizes the whole distribution of b,. (See Appendix 3.)

In the sequel, for the sake of convenience, we will assume y, = 0. This in turn
impliesuy, =0, v, = 0,x,1) = 0,...,x,(k) = 0 and z, = 0. We will also assume
{e,} is a sequence of martingale differences satisfying (2.10). From time to time,
we also denote X, —», X by X, (¢) —», X(¢)in D to indicate the time variable ¢
of the random elements. :

3.1. Roots equal to 1. 1In this section, we consider the model

(8.1.1) (1-B)%,=¢, t=1,2,...,
with initial condition u, = 0. Let
(3.1.2) u(j) = (1 - B)"u,
and
U = (u(a),..., u,(1)).
Then
(3.1.3) Mu,=U,,
where M is an a X a matrix defined by
1 0 o .- 0
1 -1 0 .
1 -2 1
M= : Do, :
1 (_1)(a11) (_1)a—1

From (3.1.2), it is obvious that u,(j) = (1 — B)u(j+ 1) for j=0,1,...,a — 1.
Hence,
¢

(3.14) u(j+1)= Y u(j) forj=0,1,...,a — 1.

k=1
Note that

t t
(3.1.5) u1) = X u,(0) = X .
k=1 k=1

The continuous analogues of these recursions are

Fy(t) = W(¢),
(8.1.6)

F(0) = [F(s) ds,

where W(¢) is a standard Brownian motion. In order to state our theorem, we
introduce the following definitions. Let

1 .
F= (o"jl)! ojl=‘/(;F}—1(t)F'l—l(t) dt fOI'],l= ]-a'”sas

(3.1.7) 1 . ,
(/;Fa_l(t)dW(t),...,j;FO(t)dW(t))

§
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and
n¢ 0 0
a—1
(3.1.8) J =N-M, whereN,=|% ™
0 0 n

LEMMA 3.1.1. Fis nonsingular a.s.

This lemma will be proved in Appendix 2. Now we are ready to state the
theorem.

THEOREM 3.1.2.

n—1
(3.1.9) J, ; wwd, =4 F
and
1 n-1 -1 n
(3.1.10) (J7) [ ; uju}] El:uj_lej -4 F§,
Proor. By (3.1.5) and Theorem 2.2, the process
1

Applying Theorem 2.3, (3.1.11), (3.1.4) and (3.1.6), we have
(3.1.12)  (n)"“upu(j) 24 F_i(t) inDforj=12,...,a.
This in turn implies

n—-1

(3.1.13) n~UD Y w(Nuy(l) — 4 o
k=1

Now observe that by (3.1.3) and (3.1.8),
n—-1

n—1
Jn( Y ujug-)Jn’ = Nn‘l( Y UjUj’)Nn"l.
1 1

The (J,1) element of the preceding matrix is (1/n/+)E2Z u,(/)u,(l). Hence,
(3.1.9) is proved by (3.1.13). Now express (3.1.10) as

n—1 -1 n
’
J, Youaid)| J,lu; e
1 1

Since all quantities involved in J,X'u;_,e; will be shown to be functionals of
a/ \/r?)u[nt](l) = (1/Vn)Xl*"e,, by Lemma 3.1.1, (3.1.13) and the continuous

mapping theorem, (3.1.10) holds if

(3.1.14) S0, &~y £
1
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But the (a — & + 1)st element of J,Xfu; .¢; is n %L} u,_,(k)e, which con-
verges in distribution to [jF,_,(t) dF,(¢) by Theorem 2.4. This completes the
proof of (3.1.14). O

COROLLARY 3.13. Assume u,=bu, ,+¢, for n=12,.... Then under
the assumption b = 1,
n(b, = 1) > 3(W2(1) - 1)/ ['W(t) at
(3.1.15) 0
=.?%(T2 - 1)/F’

where W is a standard Brownian motion, T = Y¥_V2v,Z,, T = T3 ,v2Z%,
Ve = 2(=1)*/(2k — )7 and Z, are i.i.d. N(0,1) random variables.

Proor. Apply Itd’s formula and Theorem 3.1.2 with a = 1. We have that
n(b, - 1) > [ W(t) dW(2)/ ['w(e) at
i 0

= 3w () - 1)/ ['W(t) dt.

Now expand the Brownian motion by the reproducing kernel method [Kac
(1980)]:

wtZ ,

n

(3.1.16) w(t) = i::o @—nz:/—_—%sin(n + %)

where Z, are i.i.d. N(0,1) random variables. Then
[Wt)dt= ¥ (2/(2n + 1)n)’22 =T
0 n=0

and

W(l) = i::o(z—nzi_z—l);(—l)nzn =T

Hence,
HW2(1) = 1)/ ['WH(e) de = (1% ~ 1)/
This completes the proof. O

REMARK 1. The second representation in (3.1.15) was proved by Dickey and
Fuller (1979) by the quadratic form approach. Since their method is different
from the functional central limit theorem approach, Solo (1984) asked what is
the relation between this representation and the other representation in (3.1.15),
its stochastic integral counterpart. The proof of Corollary 3.1.3 gives an answer
to his question. Note that Solo (1984) also mentioned the possibility of using a
series expansion of the Brownian motion to establish this relation. However, it is
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not obvious that such a direct relation can be derived by using the example (the
Walsh series expansion) cited there.

