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LIMITING DISTRIBUTIONS OF MAXIMUM LIKELIHOOD
ESTIMATORS FOR UNSTABLE AUTOREGRESSIVE
MOVING-AVERAGE TIME SERIES WITH GENERAL
AUTOREGRESSIVE HETEROSCEDASTIC ERRORS

By SHIQING LING AND W. K. Li!
University of Hong Kong

This paper investigates the maximum likelihood estimator (MLE) for
unstable autoregressive moving-average (ARMA) time series with the
noise sequence satisfying a general autoregressive heteroscedastic
(GARCH) process. Under some mild conditions, it is shown that the MLE
satisfying the likelihood equation exists and is consistent. The limiting
distribution of the MLE is derived in a unified manner for all types of
characteristic roots on or outside the unit circle and is expressed as a
functional of stochastic integrals in terms of Brownian motions. For
various types of unit roots, the limiting distribution of the MLE does not
depend on the parameters in the moving-average component and hence,
when the GARCH innovations reduce to usual white noises with a con-
stant conditional variance, they are the same as those for the least
squares estimators (LSE) for unstable autoregressive models given by
Chan and Wei (1988). In the presence of the GARCH innovations, the
limiting distribution will involve a sequence of independent bivariate
Brownian motions with correlated components. These results are different
from those already known in the literature and, in this case, the MLE of
unit roots will be much more efficient than the ordinary least squares
estimation.

1. Introduction. Consider the autoregressive moving-average (ARMA)
time series y,, ¢t = 1,2,3, ..., with the general autoregressive heteroscedastic
(GARCH) error process given by

(1'1) ¢(B)yt = l!’(B)gta
(1'2) & = ”’h\/hit, h,=a,+ i aigtz—i + i Bih;_i,
j i=1

i=1

where 7, is a sequence of independently and identically distributed (i.i.d.)
random variables with zero mean and variance 1; ¢(B) = 1 — X2, ¢, B’ and
w(B) =1+ X%, 4B' are polynomials in the backshift operator B with
¢, # 0 and ¢, # 0 and have no common root; &y > 0, ay,..., @, By,..., B, = 0
and the polynomials a(B) = X_; o;B* and B(B) =1 — X;_; B;B' have no
common root; % denotes the o-field generated by the information set
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{n;,n,_1,---}. We shall assume that the starting value XF = (y,,...,
Yopi1€0sererE—grr1r oro-or B ) is known and is F;-measurable, where
g* = max{r, q}. As will be seen later, the starting value has no effect on the
asymptotic properties considered. We shall say that the ARMA model (1.1) is
unstable if ¢(z) has at least a root on the unit circle.

The nonstationary time series have been extensively investigated for the
last decade. Some important results for the nonstationary autoregressive
AR( p) models can be found in Fuller (1976), Dickey and Fuller (1979), Hasza
and Fuller (1979), Dickey, Hasza and Fuller (1984), Tsay and Tiao (1984),
Phillips (1987), Chan and Wei (1987, 1988), Tsay and Tiao (1990) and
Jeganathan (1991). Among these authors, Chan and Wei (1988) first obtained
general results in a unified manner for all types of unit roots in unstable
autoregressive AR( p) models. Jeganathan (1991) derived general results for
near-nonstationary AR( p) models. However, two important cases are not yet
investigated completely and satisfactorily.

On the one hand, because of practical motivations from applications,
recently the nonstationary ARMA models have been studied by many statisti-
cians and econometricians. Tsay and Tiao (1990) discussed the asymptotic
properties of the least squares estimation (LSE) for general (multivariate)
nonstationary ARMA time series and proved that if the AR part contains
stationary components and the moving-average (MA) part is nontrivial, the
LSE of the parameters in the AR part will be inconsistent. Pantula and Hall
(1991) used an instrumental variable approach to estimate and test the
regular unit root in an ARMA model, that is, the presence of the factor
(1 — B) in the AR polynomial. Yap and Reinsel (1995a, b) considered a
Gaussian likelihood estimation of the ARMA models with regular unit root.
They showed that Gaussian likelihood estimation for the unit root is more
efficient than Pantula and Hall’s instrumental variable approach and their
simulation results also demonstrate that the performance of the unit root test
based on the Gaussian likelihood estimation is better than that based on the
instrumental variable approach. However, the asymptotic properties of the
maximum likelihood estimation (MLE) for the general nonstationary ARMA
model, that is, ¢(z) with roots 1, —1, '’ and e~*’, have not been obtained. In
this paper, our results cover this case.

On the other hand, research on nonstationary time series is almost always
limited to innovations with constant conditional variances. In the framework
of Phillips and Durlauf (1986) and Phillips (1987), the long-run variance and
the innovation variances are equal in the presence of heteroscedasticity, but
it does not include many conditional heteroscedastic processes as defined in
(1.2). The autoregressive conditional heteroscedastic (ARCH) model, that is,
model (1.2) with s = 0, was proposed by Engle (1982) and generalized by
Bollerslev (1986) as the popular GARCH model (1.2). This is a very important
class of time series and they have been widely investigated and applied in the
financial and econometric literature. These models are able to model the real
situation better and hence result in more efficient estimation and statistical
inference. Some excellent surveys on the subject can be found in Bollerslev,
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Chou and Kroner (1992) and Bollerslev, Engle and Nelson (1994). There have
already been several papers which attempt to link nonstationary time series
with ARCH processes. Pantula (1989) derived the asymptotic distribution of
the least squares estimator for the AR(p) model with one unit root under a
first-order ARCH process for the innovation sequence. He demonstrated that
the Dickey—Fuller test can still be employed in that case. In fact, the work of
Chan and Wei (1987) can also be applied to the LSE of the nonstationary
AR(1) model with GARCH innovations. However, a well-known advantage of
stationary time series with ARCH /GARCH innovations is that the MLE is
more efficient than the LSE. It seems natural to expect that this advantage
still carries over to nonstationary time series. If so, in the presence of the
ARCH /GARCH innovations, the MLE will be important for nonstationary
time series since one can obtain more satisfactory estimation and inference
procedures, especially better unit root tests. Although there are not many
results in comparing unit root tests based on the MLE, Peters and Veloce
(1988) and Kim and Schmidt (1993) provided simulation results showing that
the Dickey—Fuller tests based on the LSE are often too sensitive. Unfortu-
nately, as far as we know, there have not been any asymptotic results for the
MLE in the presence of ARCH type errors.

In this paper, our aim is to investigate the MLE for unstable ARMA time
series with GARCH processes which links the popular GARCH models and
the nonstationary ARMA models. Under some mild conditions, it is shown
that the MLE satisfying the likelihood equation exists and is consistent. The
limiting distribution of the MLE is derived in a unified manner for all types
of characteristic roots on or outside the unit circle and is expressed as a
functional of stochastic integrals in terms of Brownian motions. For various
types of unit roots, the limiting distributions of the MLE do not depend on the
parameters in the moving-average components. Hence, when the GARCH
innovations reduce to the usual white noise with a constant conditional
variance, they are the same as those of the LSE for unstable autoregressive
models given by Chan and Wei (1988). When the GARCH innovations are
present, the limiting distribution will involve a sequence of independent
bivariate Brownian motions with correlated components. These results are
different from those already known and, in this case, the MLE of unit roots
will be much more efficient than the ordinary LSE. These asymptotic results
not only provide the basis for constructing new unit root tests or other
applications, but also help us to understand more comprehensively the
nature of nonstationary time series. The method for obtaining these asymp-
totic results can be applied to other ARCH type innovations and near-
nonstationary cases as well as multivariate cases.

The paper proceeds as follows. Section 2 introduces the MLE and main
result. Section 3 gives some auxiliary theorems. Section 4 derives asymptotic
properties of nonstationary componentwise arguments corresponding to the
locations of various unit roots. Section 5 gives the proof of the main result.

Throughout the paper, we use the following notation: U’ denotes the
transpose of the vector U; o(1) (0,(1)) denotes a series of numbers (random
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numbers) converging to zero (in probability); O(1) (O,(1)) denotes a series of
numbers (random numbers) that are bounded (in probability); —, and —.
denote convergence in probability and in distribution, respectively. D =
D[0,1] denotes the space of functions f(s) on [0, 1], which is defined and
equipped with the Skorokhod topology [Billingsley (1968)]; D* = D X D -+ X
D (n factors). || - || denotes the Euclidean norm.

2. The MLE and main result. Suppose that the observations y,,..., y,
are generated by the model (1.1)-(1.2). The log-likelihood conditional on the
starting value X§ is

) n 1 1¢&?

(2.1) Li,(\)= Y 1,()) and [,=——Inh, — ——,
1 2 2 h,
where A = (¢, ¢',8), ¢=(¢d,...,,), ¥v=(h,...,¢,) and &=
(ag, ayy..., @, Bry--., By); & and h, are treated as functions of A, although
g, is only a function of (¢', '); A € ©, which is a compact set in the real
space RP*977*s*1 and ), is the true value of A. The true errors will be
denoted by ¢,,, and h, evaluated at A = A, is denoted by %,,. The MLE, A,
of A, is defined as A € ©®, which maximizes Li,()).
Define the random variables

al,(A %L, (A
() and I,(A) = 07/\15/\,),

where the formulas of D,(A) and I,(A) can be found in Appendix A. We shall
use D, and I, to denote D,(A,) and I,(A,), respectively. To obtain the MLE of
Ao, we employ Taylor’s expansion to write
dLi,(A)

aa

(22) D,()) =

n

YD+ YL (A=) + X [L(X) — L](A - Ay,

t=1

(2.3)

where A% = A, + v(A — Ay) with v = v(n, A) satisfying |v| < 1. Throughout
this paper, we suppose that, when A = A, the following assumptions hold.

AssUMPTION 1. The characteristic polynomial ¢(z) has the decomposition

1
d(z)=(1-2)'1+2)"T] (1 —2cos 6,z + zz)dkdf“(z),
k=1
where a, b, [ and d, are nonnegative integers, 6, € (0, 7), ¢*(2) =1 —
YP* ¢Fz' with all roots outside the unit circle and p*=p —(a + b +
2d, + -+ +2d)).

AssSUMPTION 2. All roots of (z) are outside the unit circle.