REMARK 2. The series expansion also provides some light on the efficient
calculation of the distribution. Since there are infinitely many possible ways to
express a Brownian motion [Loéve (1978)] as an infinite series, faster convergent
series may lead to numerical improvement over slower ones. Further research
along this line may be interesting.

3.2. Roots equal to —1. In this section, we consider the model

(3.2.1) (1+B)’o,=¢, t=1,2,...,

with initial condition v, = 0. The result of this section is essentially similar to
that of Section 3.1 except that every quantity involved here is shown to be a
functional of Li"](—1)*e, instead of being a functional of L{*e,. As a conse-
quence of this, the distribution derived here is a mirror image of the case where
roots are equal to 1 (see the remark following Theorem 3.2.1). More precisely, let
us define

1 0 0 0
1 1 0 .
u 1 2 1
M= : . ,
b-1
(3.2.2) 1 ( 1 ) o 1
n® 0 0
- ~ ~ b—-1
K,=N;'M, whereN,=|% ™"
0 0 - n
We also define F; as in (3.1.6) and F= (o;), for j,1=1,..., b, as in (3.1.7) and
1 ; 1 ’
(3.2.3) 0= —(f F,_(t) dW(t),...,fFo(t)dW(t)).
0 0
THEOREM 3.2.1.
n—1
(3.2.4) K, Y vwwiK,—>, F
k=1
and
n—1 -1 p
(3.2.5) (K,:)—l( )y Vk"é) LVi1g e Fln.
1 1

Proor. The proof follows essentially the same line as the proof of Theorem
3.1.2. The only difference is that any typical element of K, Xi_1v,v/K. or
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K, Tv,_,e, is a functional of L{"}(—1)*e, instead of X{"!l¢,. To see this, let
Mv,=V,=(v,(b),...,0(1)) and v,0) =¢,.

Then
v(j)=0+B)o(j+1) forj=0,1,...,6—-1
or
! t—k
v(j+1)= X (-1)""vu(j) forj=0,...,56-1.
k=1
Consequently,

¢
(-D'o(j+1) = ¥ (-1)*0(j) forj=0,...,5-1.
k=1
Note that (—1)'v(1) = X% _,(—1)*e,. This implies that (—1),(j) is a functional
of Xi_(—1)*, for j=1,2,...,b. Now observe that the (k, j)th element of
Yyl is equal to YPTM(—DioR)I(—1)0(/)] for k, j>1 and the kth
element of MY 'v,_.¢, is equal to

T ok T (<10 B)((-1)'0(1) = (<)o)
This completes the proof. O

REMARK. From (3.1.7) and (3.2.3), under the assumption that a = b, we
have that (F,q) =, (F, —£). Hence, (F) 'y =, — F~'. This is observed by
Fuller (1976) for the case b = 1. The importance of this observation is that we
only have to tabulate one distribution instead of two. Theorem 3.1.2 shows this
observation still holds for the multiple root case.

3.3. Roots equal to e® or e=*, In this section, we consider the model

(1—2cosﬂlB+IB2)dx,=e,, t=1,2,...,

with initial condition x, = 0, where here and in the sequel x, = (x,,..., x,_,4,,)"
We also assume 8 € (0, 7). Let

(3.3.1) ¥(j)=(1 —2cos 6B + B2)*/x, for j=0,1,...,d

and

Y, = (yt(l), Yeoa(1),--, 3(d), yt—l(d))"

It is not difficult to see that there exists a 2d X 2d matrix C (see Appendix 1)
such that

(3.3.2) Cx,=Y,
By (3.3.1),
(1 —2cosfB + B2)y,(j+1)=y(j) forj=0,1,...,d-1.
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Note that x, = 0 implies Y, = 0. This in turn implies

t

. 1 » .
(33.3) Y(ji+1) = o k=1sm(t —k+1)0y,(J)

for j=0,1,...,d - 1.

Now, for j =0,...,d, let

t

¢
S(j) = X coskby(j), T(j)= XL sinkby(J),
k=1 k=1

S,=8,(0) and T,=T/0).