ASSUMPTION 3. X/ ;o + Xi_; B; < 1.
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AssSUMPTION 4. 7, has a symmetrical distribution.

AssuMPTION 5. p(E(A, ® A)) < 1, where p(A) = max({lall eigenvalues of
Al

2 2 2 2
am; a7, Bim; By
A I(r71)><(r71) O(r71)><1 0(r71)><s
t = )
@ o | B B,
O(s—1)><r I(s—1)><(s—1) O(s—1)><1

I, is the k X k identity matrix and ® denotes the Kronecker product.

Assumptions 3 and 5 are the second-order stationarity condition given by
Bollerslev (1986) and the fourth moment condition given by Ling (1995),
respectively, for the GARCH process (1.2). Denote /,,(A*) = —(1/2)In h, —
(1/2)e2/h, with e, = y(B) $*(B)z,, A =(m*,8"), m* = (¢*', ') and

*=(¢7,..., ¢5)". Define dl,,(A*)/dm* and dl,,(1*)/95 as in (A.1) and
(A.2) with [,(A) and m replaced by [,,(1*) and m*, respectively. Correspond-
ing to Ay, the true value of A* is denoted by A}.

To transform {y,} into various componentwise arguments corresponding to
the locations of their roots, now let u, = (1 — B) %,B)y,, v, =1+
B) %% ,(B)y,, z, = ¢ "(B)$,(B)y, and x,, =0 — 2cos 6,B +
B?) o (B)y,, k = 1,...,1, where ¢o(B) = ¢(B)|,_,, and similarly for ¢,(B)
and ¢;(B). Then (1 — B)u, = §,(B)s,, (1 + B)v, = y)(B)s,, ¢i(B)z, =
po(B)e,, (1 — 2cos 6, B + B*)%x, , = (B¢, k =1,...,1, where a, b, d,
and ¢*(B) are defined as in Assumption 1. Define u, = (u,,...,u,_,.,),
v, = (U Vi) 2 = (2, Zi i) Xy = (2 yeees xt—dk+1,k)/> k=
1,...,1. As shown in Chan and Wei (1988), there exists a nonsingular matrix
Q* such that

(2'4) Q*Yt = (u,t’vz,{’x,t,l’""X,t,l’zrt),’
where y, = (y,,..., ¥;_,+1)"- Define

Q = diag(Q*>Im1><m1)>

G, = diag(J,,, J,, Ly,,..., Ly, n" VI

m2><m2)’

(2.5)

where J,, jn, L,,,k=1,...,1, are defined as in Section 4, m; =q¢ +r +s +
1 and m, =p* + g +r + s+ 1. Our main results can be stated as the
following theorem.

THEOREM 2.1. Under Assumptions 1-5 of the model (1.1)-(1.2):

(a) there exists a sequence {)A\n} of solutions satisfying the likelihood equa-
tion dLi,(A)/dX = 0 such that

L QG (A = Ao = o,(1);
W(Q n) (n_ 0)_Op( )7
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(b) for such a sequence,
. 11
(@G (A, = ho) = | g (F ), (FE),

1 1
?(Hflgl)’,"" ?(Hlilgl),’ N,
where K, (F, £),(F, &), (H,,), k=1,...,1, are defined as in Section 4; N
is a (p*+q +r + s+ 1)-dimension normal random vector with mean
zero and covariance ¥ '33*71 3% = diag(E[d%l,,(X§)/dm*am*'],
E[3%1,,()X5)/38 38']) and 3 = diag(E[(dl,,(X§)/dm*)(l,,(X§)/dm* )],
E[(al,,(X§)/ 08X al,,(X5)/38")].

REMARK. If 7, is not normal, the MLE’s obtained by Theorem 2.1 are only
quasi-maximum likelihood estimators. From Theorem 2.1, we see that the
asymptotic distributions of the MLE of various types of unit roots do not
depend on the parameters in the moving-average part. As the GARCH
innovations reduce to usual white noises with a finite conditional variance
(see Theorems 4.1-4.3), the limiting distributions are the same as those given
by Chan and Wei (1988) and, in fact, are also the same as Tsay and Tiao’s
(1990) results in the univariate case. As the GARCH process is present, the
limiting distribution will depend on the parameters in the GARCH process
and involve a series of independent bivariate Brownian motions with corre-
lated components. These limiting distributions are different from results of
Chan and Wei (1988) and Tsay and Tiao (1990). In Example 2.1 below, we
will illustrate that the MLE of unit roots is more efficient than the LSE in a
special case. In addition, from here to Section 4, all true parameter values A,
and X§ are denoted as A and A*, respectively, for simplicity of notation.

ExampLE 2.1. Consider the model,
(2.6) Ye= Y1t &,
(2.7) elF_ 1 ~N(0,h,), h,=a,+ 0‘1‘5}2—1 + Bihi_1s

where ¢ = 1, a; # 0 and Ee < «. Suppose that qAﬁ is the MLE of ¢. Then we
can obtain directly from Theorem 2.1,

(2.8) n((z)ML - d’) ~g éur = /Olw1(t) dwz(t)/[K/Olwf(t) dt},

where (w,,w,) is a bivariate Brownian motion with mean zero and covari-
ance {(=’1), 0% = Eh, and K = E(1/h,) + 2a7¥7_, B VE(e} ,/h}).
Denote the LSE of ¢ as <1§Ls, then (see the remark after Theorem 3.3)

Jo By(t) dBy(t)
Jo Bi(t)dt ~

(2.9) n(‘fA’Ls - 1) — s =
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where B\(¢) is defined as in (2.10) below. To compare the efficiency of $ML
with ¢, ¢, we normalize the bivariate Brownian motion (w,,w,) in (2.8) by
letting

1
By(t) = le(t)

1 o? o?
By(t) = - Vo k-1 7 @?) + \ 52k —1 wy(1).

Then, by 1t6’s formula [Chung and Williams (1990), page 109],
y By(t) dBy(t) + Vo?K — 1 [§ By(t) dBy(t)
Ko?[y Bi(t) dt Ko?[y Bi(t) dt '

Since B,(¢) is independent of B,(¢), by the definition of the stochastic
integral [c¢f. Chung and Williams (1990), Chapter 2], it is not difficult to
obtain

and

(2-10) Eur =

! B,(¢) dBi(t) f¢ By(t) dBy(t)
(fo B3(t) dt)’

(2.11)
- y By() dBy(t) 1 )
- (3 B2 (0) o) E[fo B,(t) dBy(t){By(t),0 <t < 1}]} 0.
Furthermore,
/& By(t) dBy(t) \”
¢ Bi(t) dt )
(212) -g UOlBlZ(t)dt]_ E (folBl(t)de(t)) {By(2),0 <t < 1}1}

-1

= E[/Ole(t) dt]
By (2.10)-(2.12),

1

4B,(t) dBy(t) ) oK~ 1

, 1
(2.13) E&, = K204E( TED i t i B [/B (t)dt]

Further, by (2.9),

E&L, 1 o?K -1
Eél, Kot | Kot
where ¢ = E[ [ B2(t)dt] ' /El [§ B(t)dB(t)/ [y Bi(t)dt]*>. By simulating
the nonstationary AR(1) process with 10,000 replications, we estimate ¢ =

(2.14) ¢,



UNSTABLE TIME SERIES WITH GARCH ERRORS 91

0.4489, 0.4307, 0.4247, respectively, for n = 100, 200, 500. By the
Cauchy—Schwarz inequality, it is easy to show that Ko ? > 1, and hence,

E¢Z; co’K+1-c Ko? 1

= < = <1,
E&Z K%* K%* Ko?

with equality if and only if Ko ? = 1, that is, h, = a constant. In particular,
when B, = 0 and «; > 1, Ko ? —> =, as shown by Engle (1982). This demon-
strates that the MLE for the unit root is much more efficient than the LSE
and the gain in efficiency could be very large.

REMARK. Based on the asymptotic distribution in (2.8), Ling and Li
(1997b) proposed some new unit root tests and presented simulation results
showing that these new tests have better performance than Dickey—Fuller
tests based solely on LSE. We also believe that the asymptotic theory in
Theorem 2.1 can be applied in more general cases. For the simplest GARCH
process (2.7), assumption 5 is equal to 3a? + 2, 8, + B < 1, that is, Boller-
slev’s (1986) condition. Under the weaker condition (Nelson, 1990) E[In(a;n?2
+ B7)] < 0, which allows «; + B; = 1 (in this case, the variance is infinite),
Lee and Hansen (1994) derived the asymptotic distribution of the MLE for
the pure GARCH process (2.7) with 8, # 0. For the model (2.6)—(2.7), whether
or not corresponding results exist will be an interesting research problem.

ExamMpLE 2.2. Consider the model,
(2'15) d’(B)yt: ‘!f(B)gt:

where ¢,1%,_; ~ N(0, h,), h, and (B) are defined as in model (1.1)-(1.2) and
¢(B) = (1 — B)¢p*(B) with all roots of ¢*(B) outside the unit circle. Re-
parametrize (2.15) as

p

Ye=Y1Ye1+ X Yi(YVieiv1 —Yioi) T ¥(B)g,
i=2

where y; = XF_; ¢, and y; = —XF ;¢;, j = 2,..., p. Suppose that (13 is the

MLE of the parameter ¢ = (¢y,...,¢,)". Define ¥, =XF ;¢ and ¥ =
—Xl ;¢ J=2,..., p. Then

(2.17(2.16) G, '(¥ = v) 2o (cbur, N')
where G, = diag(1/n, 1, 1) ,-1/Vn), ¢=1/AQ = XP,v), v=(yy,...,

yp)’, &y s defined as in (2.8) and N is a normal random vector with mean
zero and covariance

%= E[(l/ht)(0gt/(9'y)((9gt/(9'y’)] + E[(I/Z)(l/hf)(ﬁht/(?'y)((?ht/&y’)].
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Let u,=(1 — B) '¢(B)y, and z, = ¢* "(B)p(B)y,. Then u, = ¢*(B)y,
and z, = (1 — B)y,. Denote

1 =y, —vs - “Yo-1 T
=1 -1 0 0 0
0 0 0 1 -1
Then (u;, z;,...,2,_,+2) = (¥, ¥, +1)Q'. By Theorem 2.1,
(2.17) (QG) (& - ¢) =, diag(&s, N).
On the other hand, we have the relationship, y = P¢ and 9 = P¢, where
1 1 cee 1
P _ O 1 cee 1
0o o0 - 1

Thus,
(218) G, '(¥—v) =G, 'P(d - ¢) = G, 'PQ'G,[(Q'G,) (- ¢)|.

By direct calculation,

c 0 ¢ 0
2.19) G,'PQ'G, =G, G, = ’
( ) . PQ'G, n (* I(pl)X(pl)) n (0 I(pl)x(pl))

where = 1is composed of elements not depending on n. Further, by
(2.17-(2.19), (2.16) holds.

REMARK. As g, reduces to white noise with a constant conditional vari-
ance, the asymptotic distribution given by (2.16) is the same as that given by
Yap and Reinsel (1995b) and further, as g = 0, it is also the result in Fuller
(1976) and Dickey and Fuller (1979). This shows that the estimators obtained
by the reparametrization method used by Fuller (1976) and Yap and Reinsel
(1995b) and the estimator obtained by the componentwise argument method
used by Chan and Wei (1988) are asymptotically equivalent.

3. Auxiliary theorems.

THEOREM 3.1. Let {S,(¢), 0 <t <1} and {§,, £ =1,2,...} be two se-
quences of random processes such that:

(a) S,(t) =& S(t)inD;
1 [nt]
(b) —— ) & —y £(t) inD;
n rp-1
(c) max [£,/Vn |-, 0;
1 n
(d) — Y 1&1=0,(1);
a1
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and almost all trajectories of S(t) and &(t) are continuous. Then

1l
n

=1

sup
0<t<1

—>p0 asn — o,

REMARK. Theorem 3.1 together with Theorem 3.4 below will be an impor-
tant tool for Lemmas 4.1-4.4.

ProoF. First, by conditions (a)-(b) and Theorem 15.2 in Billingsley [(1968),
page 125], there exists a constant M such that, in probability,

(3.1) sup |S,(¢)] <M,
O<t<1
1 J
(3.2) sup |—— ) & | <M,
1<j<n |V p=1
(3.3) sup  |S,(u) — 8,(v)| = 0,
lu—vl<1/yn
1 [nty]
(3.4) sup = Y & |—o.
lty—tol<1/yn | VIV p=[nty]
Now, for each n, let N(n) =[Vn]+ 1, m =[n/N(n)] and n, = kEN(n),
l1<k<m Then 1=n,<n; <nyg< - <n, <n. Denote s =suplk,n, <

7}. Then we have

res(te

nop_1

I
S
1=
3
17
-
n
]
—_——
S| >
N
e
>
+
|
1~
n
S
—_——
| =
-
e
>

Il
S| =
3
—
| —— |
n
S
—_——
S| =
S —
|
%))
=
—_——
S
|
S —
—
e
=

(35) l=1k=n;_,
1 s n;_ n—1 J
+—Z&(1)Z@+—Z&kﬁ
ny o h=n, k=n n
=I,+1,+1;, say.
By condition (d) and (3.3),
1 n
(3.6) Ll < sup  [S,(u) =S, (v)|— XL 1&I—, 0.
lu—vl<1/yn -1
By (3.1) and (3.4),
1 m! s
|I,| < sup |S,(t)| max |— & |—
2 Ogtgll ( )llﬁlﬁs \/; k:§71 k \/E
(3.7)
1 ["f] s
< sup |S,(¢ max — & |— —, 0.
Ostsll ( )||'51—t2|51/\/’T ‘/; k=[nt,] * ‘/E 8
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By condition (c) and (3.1),

Il < sup |S, (t)|— E [,

O0<t<1 t ng

ng

(3.8)

IA

sup |S, (t)| max Ifkl
0<t<1

IA

2
sup |S, (t)| max |§k|T -, 0.

0<t<1

By (3.5)—(3.8), we complete the proof. O

THEOREM 3.2. Let {&,: t=1,2,...} be a series of F-measurable random
variables and &, is the o-field generated by the i.i.d. random variables {m;,
i=t,t—1,...}. Suppose that the following conditions are satisfied:

Cl. sup, E¢2 <wand E¢, =0,t=1,2,.

C2. E|¢ — E(&IGH™M)? = O(m_2”) for some v > 1/2, where G!'™ =
O-{nt+m""7nt—m}

Cs. {ft t =1,2,...} is uniformly integrable;

C4. o? E(Z lgk/\/;)zﬁaz,asnﬁw.

Then

1 [n7l
(3.9) \/_ th—> oW(r) inD asn — o,

where W is a standard Brownian motion.

REMARK. Theorem 3.2 is an extension of Theorem 21.1 in Billingsley
(1968), where ¢, is a fixed measurable function of {n,}, that is, ¢ =
f(n,,m,_1,...). Here, the measurable function f can depend on time ¢. In
particular, when o = 0, (3.9) still holds.

ProoOF. We only need to verify that Assumptions A.1, B.2, A3, A4 and A.5
of Theorem 2.11 in Wooldridge and White (1988) are satisfied.

Let X,, = £,/ Vn . By C1, Assumption B.2(i) holds. Taking d,, = 1/ Vn , by
C2, Assumption B.2(ii) holds. Assumptions A.1 and B.2(iii)—(iv) are obviously
satisfied. Let c,, = (1/Vn )max{1,(E£?)"/2). Then X2 /c2, < £? and hence,
Assumption A.3 holds by C3. Now, for A < o but sufficiently large, by C1,

172\ 12
max{l,(sup E§t2) }
[nr] ¢

n~Y([n(7+ €)] — [n7]) < 3Ae.
Hence, forall0 < e<1—-—7and 0 <7<1,

[n(r+ )]

02

ntS

< 3A < oo,

n—w

[n(r+ el
lim sup{e ! ) cZ

[nr]
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That is, Assumption A.4 holds. By Theorem 2.11 in Wooldridge and White
(1988), {2['”1 &/ Vn} is tight in D. When o2 = 0, by C4, E[YX_, N'¢,/Vn]?
— 0 and hence, we can obtain E[X"] X',/ Vn]? - 0, where 0 < 7 < 1. It is
easy to show that all the ﬁmte distributions of {X"7] ¢,/ Vn'} converge to zero
in distribution. Thus when o2 = 0, (3.9) holds. When &2 # 0, since [n7]/n

- 7, by C4,
nt] 2 nr nt] 2
a8 -] (]

n

as n — o, where 0 < 7 < 1. That is, Assumption A.5 holds. By Theorem 2.11
in Wooldridge and White (1988), (3.9) holds. This completes the proof. O

The remaining part of this section will be devoted to invariance principles
of some random variables involved in Section 4. We first introduce three
lemmas. The proofs of Lemmas 3.1 and 3.2 can be found in Ling and Li
(1996); see also Bai (1993) and Ling and Li (1997a). The proof of Lemma 3.3
can be found in Appendix B.

LeEMMA 3.1. (i) Under Assumption 2, ¢ (z) has power series expansion,

o

(3.10) g i(z) = Y v.(k)z2h, lzl <1,
k=0

and v (k) = O(p*) with 0 < p < 1.
(ii) Under Assumption 3, a(z)B~1(2) has power series expansion,

o

(3.11) a(2)BHz2) = Y vy (k)zF, |zl<1,

k=1

and v,(k) = O(p"*) with 0 < p < 1.

LEMMA 3.2. Suppose that the process {¢,} is defined by (1.2) and Assump-

tion 3 holds. Then e, is strictly stationary and ergodic and &2 has the

following causal representations,

w  j-1
(3.12) 8t2 =v'é + Z Y’ nAzﬂfH,
j=1 i=0
where & = (ayn}?,0,...,0, ag,...,0), . with the first component ayn} and

the (r + Dth component a,, y=(1,0,...,0),,,x; and A, is defined in
Assumption 5.

LEMMA 3.3. Let GI*' = a{n, s+ s y_ ), where m = 0,1, ... . Under As-
sumptions 3 and 5, there exists a constant p, 0 < p <1, such that, for
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k=0,1,...,m,
(a) E|sf, — E(s- k|Gt+m)|2 =0(p"");
(b) E|ht—k - ( t— k|GHm | _O(Pm k)
1 2
(¢) E——E( IG”’") =0(p™);
h,
2
(@) ElVh_, — E(Vh_,GI2)| = 0(p™*);
(e) E|3t—k ('9t leHm | _O(pm k)

(f) if &, is one of the following random variables:

t-1 t-1 t-1
Lova(R)es, L (=D vi(B)es, X oup(R)E,
k=1 k=1 k=1

t-1 t-1
Y v,(k)e,_, sinkd, Y v,(k)e,_, cosk,
k=1 k=1
v Y (B)e,_;,i=1,....,p, ¢* Y(B)e_;,j=1,...,p%
i1 i-1
Yv(k)e ¢ (B)e,y, 2 vp(k)e,_yd* (B) ey,
E=1 E=1
then EI|¢, — E(ftIGH’”)I2 = 0(p™), where (1 — Byz — -+ —B,z°) ' =

io1vs(R)zP and &, = (1,6 4,..., 88, hy y,.. Ry )

Now denote
e 1 (&2 -1
A, = (‘915’ h_i - h_t(h_tt - 1) Z Uh(k)“;t—k)”

& 1 (& gt %
(( 1)'e,,(~ 1)t_—h_t h )1;1(_1) Uh(k)é‘tk)',

& 1(&?
C,(0) = ‘/E(é‘t sin £6, h—tsmte— h_t(h_tt - 1)

-1
X Y v,(k)e,_, sin(t — k)O)’,
E=1

e 1 (&2 -1
C,.(6) = ‘/5(6} cos t0, h—tcos 10 — h—(h—t - 1) Y vu(k)e,_, cos(t — k)G)’,
t t t k=1

Z, = (3L,(N) /am* oL, (%) /38")’,
where [, is defined as in Section 2.



UNSTABLE TIME SERIES WITH GARCH ERRORS 97

LEmMA 3.4. Suppose that g, is one of A,, B,, C,,(0), C,,(0) and Z,. Then
there exists a constant p, 0 < p < 1, such that Ellg, — E((‘gthffn”j)ll2 =0(p™).