LEMMA 33.1. Forj=1,...,d,
(3.3.4) sindy,(j) =S,(j— 1)sin(z + 1)8 — T,(j — 1)cos(t + 1)8;
4
2sin0S,(j) = Y {sin(2k + 1)6S,(j — 1) + sin6S,(j — 1)
(3.3.5) k=1
—cos(2k + 1)0T,(j — 1) — cos 8T, (j — 1)};
t
2sin0T,(j) = ) {cos8S,(j — 1) — cos(2k + 1)8S,(j — 1)
(3.3.6) k=1
+sin0T,(j — 1) — sin(2k + 1)8T,(j — 1)}.

This lemma implies that y,(j), S,(J) and T(j) can all be expressed as
functionals of S, and 7,. Thus, to show a random variable can be expressed as a
functional of S, and T, it is sufficient to show that it can be expressed as a
functional of S,(J), T,(J) and y,(J).

LeEmMMA 3.3.2. Forj=0,...,dandk=0,...,d,
n
2sinf Z yt(k)yt(j)
t=1
= Y (S(k-1)8(j—1) + T(k - )T(j - 1))
t=1

Y (Sk—~ DT~ 1) + Tk — 1S, - 1))sin(2t + 2)6

=1

Y (S - DS — 1) = T(k - )T,(j - 1))cos(2t + 2)5,
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2 sin%0 i Ye1(R)3.(J)

t=1

=088 Y (T, r(k - DT(j — 1) + S,1(k — 1S,(j - 1))

t=1

sind ¥ (T,_y(k - 1S,(j - 1) - Sy1(k - DT/ - 1))

t=1

Y (Sl = D8~ 1) = T y(k — DT(j - 1))cos(2t + 1)6
LY (Sa(k — DT~ 1) + 8,0 — DT,_y(k - 1))sin2e + 1)8,

sinoiy,(j>e,+1=és,(j—n(nﬂ T) - Z —1)(S1 - ),

t=1

n
sin 6 Z yt—l(j)£t+1

t=1

= 0080 Y (Sya(j = DTy = T) = Ty y(j — 1D(Sias — 5,))

t=1

sin8 Y (810 = D(Spes = 8) + T s = DTy — T)).

t=1

The proofs of Lemmas 3.3.1 and 3.3.2 are straightforward applications of
trigonometric identities. Details are omitted. Lemma 3.3.2 provides recursive
forms for those terms involved in the least squares estimates. Moreover, it also
leads to the definitions of the following continuous analogues. Let W (¢) and
Wy(t) be two independent Brownian motions. Define

fo(t) = Wi(2),  &o(t) = Wy(2),

f(t) = 5 a(sinﬂj:fj_l(s)ds—cos0f0tgj_1(s)ds),
g,(t) = Py (cos 0/ fi—i(s)ds + smﬁfgj () ds)
Sos1 = g | [ 56 W(s) = ['8,1(5) aWi(s),

1

o= g |08 O [ 118 Wils) = ['&;-1(s) aWi())

B 2sinf

—sind( ['f;-i() aWi(s) + ['g; +(s) dWi(s)] .
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Ook-1,2j—1 = O2k,2j

" 4sin’d (f fa- l(s)ff 1(s) ds + fgk 1(S)g, I(S)ds)

O2r-1,2; = 02,281

;—siln—za{cos 0(Llfk-1(s)fj_1(s) ds + j(')lgk_l(s)gj:_l(s) ds)

—sin8( [';1(6)gr(s) d5 = [ g u(s)fur(s) )},

= ($,-..,84) and H = (o;;),a2d X 2¢d random matrix.

LemmMma 3.3.3. H is nonsingular a.s.

This lemma will be proved in Appendix 2. Now let L, = N, !C, where C is
defined in (3.3.2) and N, is a 2d X 2d diagonal matrix satisfying

nI . e 0

N, = : and I= ( 0)
: 0 1
0 oo n9r
THEOREM 3.3.4.
n—-1
(3.3.7) Ln( Y x,x;)L;, -4 H
1 .
and
-1 n—1 )
(3.3.8) (L7) ( P> xtx;) XX, a8~ HX,
1 1

where {¢,} satisfies (2.10).
Before proving this theorem, we first derive some auxiliary lemmas.

LemMmA 335. Fork=0,...,d—1,
(3.3.9) ES2(k) = O(n?**') and ET2(k) = O(n2*+1),

ProoF. We shall prove this by induction on k. For & = 0,
ES?(0) = Y (cos(j8))* < n.

Similarly, ET,%(0) < n. Now assume (3.3.9) is true for 2 = I. By (3.3.5) and the
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Cauchy-Schwarz inequality,

ES%(1+1) < E:;@4{4n élE(Sf(l)) + 4n i E(y;‘l(l))}

J=1

— O(n i j2l+1)
Jj=1
— 0(n2(1+1)+1).

Similarly, ET%(I + 1) = O(n?*3). This completes the proof. O

LEMMA 3.36. Fork,l=0,...,d -1,

; .
(3.3.10) sup | Y eS8, (k)| = o,(n*+32),
l<j<n|¢=1

j .
(3.3.11) sup | 3 e™SH(k)| = o,(n?#+2),
1<y<n|t=1
i
(3.3.12) sup |3 e™S,(1)T,(k)| = o (n***+2),
l<j<n|¢=1

ProoF. We are going to prove Lemma 3.3.6 by Theorem 2.1. For (3.3.10),
E|S,(k)l < (EISZ(R))"* = O(n**12),

by (3.3.9). Now assume n > m. By the definition of S,(k), (3.3.4) and the
Cauchy—-Schwarz inequality,

1S,(%) — S, (k)|

<> cos?(w)}w{ ) y&’(k)}l/z

(3.3.13) t=m+1 t=m+1
4 n 1/2
_ vz2) _ ~ 201 _ 2(p _
<(n—-m) {sin“’ﬂ t=§+1(S, (B—1)+ T2(k 1))} .
By Lemma 3.3.5,
(33.14) E Y} {SHk-1)+T*k-1)} = o( Y t2k‘1) = 0(n?*).
t=m+1 t=1

Since 2(k + §) > 2k + 0, (3.3.10) is proved. For (3.3.11),
E|S;(k) = O(n***Y),
by (3.3.9). Now assume n > m. We have
1S2(%) = Sa(R)| = 1S,(k) + S, (k) 1S,(k) — S, (k).
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By (3.3.9), (3.3.13) and (3.3.14),
E|S,(k) + S,(k)* < 2( ES}(k) + ES2(k)) = O(n**1),
E|S,(k) = S.(k) < O((n — m)n?*).

Choose « = y =2k + 1 and 8 = 2k in Theorem 2.1. Since 2a = 4k + 2 > 4k +
1 =1y + 8§, (3.3.11) is proved. For (3.3.12), by (3.3.9),

EIS,()T, (k)| < {ES2(1)) *{(ET2(R)}7 = O(nt+++1).
Moreover, for n > m,
IS, (DT, (k) — S (DT (k) < IS, (D)] T (k) — T, (k)| + | T,(k)|1S,(2) = S,.(2)l.
Now,

(3.3.15)

ES%(1) = O(n**') and ETZ2(k) = O(n2*+1),
As in (3.3.15),
E|T,(k) = T(k) = O((n — m)n®*)
and
E|S,(1) - S,(1)* = O((n — m)n?").
Using the remark following Theorem 2.1, (3.3.12) is proved. O

REMARK 1. Analogous results hold in Lemma 3.3.6 when S,(%) is replaced by
S,_1(k) or T;(k).

LEMMA 3.3.7. Ford=>=j=>0,
(3'3'16) ‘/—z—n_j_l/z(s[nt](j)! T[ns](j)) —)J’( fj(t)! g](s)) inD X D.

ProoF. We prove (3.3.16) by induction. By (3.3.1) and the definitions of S,(0)
and T,(0),

¢ ¢
S,(0) = Y coskfe,, T,(0) = Y. sink0e,.
k=1 k=1
In view of Theorem 2.2, (3.3.16) holds for j = 0. Now suppose (3.3.17) holds for
j — 1. By (3.3.5),

g . 1 [
V2n 728 a(j) = (\/Z_n‘f“l/z)zsino Y. {sin0S,(j — 1) — cos 8T,(j — 1)}
k=1
2 ni12 1t
+(Zn" i -
(V2n )2sin0 k§1 {sin(2k + 1)8S,(j — 1)

—cos(2k + 1)8T,(j — 1)}

= I,(t) + I(t).
By Lemma 3.3.6, || I,||,, = 0,(1). Similarly,

ﬁn_j_l/zT[ns](j) = Jl(s) + J2($),
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where ||J,||,, = 0,(1) and

Ji(s) = (V2n~717%)

1 [ns]

Py kz=:1 {cos8S,(j — 1) +sin0T,(j — 1)}.

Hence, to prove (3.3.16), it suffices to show
(3-3~17) (Ily J1) —’.2’( fj: gj)°
Now consider the continuous functional H from D X D to D X D defined by

H(f,g)(t,s)= g;l—l?(fot[sinﬁf(u) — cos 0g(u)] du,

‘/:[cos 0f(u) + sinfg(u)] du).

In view of the induction hypothesis and the continuous mapping theorem,
(L, J) —>e H( fj—l’gj—l) = (fj’gj)- U

REMARK 2. All of the limiting results stated in Lemma 3.3.7 are jointly
convergent. This can be shown by applying Theorem 2.3 repeatedly. Also see
Appendix 3.

PROOF OF THEOREM 3.34. By Lemmas 3.3.2 and 3.3.6,

w5 k)

= (25in®0) "'k 3 (Sk = DS, — 1) + Ti(k = DT, = 1)) + 0,(1).