ProoF. By Lemma 3.1(ii) and Lemma 3.3, it is not difficult to verify that
the conclusion holds. This completes the proof. O

THEOREM 3.3. Let
S, = (A,t7B;> 16(01),C5,(01),-.-, llt(el)’C,Zt(elLZt’)”
where 0, € (0,7), 0, # 6, ifi #j,1,j=1,...,1. Then
[n7]

- S —>_ W(r in D4(l+1)+p*+q+r+s+1’

7 t:ZI : ~ W(T)
where W(r) = (W{(r), Wo(7),..., Wy, (1), W3,, (), N' (7)), the W, (r)s are
sequences of i.i.d. bivariate Brownian motions with mean zero and covariance

Eh, 1

TOTTN L B(m) + kT 02 (R)E(e2 4 /02) ]

k=En'—1, N(v) is a (p* + q + r + s + 1)-dimension Brownian motion,
which is independent of W/(7), i =1,...,2] + 2, and has mean zero and
covariance 72, where 3 is defined in Theorem 2.1.

REMARK. When £, is a constant, W(r) is a singular multidimensional
Brownian motion but its components are still usual Brownian motions. This
theorem serves a similar purpose as Theorem 2.2 in Chan and Wei (1988).
The elements of S, will be basic processes corresponding to nonstationary
componentwise arguments in Section 4 and the stationary componentwise
argument. The theorem actually is a special extension of Theorem 2.2 in
Chan and Wei (1998). When their assumption that E(s?|%) = a constant is
replaced by the assumption that ¢, is a GARCH process defined by (1.2), by
Theorem 2.2 in Kurtz and Protter (1991) and Theorem 3.3, we can show that,
under Assumptions 1-5, Chan and Wei’s (1988) results still hold. Similarly,
in this case, Jeganathan’s (1991) results also hold.

PrROOF. Let A be a (4l + p* + ¢ + r + s + 5)-dimension constant vector
with A’A# 0, & =)S, and QF = diag(I ® Q,3), where I is a (I +1) X
(I + 1) identity matrix. In the following, we verify that &, satisfies conditions
C1-C4 in Theorem 3.2.

(a) By Assumption 5, the fourth moment of &, is finite and further, by
Lemma 3.1(ii), it is easy to verify that sup, E¢? < ©and E¢, = 0,t = 1,2,... .
(b) By Lemma 3.13ii) and Lemma 3.4, we can show that

E|¢ - E(&lGim)| = o(m )

for some v > 1/2.
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(¢) By direct verification, condition C3 is satisfied.
(d) Note that, for 0, 0% € [0, 2],

1
lim — ) coskfOsinkf* =0
noe Mgy

and

12 12
lim — ) coskfcoskf* = lim — ) sinkOsink* =0 if 6+ 0*.
noe oy noe Moy

Thus it is not difficult to show that, for any two different vectors, &;, and &,,,
chosen among A,, B,, C;,(0,) and C,,(0,), k =1,...,1,

B g

Since 7, has a symmetrical distribution, by straightforward calculation, we
can also obtain

(3.14) lim —E[( ¥ glt)(éz;)] _

n—->» N

Again, since 1, has a symmetrical distribution,

lEa) )

(3.15)
1 - Eh, 1
n,/ =\ 1 E(hY) + ki [vE(R)E(e2 4R 2)] )
l ZE til Ui%(k);‘f—k
(3.16) ny=1 |r=1 h;
' "yl v vi(k)er,| 1 S vi(k)el,
nor=1 h} Np_1 | k=t h? ’
12 = vp(k)ely el |1 &
317  —YE Y = < 2= Y 0(p*) -0,
N1 | k=t t &y |

by Lemma 3.1(i1). By (3.15)—(3.17), we have

(3.18) lim [(ZA)(ZA/” 1@%%941.

now 1 t=1

Similarly, we can show that

o (g

n—>o N -1 _

3

1 n
(3.20) lim ;E[( Y C,(6,) )( Y Cl(6,) ” =Q fori=1,2k=1,...,1.

t=1
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By Assumptions 1-5, the process {Z,} is strictly stationary and ergodic with
finite fourth moments [cf. Ling and Li (1997a), Theorems 3.1-3.2 and Weiss
(1986), Theorems 3.2—-3.3]. Thus,

1 n n 1 n

(3.21)  lim —E[( Y Zt)( Y Z;” — lim = Y E(Z,Z)) = 5.
now n i=1 t=1 now Ny _q

From (3.13)—-(3.14) and (3.18)—-(3.21), we know that

1 noo\?
(3.22) o2 = —E( y gt) - 2 = NO*A.
noo\¢=1

Combining (a)-(d), we have already shown that conditions C1-C4 in
Theorem 3.2 are satisfied and hence,

1 [n7]
(3.23) = Y A'S, >, A'W(r) in D,
t=1

where W is a (4] + p* + g + r + s + 5)-dimension Brownian motion with
mean zero and covariance (*. Finally, by Proposition 4.1 of Wooldridge and
White (1988), we complete the proof. O

THEOREM 3.4. Suppose that g, is one of the following types of random
variables:

~

h—[ > vh(k)st_k} , h—[ > (—1)kvh(k>at_k} ,

kh=1 t k=1

‘9z2 -1 ' 2 1 th t—1 2
ﬁ[ Y vi(k)e, s smk@} g ﬁ[ Y v,(k)e,_, cos ke} ,
t t t

k=1 k=1
8t2 t—1 -1
—3[ Y v,(k)e,_, sin k@H Y v,(k)e,_, cos ke}.
8 P E=1
Then
(2) n~' Y lg, — Egl=0,(1);
t=1
(b) max |g, — Eg|/Vn = 0,(1);
1 [» ?
_E[ Z (& — Egt):| - oy,
noli=1
(c)

1 [nrl]
Jn (8; — Eg,) 25 ogwy(7) inD;
t=1
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1 [» 2
—E[ Y (g, — Eg,)sin tO*} - o2,
n

(d) 1t:[jw]
ﬁ Y (g, — Eg,)sintb* >, o,0,(7) inD;
t=1
]_ n 2
—E| ) (g, — Eg,)cos to*| — o2,
(e) Tl

1 [n7]
T~ Y (g, — Eg,)cos t0* -, o,ws(7) inD,
=1

where o, oy and o, are constants, 0* # 0 and w,, i = 0,1,2, are standard
Brownian motions.

PrOOF. We only consider the case with g, = (&2/hR3X{ Y v,(R)e,_,
sin £601%; other cases are similar.

(a) Denote g, = (¢2/h3)X;_, v,(k)e,_,]>. By Lemma 3.2 and Assumption
5,{8,} is strictly stationary and ergodic with finite variance. Since |g,| < g,,
by the ergodic theorem, we know that (a) holds.

() It is clear that max,_,_,lg, — Eg,|/Vn < max,_,_, &,/ Vn +
max, _, ., Eg,/ Vn.Itis easy to show that the second term converges to zero.
Note that {g,} have a common distribution and Eg2 < «. By Chung (1968),
page 93], max, _,_, &,/ Vn = 0,(1). Thus (b) holds.

(c) Denote g; = (&2 /h3) X5 _, vh(k)et » sin £01]%. Then, by Lemma 3.2 and
Assumption 5, we can show that {gF) is strlctly stationary and ergodic with

finite variance. Let ¢, = g, — Eg, and &* = g — Egf. In the following, we
first prove the fact that, for k=0,1,...,
(3.24) E(&5EF) = O(ph).

Let m = [k/3]. Then, for & large enough, E(¢fIG™,) and E(&F|GET™) are
two independent random variables and hence,

(3.25) E[E(&51G™,)E(&¢1GE )] = [E 11 EEF] = 0,

where Gf*™ is defined as in Lemma 3.3. On the other hand, by Lemma 3.3, it
is easy to obtam that, for m = 0,1,..., E|&f — E(&F IGk*m)I = 0(p )Wlth

p; € (0,1). Thus, by stationarity of §t* and the Cauchy—Schwarz inequality,
we have

|E(&rer)| <|E[E(&51G™,)E(&1GE ]|
2(EE(gs16m,)1°) (Bl - EB(griaip))

+ B[ & - B(grl6E )]

=0(p1") =0(p"),
where p € (0, 1) is large enough such that p* < Cp* for some constant C.
That is, (3.24) holds.
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Now, by (3.24), we know Y}-1 E(£5&7F) and Y721 RE(E5EF) converge abso-
lutely. Therefore,

1 " ? ) n“ln—k
—E( Z&*) =E& +2 )Y ——E(&E)
(3.26) Tl k-1

- EE:% + 2 ), E(E5EF),
k=1

as n — . Note that

]_ n 2 1 n n n
;(Zfz) =;(Z§z* + = Z(‘ft_ t*)}(Zé*)
(3.27) t=1 t=1 t=1 t=1
+— ; (gt - gt*):|

By Lemma 3.1(ii), it is easy to obtain that E(¢, — £¥)* = O(p’) with p € (0, 1)
and hence, by applying Minkowski’s inequality, we know that E[X}_,(¢&, —
£)1?/n — 0. Further, by (3.26), we can show that the second term in (3.27)
also converges to zero in probability. Thus,

1 n 2 o
(3.28) —E( Y §t) —> EEF? + 2 Y, E(§5€)F) = aconstant o2,
no\i=1 k=1

as n — ». By (3.28), Assumption 5, which implies E&! < « [see Ling (1995),
Theorem 6.2] and Lemma 3.3, we can verify that conditions C1-C4 in
Theorem 3.2 are satisfied. Thus (c¢) holds.

The proof of (d) can be found in Ling and Li (1996). The proof of (e) is
similar to (d) and hence is omitted. This completes the proof. O

4. The asymptotic behaviors of componentwise arguments. As
shown in Section 2, the general model (1.1)—(1.2) can be transformed into
various componentwise arguments corresponding to the location of their
roots. In this section, we will discuss the asymptotic behaviors of these
component arguments according to the different locations of unit roots. These
results will be used to prove Theorem 2.1. All of the limiting results obtained
in this section are jointly convergent by Theorem 2.3 of Chan and Wei (1988)
and Theorem 3.3. We will no longer give special statements.