By Lemma 3.3.7 and thet:;ntinuous mapping theorem,
n
(3.3.18) n~k= Elyt(k)yt(j) D¢ Ogp 0je
Similarly, .
n
(3.3.19) nk Elyt_l(k)yt(j) g k1,2

Since a typical element in L (7x x;)L;, is either of the form (3.3.18) or (3.3.19),
which is a functional of (S,, T,), the joint law follows. Consequently,

L Exixi| Ly o0 .
For (3.3.8), as argued in Theorem 13.1.2, we only have to show that
(3.3.20) Lnéxt_let =N;! th_let -4 8.
From Lemmas 3.3.2 and 3.3.7 and Theorem 2.4,

n
n™’ Z Y(J)eri1 ~o §2j—1-
=1
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Similarly,

n
n 3 (e e $2j-
=1
These are typical forms of N, 'Y7Y,_,¢,. Hence, (3.3.20) is shown and the proof of
Theorem 3.3.4 is complete. O

COROLLARY 3.3.8. Assume x,= Bx,_; + BoX,_ o+ ¢, for t=1,2,.... Let
,l?n 5 be the least squares estimate of B, at stage n. If the charactensttc
polynomial 1 — B,z — B,z? has roots e and e~ with 6 € (0, ), then

n(Bnz+ 1) =(2 - W2Q) — WRQ)/ [(W2(2) + W(t)) dt
(3.3.21) °

=(2-T-T)/(T+T),
where W,, W, are two independent standard Brownian motions, T, T are defined
as in (3.1.15), T = £2_ V2 v, Z,, T = X2 ,v2Z3%, and Z, arei.i.d. N(0,1) random
variables which are independent of {Z,}.
Proor. Under the assumption, 8, = —1. By Theorem 3.3.4,
(3.3.22) n(ﬁn 2 1) > (1015 + §2011) /(011022 — 61205:).
By the definition of o;

ij

O2j,2j-1 = O2j-1,2; = 4Sln20(ffj (s)ds + fg, 1(s)ds)

=cosfoy; 5; = c0s80,;_ 1 5, ;.
Substituting this identity into (3.3.22), we obtain
(=401 + $5011) /(01102 — 01505,)

= 0,,($5 — $1c088) /02(1 — cos?f)

= (¢, — ¢icos 8)/a,,5in%0
1 1 1

- o ['waw, + ['waw,) [ [ (w2 + wg) ds

= (2 - W2(1) - W(1)) / fo 1(W12 + Wit) ds, by Itd’s formula.

Using the expansions

had 2v2 1
= —_—g] + J—
Wi(t) nz=:0 @n + 1)Wsm(n 3 )'rrth,
ad 2y2 1 "
= —_—gi + —
W,(¢t) 'EO @n T 1)'l_rsm(n 5 )thn,

we obtain (3.3.21) by an argument similar to that in Corollary 3.1.3. O
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REMARK 3. The limiting distribution of n( .én,z + 1) is independent of 4.
This is observed by Ahtola and Tiao (1987) who, using the quadratic form
approach, represented the limiting distribution as U™ {1 — V — V;2}, where

U=HV2+ V2)+ (V- VW) + XV, + V),
Vi= L§N, Vo= YL 8W,
J J

V;= L &N, Vi= L &W,
J J
Vi=LX 8’N?, Vo= L W2,

J J

5= (-1)/(2j - D,

N;, W, are iid. N(0,1) random variables and J=10,41,£2,.... Apparently,
(3.3.21) is “neater” than Ahtola and Tiao’s representation and provides a simpler
expansion for tabulating the distribution.

REMARK 4. Note that the series representation of (3.3.21) is the negative of
the series representation of the limiting distribution of n(d, — 1) given in
Dickey, Hasza and Fuller (1984). These two distributions arise from different
situations, and it seems difficult to reveal this relation through Ahtola and Tiao’s
result.

3.4. Cross product terms. Let J, and K, be matrices defined as in (3.1.8)
and (3.2.2), respectively. Let M, = n~'?I,, where I, is the g X ¢ identity
matrix. Moreover, for each x,( ) in (3.2), define L (j) similar to the L, defined
in Theorem 3.3.4. Hence, G, in (3.3) is well defined now. In this section, we shall
show that (3.4) holds. First, let us consider the products between unstable
components and then products between unstable and asymptotically stationary
components.

THEOREM 3.4.1.

0) J S u K, =, 0
1
(i) ERKD) =0 for1<js
(i) K Svai( D7) =0 for1 <5<
(iv) L (k) Z'::xt(h)x;( DLL) »,0 forl<h#j<l.