4.1. Roots equal to 1 and —1. In this section, first we consider the model
(4.1.1) (1-B)“u, = y(B)s,

where (B) and ¢, are defined as in (1.1)-(1.2) and the initial value u, =
(ug,...,u_,,1) = 0.Defineu, = (u,,...,u,_,,),u(k) =0 —-B)* *u, k=
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0,1,...,a and U, = (ua),...,u,(1)). Then
(4.1.2) u,(0) = ¢(B)e,,

t
(4.1.3) u(k+1)= Yu (k) fork=0,1,....a—1,

i=1

and, as shown by Chan and Wei (1988), there exists a nonsingular a X a
matrix M such that Mu, = U,. Denote J, = N, 'M and N, = diag(n®, n®" !,
..,n). Let

(414)  Fo(t) =By(1),  F(1) = [[Fy(s) ds,
(4.1.5) = (jOlFa_l(t) de(t),...,/lFO(t) dBZ(t))’,
(4.1.6) F=(g,),,, and o, fF(t)F(t)dt

where i,j=0,1,...,a — 1 and W(#) = (By(?), Byo(¢))’ is a bivariate Brown-
ian motion with mean zero and covariance ¢() defined as in Theorem 3.3. For
the process {u,}, we have the following theorem.

THEOREM 4.1.

(a) J, LAy, —g &
t=1
(b) Y. J,By,J, —>, KF,
t=1
where

e t—1 1 (&2 t—1t-1
t
A1t= ()ut i-1 _(_ _1) Z Z h( )U (J)Et By —j—1

il
h, ;
1
by,

uMl

; (i)vs(j)ut—i—lu,t—j—l

4.1.7 28t2 t—1 t-1 . . . .
(4.1.7) 5L E uli)ui)n e )

toig,i=1j1,j2=0

!
X i & iy Wy —j -1 Wiy —jy— 1>

+220h( )E( o ),

2
i=1 h

K= E(h

and v,(i) and v (i) are defined as in Lemma 3.1.
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Before giving the proof of Theorem 4.1, we first present two lemmas.

LEMMA 4.1.
(a) VN, MUy = (1) E7(2);
nol g, 1 (&2 t-1
(by N,' X T h_(h__l) th(i)gtill]tl_)_? P(1)¢€,
t=1 t t t i=1
() N, ' Y U,_ U N, ' -, y*(1)F,
t=1

where £*(t) = ([( F,_(s)ds,..., [ Fy(s)ds)'.

Proor. For (a),

t

u,(1) = by u;(0) = '721‘#(3)6}

i=1

t q r—1
(4.1.8) = (1) Z & — Z ¥, Z Er—i
i=1 r=1 i=0

=y(1) X & + R,(D),
i=1

where ER?(1) < M (a constant) uniformly on ¢. By (4.1.8),

t lp-2

u(k) =2 X R/(1)+¢(Lui(k)

A
=R,(k) + ¢y(D)ui(k), k=1,...,a,
where ER%(k) < Mt**~V (1 — B)*u¥(k) = ¢, and thus,

(4.1.9)

t
(4.1.10) wi(k+1)= Yul(k), k=01, ,a—1.

i=1
Using Theorem 3.3, we have

[nt]

1
(4.1.11) =utu(1) = 7= ._21 e >, By(t) in D.

By (4.1.10)—(4.1.11) and repeatedly applying the continuous mapping theorem
[Billingsley (1968), Theorem 5.1],

(41.12) n 72k (k) >, ['Fy_y(s)ds inD, k=1,..a.
0

Further, by (4.1.9) and (4.1.12), we can claim that (a) holds.
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For (b), by (4.1.9), the kth element of (b) can be written as

n e (e -1
nt Y [_ _ _(— - 1) ¥ Uh(i)gt—ilut—l(k)

t=1 h’t ht i=1
e 2 t—1
—k & R .
=n " 2|\ 7 \7 ~ 1 v,(i)e,_;|R,_(k
(4.1.13) t§1 h, h,\ h, El w(i)e, i-1(k)
e & 1 82 t—1
+y()nF ) B I 1 Y v, (i) e, lut (k)
t=1 ht ht ht i=1

=1L +¢(1)1,, say.
Note that, by (1.2) and (3.11), &2 ,/h, < 1/v,(i) a.s. and further, by 1/ ‘/hj <
1/ y/«a, as., we know that, almost surely,

g 1 (&2 t-1 . ?
BTN

i=1

2

2
Er—

t-1
<c |77t| + (775 + 1) Z |Uh(i)|
i=1 h,
9 2
<c(Inl+ n? + 1),
where c is a constant not depending on ¢. Since R,_,(k) is % _;-measurable,
we have

n g, 1 (&2 t—1 2
El} =n?" Y E{|7— - |7 - 1) X vp(d)e,;| RY_ (k)
t=1 ht ht ht i=1
(4.1.14)
<cn 28 Y ER? (k) =n 2k 0(n* 1) = 0(1),
i1
where ¢; = cE(|n,| + 2 + D>
Let
t-1
Y, = (1/‘/;) &/hy — (1/ht)(‘9t2/ht - 1) Z vh(i)gti}-
i=1

Then {Y,,} is a F-measurable Martingale difference. It is easy to verify that
sup, ¥'_,1Y,,|” < =. Further, by (4.1.12), Theorem 2.2 in Kurtz and Protter
—k+1/2 % 1
L= [n ut—l(k)] ﬁ

(1991) and Theorem 3.3,

& 1 (&2 t—1

— - _(_t - 1) > Uh(i)“?til
(4.1.15) =1 AN ‘

>, ["Fy(t) dBy(t) fork=0,...,a~1.
0

By (4.1.13)-(4.1.15), we can show that (b) holds.
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For (¢), by (4.1.9), Lemma 4.2(a) below and Fuller’s (1976) Lemma 5.1.4,
the (%, j)th element of (c) can be written as

nTh T Y u a(R)u, (J) =nTFT Y O, (¢RI
(4116) 7! ot i
+ 9P (Dn 7 Y (R)ui_())-
t=1
In the last equation, the first term converges to zero and, by (4.1.12) and the

continuous mapping theorem, the second term converges in distribution to
1112(1)O'kj, k,j=1,...,a. Thus (c) holds. This completes the proof. O

LEMMA 4.2.

(a) E(u?(k)) = O(tQ‘k’l)“), k=1,...,a;
nof1 1

(b) Nn_l [h_ _E(h_)}ljt—ll]t’—an_lzop(l);
t=1 t t

ﬁ( Z Uh(l)gti) - E
t

i=1

8z2 il . ’
h_?(iglvh(l)gti) }}

Proor. Similar to Lemma 3.3.5 of Chan and Wei (1988), (a) can be
established, and the detail is in Ling and Li (1996). (b) and (¢) hold by
Theorem 3.1, Theorem 3.4 and Lemma 4.1(b)—(c). This completes the proof. O

XU, U N, = 0,(1).

ProoF OF THEOREM 4.1. For (a), consider the kth element of J,X7_, A,,,

& t—1
n Tty n Yo (i)u, (k)
t=1| e i=o
(4.1.17) 1/(¢ t-1e-1 .
o D ok| P AGTAT PR
¢\ i=1j=0
I, 1,
Note that
t—i—1
u,—i—1(k) = Z uj(k -1
j=1
t—1 t—1
(4.1.18) - Yuk-1)— ¥ u(k-1)
j=1 j=t—i

=u, (k) = Yu, (k-1), k=1...a,
j=1
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where the last term is defined as zero if ; = 0. Now,

> [Z ()i M)}

1[ ( v(i))utl(k)l

—nki[h 28(>Zu”<k—1>]
t=1

ti=0

H
= |

—k

™=

t

(4.1.19)
= n k(1) Z (k)

[’

DY h—t(; v8<i))utl<k)

gtl
h Z s()zut _](k )l

ti=0

By Lemma 3.1(G), Lemma 4.2(a) and the Cauchy—Schwarz inequality, the
expectation of the absolute value of the second term above is less than

(4.1.20) n=h 2 (ht)z p'O(n*=1/2) = o(1),

and the expectation of the square of the last term is given by

S ,,:()zut (k- )]

ti=0

-Mi[Zlv(z)lZ\/Eu”(k )]

(4.1.21) =Lzt
o(n™1), ifk=1
— n t—1 2
n2ky 0 ( Y ip'nt” 3/2) =0(n"?), ifk>1
t=1 i=0
=o0(1).
By (4.1.19)-(4.1.2D),
noe
(4.1.22) L=y Y ()n*tY h—tut_l(k) +0,(1).
t=1""¢
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Similar to (4.1.22), by Lemma 3.1, we can show that

n 1 e t—1
4123) L=y ' (Hnt Y —|-L-1 vu(i) e,y |u,_1(k) + 0,(1).
(4.123) I, = (1) t;ht(ht )(igh() ) (k) + 0,(1)

By (4.1.17), (4.1.22)—(4.1.23) and Lemma 4.1(b), we complete the proof of (a).
For (b), consider the (%, j)th element of X}_; J, By, ],

1 ¢t-1

Y 0,00, (ia) s 1 (R) s, 1(J)

i1=0iy=0
t—-1  t-1

Y X ou()vu(in) () v.(Js)

i1,19=1 j1,J2=0

+2n
(4.1.24) -1 i

X &ty —j—1(R)u,_; ;. 1(J)

=1, +1,,
say. By (4.1.18),

Il
S
-
d
™=

I ; L~ va(il)Ug(i2)ut7ilfl(k)ut7i271(j)

Z Z v,(i1) v, (lZ)lut (k) u,—1(J)

on 1 t—
D) h—[_z X z U 1)]
(4.1.25)
X

i Ua(iz)ut—iz—l(j)l

t—1
X Us(il)utl(k)l

i1=0

h
[Z 0.(J1) Z uy o (j - 1)].