ProOF. We are going to show that each element in (i)-(iv) can be expressed
as a sum of the forms n~/L]'sin(20)A,B, and n™7YLTcos(28)A B, for some positive
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number j, random variables A,, B, and some 6 such that e? # 1. By means of
Theorem 2.1, we can then derive the desired results. To verify the assumptions of
Theorem 2.1, similar arguments used in proving (3.3.12) of Lemma 3.3.6 can be
applied and details are omitted. Typical elements of (i)—(iv) are

w7 L (o) = B o (-1 (),

t=1

n-mh zn: uh)y(j,m)= (n"”"sin Hj)_l i {sin(t + 1)8u,(h)S,(j, m — 1)
—cos(t + V)0u(h)T,(j, m ~ 1)},

vk S o (R)y(jm)

= (n"”hsin Hj)-l gl {sin(t + 1)8;cos tnS,(j, m — 1)((—1)tv,(h))

—cos(t + 1)8;cos trT,(j, m ~ 1)((—1)tvt(h))},

n=em Z yt(h’ s)yt(j’ m)
t=1

= (n**"sindsing,) " ¥ {(S,(h, s — sin(¢ + 1)8,
t=1
—Ty(h,s — 1)cos(t + 1)8,)
X (S,(j, m — 1)sin(¢ + 1),
~T,(j, m ~ Deos(t + 1)4;)},

where 0;, y,(j, m), S,(j, m) and T(j, m) are defined in Section 3.3 by replacing
x, in (3.3.1) with x,( 7). Using the trigonometric identities, we can reexpress these
forms as the sums of n™/37sin(t0)A,B, and n™/Licos(t0)A,B,. Note that §; + 4,
and 6, 8, € (0, 7) imply that e*%*™ % 1 and e“%*%) = 1. This completes our
proof. O

THEOREM 3.4.2.

(i) Yuz M, >, 0;
ln
(ii) Knthz;M,; -,0;
. 1
(i) L) Zxd M ~,0 for1<jsl,
1

where z, was defined earlier [ after (3.1)].
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Before we prove Theorem 3.4.2, we need a lemma.

LEMMA 3.4.3. Assume {g,} and {h,} are two sequences of random vectors in
R?® such that g, and h, are % measurable. Suppose there exists an s X s
constant matrix M such that g, = Mg,_, + h,, where g, =h,= 0. If

(34.1) EY Ig)*=0(n*) and EY |h,*=0(n*) forsome a>0,

t=1 t=1
then for any fixed integer J,
n
(3.42) E| ¥ geevs| = o(nt=72)
t=1
and
n
(3.4.3) E|l Y g,z = o(ne*V/2),
t=1

where {e,} satisfies (2.10) and z, is defined in (3.2).

ProoF. Assume j > 1. Then X}_,g,¢,, ; is a martingale. Hence,
2

(3.4.4) E =FE éng,u2 = 0(n®) = o(n**?).

n
Z €

t=1
Assume j = —k < 0. Since

k
(3.4.5) g, =M"g, Gyt X MTh,_,,

m=0

n n k n
(3.4.6) )» 8e8er; = Mk Y gi—h+)€-r T Y M"Y hy e i
t=1 t=1

m=0 t=1
2} 1/2

1/2

By (3.4.4),

El < ||M”“||{E

n n
k+1
M Z 8 (r+1)i—k Z gi—(r+1)Et—k
t=1 t=1

(3.4.7)

= o(nta+1/2),
Now, by (3.4.1),

n
M™ Z ht—met—k

t=1

< nM"‘u{ 3 Euh,_,,.uz}m{ élE(e?_k)}

t=1

g

(3.4.8)
- O(na/Z)nl/Z - O(n(a+ 1)/2).

Combining (3.4.6)-(3.4.8), we have

n

Z .84

t=1

E = o(n(+/2),
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This together with (3.4.4) implies (3.4.2). For (3.4.3), first observe that if y(z) =
1+ a2+ -+ +a,z” then

(34.9) z,= Az, ,+¢, 2z,=0,

where
al . e . ap
-l 0

p—1
I, ,isthe (p-1DX(p-1 identity matrix and ¢, = (¢,,0,...,0). A direct
computation shows that

n—1

Ez,2, = Y Alee(A’), wheree = (0%,0,...,0)".
0

Hence,
1 n
(3.4.10) lim — Y E|z,||? = ¢ < .
n—-wo N
Fix k. Then, by (3.4.9),
k-1
z,=Akz,_,+ ), Ajet_j
J=1
and, consequently,
n n 5 k-1 n .
(3.4.11) Ygz,= Y gz (A)+ X Xge (A).
t=1 t=1 j=0t=1
By (3.4.2),
n .
limsupn~(*V2E|| Y g.e;_(A)
n—o t=1
(3.4.12)

< limsup ||(A’)j ||n'("‘+1)/2E

n—o

By (3.4.1), there exists a constant y > 0 such that EY7_,||g||”> < yn® By
(3.4.10)-(3.4.12),

= 0.

n
Z 88—
t=1

n
limsupn~“*V2E| Y g,z;
n— oo t=1
- k
= limsupn~“*V2E|| Y g,z;_,(A)
n— oo t=1
n 1/2 n 1/2
Ak _
< I(A’)"||limsupn (“H)/z(E ) ||g,||2) (E 2 ||zt—k||2)
n— oo t=1 t=1