J1=0 iy=
Denote the last summation above by T, + T, + T5. Then

t—1

Y v.(iy) ; u, (k= )]

;=0

ElT,<n*7 Y |E
t=1

t-1 2) /%
(4.1.26) XE| ¥ vg(iz)utizl(J')l )

is=0
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n 1Y 04 1/?), if k=1,
< o
n-k-i Z [O(tZ(k 2)+1)O(t2(1 1)+1)]1/2, ifk>1,
t=1
O(n~1/2y, ifh=1,

nh Y Otk = 0(nY), ifR>1( o(1).

t=1

Similarly, we can show that E|T,| = o(1). Thus, we have

1
n~h (1) E 7, 1(R)u, 1(J) — 207"y (1) Z (Z v, (1 ))

J=t

Xu,_ 1(k)ut 1(]) +nh Z (Z ( )) ut—l(k)ut—l(j) +Op(1)‘

t= 1

By Lemma 3.1(1)) and Lemma 4.2(a), it is easy to show that the second and
third terms converge to zero in probability. Thus,

L=n"*"7y" 2(1)E( ) Youa(k)u,1(J)
A n |1
(4.1.27) +n ki 2(1) ; [h_ - ( }ut (R)u,_1(J) +o0,(1)

n=h Ty 2(1)1’7( ) Yo a(R)u,4(J) +0,(1),

where £ = 1,...,a and the last equation holds since the second term in the
first equation converges to zero by Lemma 4.2(b). Further, we have

(4.1.28) I, =2n """y 3(1) Zlvh( )E( 02 ) Yo a(k)u,1(J) +0,(1).

The proof of (4.1.28) can be found in Ling and Li (1996). By (4.1.24), (4.1.27),
(4.1.28) and Lemma 4.1(c), we complete the proof. O

For the case with unit root —1, we consider the model

(4.1.29) (1+B)’v, = ¢(B)s,,

where (B) and &, are defined as in (1.1)-(1.2) and the initial value v, =
(vg,..-,U_p,.7) = 0. Similar to the process {u,}, we define v, =(vt,...,
U, p.1), UV (R)=Q1+B)} *y,, k=0, 1 ,b, and V, = (v,(b),...,v,(1).
Then v,(0) = ¢(Be,, (= D'v,(k + 1) = ( 1)‘v (k), fork =0,1,...,b6 -1,

and there exists a nonsmgular bXxXb matrlx M such that Mv, = V Denote
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J,=N.'M and N, = diag(n®, n®"',..., n). Let

J

- 1~ 1z
(4.1.30) i= —(/ Fb_l(t)de(t),...,fOFO(t)dB2(t))’,
and F = (6;)p x> Where F(t) and 6,;,1,j=0,1,...,b — 1, are defined simi-
larly as (4.1.4) and (4.1. 6) respectlvely For the process {v,}, we have the
following theorem.

THEOREM 4.2.

n
(a) Jn Z A2t _)_7 ‘f’
(b) Z 2y > KF,
where
g 12l 1 -1t-1
Ay = h_t v (0)V g — h_(_ - 1) X X va(Dv.(J) & iveoijo1
ti=0 =1,=0
1 t-1¢-1
By, = — U (1) v (J) ViV —j-1
he 20 /=0
2‘9t2 il . . . .
+ e Z Z v (1) vi(i2) v, (J1) v.(J2)

t iyig=1 ji,ja=0
X & & i Vimii—j =1V —iy—jy—15
K is defined as in Theorem 4.1 and v,(i) and v,(i) are defined in Lemma 3.1.
The proof of Theorem 4.2 is similar to that of Theorem 4.1 and can be found
in Ling and Li (1996).

4.2. Roots equal to e'’ and e'’. In this section, we consider the model
(4.2.1) (1 - 2cos 0B + B%)x, = ¢(B)e,,

where (B) and &, are defined in (1.1)-(1.2) and the initial value x, =
(%gy---» X_9q.1) = 0. Define x,(j) = (1 — 2cos 6B + B*)?Jx, for j=0,1,

do X, =(x,,..0,%,_94,.7) and X, = (x,(D), x,_,D),..., x,(d), x,_(d)).
Then, as in Chan and Wei (1988), there exists a nonsingular 2d X 2d matrix
C such that Cx, = X,. Note that

(1 —2cos 8B + B*)x,(j+ 1) =x,(j) forj=0,1,...,d — 1.
Since x, = 0 implies X, = 0, we have

1 t
i+1)=—— Y sin(t—k+1 '

forj=0,1,...,d — 1.
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Let
t t
(42.83) S,(j) = Y coskbx,(j) and T,(j) = ) sink6x,(J)).
ho1 k=1

Similar to those of Chan and Wei (1988), we have the following identities:
(4.2.4) sin6x,(j) =S,(j — Dsin(¢t + 1)6 — T,(j — 1)cos(¢ + 1)0,
2sin 0S,(Jj)

(425) = ) [sin6S,(j—1) —cos 0T,(j— 1)

+sin(2k + 1)08,(j — 1) — cos(2k + 1)0T,,(j — 1)],
2sin 0T,(j)
(426) = i [cos 6S,(j — 1) + sin 6T, (j — 1)

—cos(2k + 1)6S,(j — 1) — sin(2k + 1)0T,,(J — 1)].
In the following, we first introduce some notations:

§=(§1""’§2d), ( J)2d><2d’
1= g ([ 11(9) dB5) — ['g,i(5) dBu(s)),

£, = 2si1n ; {cos o[folfj_l(s) dB,(s) — folgj_l(s) déz(s)}

—sine[folfj_l(s) dBy(s) + folgj_l(s) dBZ(S)]},

O9k-1,2j-1 = O2k,2j

~ 4sin? 0(/ fi-1(8)f5-1(s) ds+fgk 1(s)g;-1(s) ds)

Ogr-1,2j — O2j,2kr-1

gm0 [ ds e (o) () ds]

~oin 0] [ (9)81(9) s — [ 5 1(9)fi() ds]},

1
fi(t) = S0 (sin Bfotfj_l(s) ds — cos Ofotgj_l(s) ds),

1 t . t
gi(t) = 5| cos ofofj,l(s)ds + sin efogj,l(s)ds ,

fo(?) =Bl(t) and g,(¢) = By(?),
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where (B,(t), B,(t)) and (B,(¢), B,(¢)) are two independent bivariate Brown-
ian motions with mean zero and covariance ¢{) as in Theorem 3.3. Further

denote L, = N, 'C and N, = diag(nl,,.,,..., n%,, ).

THEOREM 4.3.

(a) Ln Z A3t _)Z 57
t=1
(b) Z LnBStEn _)Z KH’
t=
where

g -1 1 —1¢-1 _ .

Ay, = 7, . Y v ()%, ;1 - h_(_ - 1) Y X on()v(f) e X, i1,
i=0 =1j=0

1t-1¢-

B;, = 7 Z U (D)0 ()X, 1X)

i=0j=0

28t2 t—1 t—1
+ e Z Z v, (81) vp(i2) v, (J1)vs(J2)

toiy,ip=1J1,72=0

!
Xe& i & 1, X g 1% iy jy— 1>

K is defined as in Theorem 4.1 and v,(i) and v_(i) are defined as in Lemma
3.1. The following are two auxiliary lemmas.

LEMMA 4.3. Ford >j >0,
(4.2.7) ‘/En_j_l/z(s[nz](j)aT[nt](j)), e IP(R)(fj'(t)’gj(t))/ in D?,
where R = (¢s0 ~sin6) qnd (R) is the matrix polynomial YI_, s, R'.

sinf cos

Proor. We prove the lemma by induction. By the definitions of S,(0) and
T,(0) in (4.2.3),

S,(0) = Z cos kO (B) e,
q t
= Y i ) coskbs,_;
i=0 k=1
q t—1i
= Z ; 2 cos(k +i)0s, + O,(1)
(428) 0 1

q t
cos(k +1i)bs, — Y @ Y. cos(k +i)be, + O0,(1)

i=0 k=t—i

I
=
=
MN

~
Il
o
>
II
—
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Pﬂe £1>1Q

t t
;| cos i ) cos ks, — sinif ) sinkbs, | + O,(1)
l k=1 k=1

¥ (cos 10S] — sinifT) + O,(1),

i=0

where i, =1, Sf =X, _;coskbe, and T, = X! _; sin kOg,. Similarly, we
have

a
(4.2.9) T,(0) = X ¢,(sini6S} + cos i0T*) + O0,(1).
i=0

Writing (4.2.8)—-(4.2.9) in the vector form,

S,(0) z cosi® —sinig)[Si
T,00) | ~ i_zl"”i(sinie cos i6 ) x| T On(D)
q . i S*
_ cos —sin 6 ¢
(4.2.10) -X ‘*”i(sin O ) (Tt* +0,(1)
= ‘//(R)(T:* +Op(1)'
By Theorem 3.3 and (4.2.10), we know that
Sine)(0) B,(t)
4.2.11 V2n-12| ] S w(R)| ! in D2.

That is, (4.2.7) holds for j = 0. Now suppose that (4.2.7) holds for j — 1, that
is,

Sine(J — 1)
T[nt](j - 1)

fi-1(2)

4.212) V2nit1/2
( ) gj—l(t)

in D2,

) -4 ¢(R)

By Proposition 8 in Jeganathan (1991), we have that

t
(4.2.13) sup |n /7Y% Y sin(2k + 1)0S,(j — 1)| = 0,(1),

0<t<n k=1

¢
(4.2.14) sup |n /7Y% Y cos(2k + 1)6S,(J — 1) = 0,(1),

0<t<n k=1

t
(4.2.15) sup |n /7Y% ) sin(2k + 1)0T,(J — 1) | = 0,(1),
0<i<n k=1
t

(4.2.16) sup |n /712 Y cos(2k + 1)0T(J — 1) | = 0,(1).

0<t<n k=1




UNSTABLE TIME SERIES WITH GARCH ERRORS 113

By (4.2.5), (4.2.6) and (4.2.13)—(4.2.16),

V2 pi-tz| R
T[nt](.])
_ V212 Lat (sinG —cos 0) S, (J—1) +o(1)
2sinf = \cosf sinf T,(j—1) r
(4.2.17) _ 1 (sinO —cos 0) i[ﬁ] Vo Gi-D-1/2 Si(J— 1)
2sin@l\cos 6 sinb )|n = T,(j—1)
+op(1)
1 ~ _ fi-a(t)
sin 6 cos 6 J-1 : 2
Tz QSine(cosﬁ sin 6 )dj(R) gj_l(t)) in D%,

where the last step holds by (4.2.12) and the continuous mapping theorem.
Since (R) can be written as the form (R) = (1 "), by straightforward

calculation, the above limiting distribution can be written as the distribution
of

fi-1(2) fi(t)
gj—l(t) gj(t)

Thus (4.2.7) holds for all j = 0,1,...,d — 1. This completes the proof. O

dj(R)[;(sme —cos@” ‘

92sin 6 \ cos 6 sin 0

- oo

LEMMA 4.4. Fork,j=1,...,d,
(a) E(Stz(k _ 1)) — O(tz(k—l)ﬂ)’ E(th(k _ 1)) _ O(tz(k—l)ﬂ)’

(b) E(x?(k)) = O(t**- 1),
on 1 1
nk Zl[h_ - E(h_)}(st—l(k - 1)’Tt—1(k - 1))
(© S, 1(j—1)
<[ B e v B p- G 1)) = 0,(1),

n*t é(stl(k - 1),T, (k- 1))[‘1’71(}3)]’

t—1 ¢t—1
(d) X ‘2::1 Aglvh(il)Uh(iz)Riacltclltwt(ilaiz)Riz
S,_(j-1
X‘”I(R)(Ttlgj - 1;) = oL



114 S. LING AND W. K. LI

where ¢, = (sin t6, —cos t0)' and

. . _ 2
w,(i1,15) = Et8—i i,

h} - E(‘912‘9t—i1‘9t—i2/h?) .

Proor. Similar to Lemma 3.3.5 of Chan and Wei (1988), (a) can be
obtained and the details are omitted, (b) follows from (a) and 4.2.4. Since
[1/h, — EQ/R)ey ¢y, and Ty [EE Y T 0,(i)v,(i0) R ey ¢y, (i, i) R™)
are composed of the types of random variables as in Theorem 3.4, (c) and (d)
are immediately obtained by Lemma 4.3, Theorem 3.4 and Theorem 3.1. This
completes the proof. O

ProoF oF THEOREM 4.3. By (4.2.3),

t—i—1
S, ia(J) = X coskx,())
E—1

-1 -1
(4.2.18) = Y coskOx,(j) — )Y, coskOx,(J)
k=1 k=t—i
=8,_1(J) — X cos(t — k) 0x,_,(J).
k=1
Similarly,
(4219) T, \(J)) =T, () — X sin(¢ ~ B)6x,_,(J).
k=1

By (4.2.4), (4.2.18) and (4.2.19),

[sin(¢ —)6S,_;_1(j — 1)

1
xt*i*l(]) = sin 0

—cos(t —1)0T,_;_(j — 1)]

1
(4.2.20) = g lsin(t =968, 4(j — 1)
—cos(¢t —1)0T,_(j — 1)] + Ry,
1 : i St*l(j - 1)
= 9(s1n t0, —cost0)R T (-1 + Ry,
where R,, = —(1/sin 6)[sin(¢ — i)0X%_, cos(t — k)0x,_,(j) — cos(t —

i)OY:_, sin(¢t — k)0x,_,(j)] and R is defined in Lemma 4.3.
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The (2k — 1Dth element of ©7_; L, A,, is

th

n t—1
o ; l Z v(1)x,_;_1(k)

1 8t2 t—-1¢t-1 ) )
—h—(h— - 1) )M Uh(l)vs(J)xtijl(k)]

i=1j=0
nk n g =1 1 (&2
- ’ _t . L = -1
2sin 0 Ef”{ h, EOUS(‘)R h, ( h,
S S, (k= 1)
(4.2.21) x| Y vi(i)e, ;R || X v.(j)R’ + R,
i=1 j=0 t—l(k - 1)
n—k n e 2 t—1
= — Y ¢ —t——(—t—l)(Zv lis)
2sin 0 /7 “Wh, h,\h, 21 w(i) e
Si-a(k — 1)
Xy (R
( )(Ttl(k - 1)
nk n g 1 [&? t-1
— = - — | — — 1
2Sin‘9t=zlclt hy h ( h, (i§1vh(l)gt - )
- A [Se-1(k = 1)
. v.(Jj R’) +R,,,

where c,, is defined as in Lemma 4.4. Denote the last summation above by
C,, + Cy, + R,,. By Lemma 3.1(i) and Lemma 4.4(a), similar to (4.1.21), it is
easy to show that the term C,, converges to zero in probability. Note that
R,, is a function of R;,. Using Lemma 4.4(a) and (b), similar to (4.1.21), we
can show that R,, converges to zero in probability. By Lemma 4.3, Theorem
3.3 and the continuous mapping theorem, we have

7k

Zend, Z(St (), T () (R)]

& 1 (&2 t-1 )
x{te, ——|-+-1 C1o;
{ht C].t ht ( ht )[i=21 Uh(l)gt*lcl,t*t

-5 &y, in D.

Cln

Hence, the (2% — 1th element of L, Y} | A;, =, &,,_, in D. Similarly, we
can show that the 2kth element of L, Y} | A;, >, &, in D. This completes
the proof of (a).
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For (b), we consider the (2%, 2j)th element of ¥} ; L, B;, L,

t—1 ¢t—1

nt Z Y X (i) (iy) %, i-1(R) %, 1)

= tll 0iy,=0

n g2 -1 t—1
+2n7k7] Y v L v l Ug J vg .]
(4.2.22) El h3 ibgzljbgzo 1(11) v (i2) v, (J1) 0, (J2)
thilgtizxtiljl1(k)xtizj21(j)l
=1, +2I,,

say. By (4.2.20), Lemma 3.1 and Lemma 4.4, similar to the proofs of
(4.1.25)—-(4.1.27), I, can be written as

n k=

1)\~ |

St—l(j - 1))
Tt—l(j - 1)

I =
1 2 sin? 6

XCltcat[‘/fl(R)]

nkion [1

1 :
3 —E( ”(st (k= 1),T, (k- 1))[y"(R)]

S,_1(J—1)
T, (-1

By Lemma 4.4(c), the second term converges to zero in probability. Note that

2 sin? 0.,

Xcltc,lt[lp_l(R)] +o (1)

€1,Cy; = ( sin w)(sm t0,cos td)

_ ( sin? ¢ —sin ¢6 cos ta)

: 2
(4.2.23) sin t6 cos t0 cos” to

_1{1—cos2tf  —sin2t0
2\ sin2t6 1+ cos2t0

_ 17 4 1 —cos2t0 —sin2t6
272x2 2\ sin 2t6 cos 26
I, can be further written as

nk-J

I =
1 4¢in% 0

E(hi) il(sH(k S 1.7, (k- 1))

St—l -1
<[ (R)]'[y (R)] Ttlg'— 13)
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n_k_j 1 " ’
- _ _ _ -1
e 0| 5, | B Sealk = D Tk = D)o™' (B)]
—cos2t0 —sin2t6) - Sia(J = 1)
( sin 2t6 cos2t0)lp (R) T,_«(j—-1)
+0,(1).

By Proposition 8 in Jeganathan (1991) and Lemma 4.3, we know that the
second term converges to zero in probability. Further, by Lemma 4.3 and the
continuous mapping theorem,

(42.24) I, -, @E(}%)(Llfkl(s)fjl(s) ds+'/(‘)1gk71(s)gj—1(s) ds).

Further, we have

2
t—iy

h}

[e]

Z Ul%(il)E

=1

&

IZ
(4.2.25)

o=
v
4sin® 6 |

X

'/;)lfk—l(s)f}fl(s) ds + '/;)lgkfl(s)gj—l(s) ds}.

The proof of (4.2.25) can be found in Ling and Li (1996). By (4.2.22), (4.2.24)
and (4.2.25), the (2k,2/)th element of X}_, L, B, L, converges to Koy, 5,
k,j=1,...,d. Similarly, we can show that the (2k — 1,2j)th element of
Yi_1L,Bs3, L, converges to Koy, 55, k,j=1,...,d. This completes the
proof. O

5. Proof of the main result. Before giving the proof of Theorem 2.1, we
first state two lemmas. First, note that by (2.2) and (2.4)—(2.5), @D, can be
decomposed as

_ ’ 1 1 ' '

QDt - (Du,t’Du,t’Dxl,t""’Dxl,t’Zt) ’
where D, ,, D, , and D, ,, k=1,...,1, correspond to nonstationary compo-
nentwise arguments u,, v, and x, ,, £ =1,...,[, respectively. Here Z, =

(Dys 4, Dy, ;, D5 )" corresponds to stationary componentwise arguments, which
are defined as in Theorem 3.3. Similarly, @I,Q' can also be decomposed as
(I +3) X (I + 3) block matrices. They are denoted as I, ,, I,,,, I,, ,, etc,
which are respectively the information blocks in terms of componentwise
arguments u,, v,, the product of u, and v,, etc. For these subvectors and

block-matrices, we have the following lemmas.

LEMMA 5.1.

(a) ZJnDu,t_)y f’
t=1

(b) Z ﬂan,t _)_7 g’

~
Il
-
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n
(C) ZLk,rLka,t_)J gk’ k=1>;l;
1

(d) Z,~7 N(O,%);

5 -
-

(e) ZJn uu, tJ’ _).?_KFa

t=1
(f) Z ~nIvv tjn g _Kﬁa

t=1
(g) Z knxkxktﬂkn_)y_KHk7 k=1,,l’

t=1
]_ n

(h) ; le,t_)_?_z*:

1

where all notations are defined as in Theorem 2.1.

Proor. To simplify notation, in this proof, ¢,, and %, are still written as

8t and h,. By (A.2)-(A4) in Appendix A, (22) and (24-(25), D, ,=A,,
=Ay, D, =As i k= ,l, where A,, and A,, are defined exactly

as 1n Section 4.1 and A3 L¢ are the same types of random vectors as Aj,
defined in Section 4.2. By Theorems 4.1(a)-4.3(a), respectively, we know that
(a)—(c) hold.

Since Z, and I, , are stationary and ergodic, similar to Ling and Li
(1997a), we can show that (d) and (h) hold.