<(A)Hy2e >0 ask - oo,

since A has all eigenvalues inside the unit circle. This completes the proof. O
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PROOF OF THEOREM 3.4.2. The jth row of K, Yv,z/M, is n ™/~ /2L 0, j)z}.
But v(Jj) = (—1)v,_(j) + v(j — 1) and EX?_,0%(j) = O(n*). Hence, Lemma
3.4.3 is satisfied with s =1, M = (—1) and a = 2j. Consequently, (ii) holds.
Similarly, (i) holds. For (iii), observe that

Em - (ot e | ()

and EX?  y2(j, m) = O(n*"1), by (3.34) and (3.3.9). It is not difficult to see
that (iii) holds by using Lemma 3.4.3, witha = 2j — 1 and

2cos 0; ~1)
1 0/

M- 0

3.5. General model. We are now ready to return to the general model (1.1)
with the characteristic polynomial (3.1). Define J,, K, and L (k) as in Section
3.4. Also, define F, £, F and v as in Sections 3.1 and 3.2. For each &, define H,
and §, by replacing d by d, in Section 3.3.

THEOREM 3.5.1.

n—1
(3-5-1) G.Q Z ytyt,Q,Gn_l A
1

and
(3.5.2)
(QG;) (b, = B) = ((F&), (F ), (H %), (H ), N
where
F
0

A=]. S . is nonsingular a.s.,

H,
0 s

(F, E),(F’, ), (H,§,),-..,(H, ), N are independent and G,, @ and N are
defined in (3.2), (3.3) and Theorem 2.2, respectively.

Proor. By Theorems 3.4.1 and 3.4.2, (3.4) is established. In view of (3.4),
(3.1.9), (3.2.4), (3.3.7), (2.12) and Appendix 3, (3.5.1) is proved. Since each random
matrix involved in A is nonsingular a.s., A is nonsingular a.s. Now, by (3.5.1),
(3.5) is achieved. In view of (3.5), (3.1.10), (3.2.5) and (3.3.8), (3.5.2) is proved.
Note that the random matrices and vectors involved in (3.4) and (3.5) are
functionals of the corresponding processes of (2.12). The independence of
(F, ¢),..., N follows from Theorem 2.2. O
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4. Further discussion. 1. As shown in Section 3, the limiting distribution
of b, is represented by ratios of certain Brownian functionals. The closed form of
the distribution functions of these functionals may be extremely complicated, as
Rao’s (1978) result indicates, and we have not attempted to derive such expres-
sions in this paper.

2. Since the closed forms are not known, we may wonder how to use the
functional expressions presented in Section 3 to calculate the percentiles of the
limiting distributions. In the literature, these percentiles are tabulated by Monte
Carlo simulations on some series representations which are derived from the
quadratic form approach. By similar reasoning, we may expect that the Monte
Carlo method can also be applied directly on the functional representations. In
fact, a stochastic integral can be approximated by a partial sum of random
variables, which in turn can be simulated easily. Since an approximation (or
trunction) has to be made in the series expansion approach as well, it will be
interesting to see which method produces a better result for the same amount of
computing time.

3. In applications of nonstationary autoregressions, we may encounter the
model where a constant drift p is added to (1.1). It is known that [Dickey and
Fuller (1979)] for an AR(1) model with g # 0, the least squares estimate for 8,
has normal limiting distribution regardless of whether |8,| < 1 or 8, = 1. Such
phenomenon is also true for the multiple roots situation when all unit roots are
equal to 1. However, for the general unstable AR(p) model, the limiting
distributions of those components associated with roots e, 8 € (0,27), will not
be affected by the presence of a nonzero p. For the AR(1) model where p can be
interpreted as the slope of the mean of y, when B; =1, the least squares
estimate of p has a normal limiting distribution as long as |8,| < 1. For further
details, see Chan (1987). _

4. In order to apply the distributional results of this paper, some knowledge
about the location of the roots is required. For example, the g, , in Corollary
3.3.8 is used by Ahtola and Tiao (1987) to test whether an AR(2) model possesses
a pair of complex roots. In this case, even though the exact knowledge for the
location of the roots is not required, the existence of a pair of complex roots has
to be assumed a priori in order to compute the significance level of the associated
test. As another interesting application, using the distribution results of this
paper, Wei (1987) obtains a consistent estimate of the number of differencings in
an integrated autoregressive model (IAR) without knowing the order of the
model. However, as is well known, the IAR model does not have any unit roots
besides 1.

APPENDIX 1.

Matrices @, C and L,(j) were previously defined implicitly in Section 3.

We shall only give a detailed definition of the matrix @ here. The matrices C
and L,(j) can be defined in exactly the same manner.