For (e)—(g), by (A.7) in Appendix A, (2.2) and (2.4), we have

I T —By; + Ry, I,,,= —By, + Ry,

uu vy,

—B;3 .t Ry s E=1,...,1,

Xpxp,t

where B,, and B,, are defined exactly as in Section 4.1, B; , , are the same
types of random matrices as B;, defined in Section 4.2,

2 8t2 t—1t—1
Ry = _h_?(ht )[Z th( D)v.(J)a,; —j—18t- zl

i=1j=0

t—1¢-1 !
Z th( )U (J)ut i—j— 16— ll

i=1j=0

(5.1)

1 (&2 t—1t—1 t-1
+h_ T 1)[ Z Z Z vh(i)ve(.j)Ue(jl)ut—i—j—lu’t—i—jl—ll
t t i=1j=0 ;=0
de, [t ) _li- ) ) '
+F > v(J)a,_j4 Z Z va(D)v,(J) e j1]
t |j=0 -1 j=

and similarly define R,, and R; , ;.
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By Theorems 4.1(b)-4.3(b), it is sufficient for (e)—(g) to hold if

(52) Z JantJr,z = Op(l)? Z JnRtht/z = Op(l)’
t=1 t=1
(5.3) Y Ly Ry Ly,=0,(1), k=1,..,1
t=1

The proofs of (5.2)-(5.3) can be found in Ling and Li (1996). O

LEMMA 5.2.
n
(a) Jn E Iuv t ~r/z _)p O’
t=1
(b) JVL Z quk,tL,k n —)p 0, 1 < k < l,
t=1
(C) jn Z vakvth n p 0, 1<k<l;
t=1
(d) Lj,n Z lexk,tL/k,n ~p 0, 1<j#k<l;
t=1
(e) JnZqu’t/\/; -, O,
t=1
(f) jnZIUZ t/‘/; -, 0;
t=1
(g) Lkn Z kaz,t/‘/; _)p 07 1<k<l
t=1

LEMMA 5.3.  Provided |(1/ Va XQ'G.) ™Y (A — Al < 1,

é&ﬂﬂﬂ@—hﬂﬂ%=%(%ﬁﬂﬂmlu—Ad

The proofs of Lemmas 5.2 and 5.3 can be found in Ling and Li (1996).

ProoF oF THEOREM 2.1. Multiply (A — Ay)’ /1 to (2.3); we have
dLi,(A)

1
(A=A
pt o) T

1 ) T1
‘/;(Q,GI,’L) (’\_ AO)} [ n ZGnQDt}
(5.4) =1

!

+

1 -1
W(Q G,) (A= X)

i@mq&+muﬁ

L=
|

X

b

1 _
(@G (A=)
where R,(N) = X7_, G,Q[LI,(X%) — I,]Q'G,. Denote the last term by II.
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Let v and & be two given and sufficiently small positive numbers. Let
Vi(e)={r 1/ Vn XQ'G) A — Al = ¢}. Note that F, F and H,, k=
1,...,1, are the same as those given by Chan and Wei (1988) and, hence,
these information blocks are negative definite in probability. By Lemmas 5.1
and 5.2, there is a constant ¢; and an integer NV, such that, as n > N,

P{ Y G,QLQ'G, < —cllme} >1- v,
t=1

where m = p + q¢ + r + s + 1. By Lemma 5.3, there exists a constant ¢ such
that, for small enough ¢, as n > N; and A € V (&),

P{ Y [G.QLQ'G, + R, (A)] < —cIme} >1- v,
t=1
Hence, as n > N; and A € V, (&),
(5.5) P{Il < —c&?} >1— .
By Lemma 5.1(a)-(d), we know that Xf_, G,@D, = O,(1). Hence, there

exists an integer N, such that, as n > N,, P{n " '2|L"_, G,@D,| < ce/2} >
1 — v. Thus,as n > N, and A € V (&),

66 Pl - |- L ean

Thus by (5.4), (6.5) and (5.6), as n > max{N;, N,} and A € V, (&), with at
least probability 1 — v,

c
<—82}>1—V.
2

aLi,(A) g
2

Let T =1/ VnXQ'G.) (A — A,)/e and g(A) = G,Q(ILi,(A)/d)). Then, by

(5.7,

1 c
5.7 —(A—=X)’ —ce?+ —£2<0.
(5.7) — (A= o) ce® + 5o

ITI=1 and T'g(VneQ'G,T + A,) <O0.

Since dLi,(A)/dA is continuous and g is also continuous on T, by the fixed
point theorem [Aitchison and Silvey (1958)], there is a solution A, satisfying
g(/n eQ'G.T + \,) = 0, that is, aLi,(A,)/0r = 0 and [(1/ Vo XQ'G,) (A, —
Ao)|| < &. Consequently, the proof of part (a) is complete. For such a sequence
of A,, we have

(Q'G) (A, — A)
__|ve 1.Q'G,
(58) [Z QLQ

+0,

L @a) (A, -2 71nGD
@ (- n)|| [£ean]

By (a), (1/Vn XQ'G.)" (A, — A,) converges to zero in probability. By Lem-
mas 5.1 and 5.2, Theorem 2.3 of Chan and Wei (1988) and Theorem 3.3 in
Section 3, all random variables in X7_; G,QD, and ¥}_, G,QI,Q’'G, converge
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jointly. Again by Lemmas 5.1 and 5.2 and (5.8), we complete the proof of
part (b). O

APPENDIX A
Denote m = (¢, ¢, & =y, — L, &y, ; — Li_1 ¥5,; and & =
1, er,,....,e%,,h,_1,...,h,_ ). The following are some first- and second-

partial derivatives of the equations (2.1):

an ILi,(3) i

oA

al, () al,(A) 1 (&2 ) ah,
U R AV

(A.2) I(A) =i 8_‘2_ a_}”_iﬁ,
am 2h, \ h, im  h, dm
agt -1 t-l . .
(A.3) 9 ¢ {(B)y,-1=— L v.(i)y,_;-1 (if y,=0for t<0),
i=0
oh, r de, s oh,_,
— =2 g + B;
I El oo El 2
(A-4) 11
=2) Y v,()v.(/)¥emi—jr8; (if y,=0fort <0),
i=1j=0
A5 S _yyB =1
( ) (9(//]_ (v[] ( )St—j’ J=1...,49,
dh, r de, s 9h,_;
— =2 o8 A + B; ,
W El oy El W
A6
(A-6) oh, Z oh,
- = + R
s i=1B’ as
921, 1 de, de, g2 oh, dh,
ipad’  h, ab ap'  2h3 ap dd’
(A7) ) 2
&/ a1 dh, 2¢&, de, dh, g J%,
+l— -1 ||+ ——— - —
h, | 2h, i’ h? a¢p i’ h, dpidp’’
3%, 1 de, de, g2 dh, dh,
apay’  h, db ap'  2h% I '
(A.8)

+

8t2 ) d [ 1 &ht} 2¢&, de, dh, & (928t

—_ _ — +_____
h, g | 2h, oy’ h% 9 oy’ h, dpay’’
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921, g, de, oh, 1 (sf 1) a%h,

_|_
dp 98’ h2 dp 38" 2h,\ h, dp 98’
(A.9)
1 2&2\ oh, oh,
+_ J— —_—
2h? .| 9 98"’
321, 1 de, de, g2 dh, oh,
apay R, dp ' 2k Gy g
(A.10) \ \
&/ J 1 0oh, 2¢&, de, dh, g Jd
+|— —-1|— — _——— = — ,
h, ap| 2k, oy’ h, d o'  h, oy’
3%, g2 oh, oh, e a[ 1 oh,
(A.11) = s+ | — 1| = — .
9898 2h3 95 98 h, 95| 2h, 98
APPENDIX B
Proor or LEMMA 3.3. Let
m-k Jj-1
3t2kmk—7’fzk+2‘}’nAtkl§tkp

J=1 L=
where y, ¢ and A, are defined in Lemma 3.2. Then &, , , is G{'»-
measurable. Thus,
E|‘9t2fk (‘9t k|GHm)|

(B.1) 2 2 2 t+m]|?
<2Elel ) — &l p ol + 2E|E[(8t—k - 6‘t—k,m—k)|Gt—m]| .

Note that, since {n,} are ii.d. random variables, {A,} are i.i.d. random
matrices and, further, we have

E Z l—IAt k—1i ® Z 1_[At k— z)]
j=m-— E+1i= j=m-— E+1i=
m—k—-1 m—k—1
=E ]J) A, ® ]J) At—k—i)
o Jj-1 0 j-1
X E Y TII A_,_.|® Y T1 Atki)
j=m—k+1i=m—k j=m—k+1i=m—k
& o0 Jj-1 j—1
(B2) =[E(A,®4,)]" { Yy E|l IT A,_,._.|e| II Atkt)l
j=m-—-k+1 i=m—k i=m—k
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D> I 4 )
r=1j=m-k+1 i=m—k
Jj—1+r
® 1_[ Atkl)l
i=m—k
J—1+r
,_]-_-[_kAt k—i| ® l_IkAt - z)l)}

=[E<At®At)]’”"{ Y [E(A, @A) "

Jj=m—-k+1

FY Y [E(AeA)

r=1j=m—-k+1
x{Ie [E(A)] + [E(A)] ® I}}
=0(p" "),
where 0 < p < 1, the last equation holds by p(E(A,)) < 1, which is equiva-

lent to As_sumption 3 [Ling (1995)] and Assumption 5. Since {(4,, ¢,)} are i.i.d

random variables, by (B.2), we have

2 2
Ele ), — Ct—k,m—k

% Jj-1
=E by V'HAt—k—ift—k—i
j=m—-k+1 i=0

Z l_IAt k— zgt k ])

=(y' ®vy')vec E
j=m—k+11i=

X( Z ]._.[Atklfth)w

j=m—-k+11

(B.3)

> l_[Atk,

j=m-k+11=

£ fia |

j=m—-k+11

=(y' ®vy")E

® vec| E(&,&))]

= 0(p"™ "),
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2 2
E[(gtfk - 8t7k,mfk)|Gttjn”11]
o -1

E Z V,H)At—k—igt—k—AGttfrrZ

j=m-—-k+1 =

m—Fk o Jj—1
(B4) = y, H At—k—i ’ I(r+s)><(r+s) + Z E( . H At—k—i)
i=0 j=m—k+2 i=m—-k+1
XE(& ;)
m—k
=y lj{) A poic,

where ¢ = (I, o (rio) & Ziomps ol ECADY " DEE < oo, since p(E(A,))
< 1. Similar to (B.3), we can show that
2

m—Fk
Y’ _IJ) A, poie| = O( pm_k)'

By (B.1), (B.3)—-(B.5), we know that (a) holds.

Using (a), we can show that (b) holds, and the detail is in Ling and Li
(1996). By (b), it is easy to verify that (¢) and (d) hold. (e) comes directly from
(d). The proof of (f) is similar to that of (b) and hence is omitted. This
completes the proof. O

(B.5) E
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