Let

o(z)1-2)""=1+fz+ - -Ffp_az""“.
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Then
Uy =Y+ f1der + - +fp—ayt—p+a'

Define the a X p matrix @, by

1 o foe O e 0

1 f foa o 0O

Q=1 :
6 1 fl fp.—a

Then Q,y, = u,. Similarly, we can define a b X p matrix @,, a ¢ X p matrix @,
and a 2d, X p matrix @, %) such that

Q:y, = Vv, Q;y, = z, and Q4(k)Yt = xt(k)'
Then
Q = (@1, 95, Qi(1), ..., Qi(1), @3)".

APPENDIX 2.

Proor oF LEMMA 3.1.1. Let Q@ = {w: W(w, £) is continuous and nondifferen-
tiable for 0 < ¢ < 1}. It is well known that P(Q) = 1. We will show that F(w) is
nonsingular for any « € . If not, then 3 w € @ and ¢ = (¢c,,..., ¢,) # 0 such
that ¢’F(w)e = 0, i.e,

(A1) fo 1( '

J

e

2
CjF}_l(w, S)) dg = 0.

1

By the choice of w, X¢_,c;F;_\(w, s) is a continuous function in s. Hence, (A1)
implies
a
Y ¢;F_(w,8)=0 for0<s<l.
J=1
Let I = inf{;: ¢; # 0}. Since ¢ # 0, 1 < I < a. Consequently,
1 a
(A2) F_(w,8)=—= Y ¢F_,(w,s) for0<s<]l.
1 j=1+1
Since F(w, 8) = [¢F;_,(w, t) dt for j > 1, differentiating (A2) (I — 1) times, we
obtain

1 a
W(w,s) =~ Y ¢;F_(w,s) for0<s<1.

G j=141

This is a contradiction, as F,,..., F,_, are differentiable. O

Proor or LEMMA 3.33. Let
h = (fO + igOa e—iﬁ( fO + igo):“" e-—iﬂ( fd—-l + igd—l))
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and h be its conjugate pair, i.e.,A

h= (fo — ig,, ew( fo— igo),...,ew( fa-1— igd—l))‘

Set

(A3) hh =T + iM,

where T" and M are 2d X 2d real matrices. It is not difficult to see that
1 1

(A4) H=— fo T'(s) ds.

Since for any ¢ € R24%29,

0 < ¢’hh’e = ¢Te + ic’Mc = ¢'Te,
we have .
1

! = L, 2
¢'He 4Sin20~/(.,|Ch(s)l ds.

Now,

ch= (c1 + ¢y e_w)(fo +igy) + - +(‘-’2d—1 + Coq e_io)( fae1 +i8q-1)-

By assumption, e® # 1 or —1. Since c, j—1 and c,; are real numbers, we have
that

Czj_1+c2je“i9=0 iff C2j_1= c2j=0'
Hence, if ¢ # 0, then there exists 1 <j < d such that ¢,;_; + ¢,; e~ % 0. Using

this fact and a similar argument as in the proof of Lemma 3.1.1, we can show
that H is nonsingular everywhere on

Q = {w: Wy(w) and W,(w) are continuous but nondifferentiable}.
Since P(2) = 1, the proof is complete. O

APPENDIX 3.

In general, the weak convergence of the marginal distributions may not imply
the joint convergence. The following proposition, which gives such a result, and
Theorems 2.2-2.4 imply all claims of joint convergence in this paper.

PROPOSITION. Assume that X, = (X,(1),..., X,(m)) and X =
(X(),..., X(m)) are random elements taking values in T1]%,D such that

(A5) X, >y X.

For each i, 1 < i <, let I, be a nonempty subset of {1,..., m} and assume that
G,(?) is a sequence of random variables such that

(A6) {Xn(k)! ke Ii’ Gn(l)} —).?{X(k)1 ke Ii’ Gi}’
where G, is measurable with respect to o{ X(k), k € I,}. Then
(A7) {X,,G,(i),1<i<l} -o{X,G,1<ix<l}.
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ProoF. By (A5) and (A6), {X,,,G,(i), 1 <i <!} is tight. In order to show
(A7), it is sufficient [Bllhngsley (1968), page 16] to prove that for any subse-
quence n; such that

(A8) {(X,,G,(i)1<i<l} »,{X,G,1<ix1},
we have that

(A9) {X,G,1<i<1} =(X,G, <i<l).

In view of (A6) and (A8), for each i,

(A10) (X(R), ke I,,G} =,{X(k), k€ I,G,}.

Since G, is o{ X(%), k € I,}-measurable, by a lemma in Gihman and Skorokhod
[(1974), page 8] there is a measurable function- g;: I, 1D = R such that
G; = g(X(k), k € I,). (A10) implies that

(A11) G =g(X(k),kel) as.

But from (A5) and (A8) we have that X =, X. Now (A9) is a consequence of this
and (All). O
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