
Limiting Extrapolation in

Linear Approximate Value Iteration

Andrea Zanette
Institute for Computational and Mathematical Engineering,

Stanford University, CA
zanette@stanford.edu

Alessandro Lazaric
Facebook AI Research
lazaric@fb.com

Mykel J. Kochenderfer
Department of Aeronautics and Astronautics,

Stanford University, CA
mykel@stanford.edu

Emma Brunskill
Department of Computer Science,

Stanford University, CA
ebrun@cs.stanford.edu

Abstract

We study linear approximate value iteration (LAVI) with a generative model. While
linear models may accurately represent the optimal value function using a few
parameters, several empirical and theoretical studies show the combination of least-
squares projection with the Bellman operator may be expansive, thus leading LAVI
to amplify errors over iterations and eventually diverge. We introduce an algorithm
that approximates value functions by combining Q-values estimated at a set of
anchor states. Our algorithm tries to balance the generalization and compactness
of linear methods with the small amplification of errors typical of interpolation
methods. We prove that if the features at any state can be represented as a convex
combination of features at the anchor points, then errors are propagated linearly
over iterations (instead of exponentially) and our method achieves a polynomial
sample complexity bound in the horizon and the number of anchor points. These
findings are confirmed in preliminary simulations in a number of simple problems
where a traditional least-square LAVI method diverges.

1 Introduction

Impressive empirical successes [Mni+13; Sil+16; Sil+17] in using deep neural networks in reinforce-
ment learning (RL) often use sample inefficient algorithms. Despite recent advances in the theoretical
analysis of value-based batch RL with function approximation [MS08; ASM08; FSM10; YXW19;
CJ19], designing provably sample-efficient approximate RL algorithms with function approximation
remains an open challenge.

In this paper, we study value iteration with linear approximation (LAVI for short). Linear function
approximators represent action-value functions as the inner product between a weight vector w

and a d-dimensional feature map � evaluated at each state-action pair, i.e., bQ(s, a) = w>�(s, a).
Linear models are common and powerful because they allow to compactly represent functions with
a small number of parameters, and therefore have promise for requiring a small sample size to
learn such functions. Unfortunately, it is well known that the Bellman operator combined with the
projection onto a linear space in, e.g., `2-norm, may result in an expansive operator. As a result, even
when the features are expressive enough so that the optimal state-action value function Q? can be
accurately represented (i.e., Q?(s, a) ⇡ (w?)>�(s, a)), combining linear function approximation
with value iteration may lead to divergence [Bai95; TV96]. Munos [Mun05] derived bounds on the
error propagation for general approximate value iteration (AVI) and later Munos and Szepesvári

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

[MS08] proved finite-sample guarantees for fitted value iteration with a generative model, while
sharper results can be found in [FSM10]. A key issue in AVI is that errors at one iteration may be
amplified through the application of the Bellman operator and projection. In the analysis of Munos
and Szepesvári [MS08], this effect is illustrated by the inherent Bellman error, which measures how
well the image through the Bellman operator of any function in the approximation space can be
approximated within the space itself. Whenever the inherent Bellman error is unbounded, AVI may
diverge.

In contrast to the amplification of errors of linear value function approximation, averagers [Gor95],
such as barycentric interpolators [MM99], nearest-neighbors, and kernels [OS02], can reduce how
errors are propagated through iterations. Averagers represent the value function at a state-action
pair as an interpolation of its values at a finite set of anchor points. By interpolating instead of
extrapolating, the function approximator is guaranteed to be a non-expansion in `1-norm, and
therefore the Bellman backup remains a contraction even after the projection onto the approximation
space. Unfortunately, the number of anchor points needed to accurately represent the value function,
and thus the number of parameters to learn, may scale exponentially with the input state dimension.

In this paper, we explore a new function approximator that tries to balance the compactness and
generalization of linear methods, leading to sample efficiency at each iteration, while constraining the
resulting expansion, as in averagers, thus providing a small amplification factor over iterations. Our
algorithm estimates the Q-values at a set of anchor points and predict the function at any other point
by taking a combination of those values, while using a linear representation. We show that whenever
the features generate a convex set, it is possible to avoid any error amplification and achieve a sample
complexity that is polynomial in the number of anchor points and in the horizon. A related convexity
assumption has been very recently used by Yang and Wang [YW19] to obtain the first algorithm with
near-optimal sample complexity. Nonetheless, their result holds when the transition model p admits a
non-negative low-rank factorization in �, which also corresponds to a zero inherent Bellman error. In
our analysis, we consider the far more general setting of when the optimal state-action value function
can be accurately approximately with a linear set of features. Note that this can be true even if the
transition model does not admit a low-rank decomposition, as we illustrate in our simulation results.
Furthermore, our result holds even when the inherent Bellman error is infinite. Unlike [YW19], we
also report a thorough discussion on how to select anchor points and provide a heuristic procedure to
automatically create them.

In our simulations we show that small levels of amplification can be achieved, and that our algorithm
can effectively mitigate the divergence observed in some simple MDPs for least-squares AVI. This
happens even when using identical feature representations, highlighting the benefit of bounding
extrapolation through constructing feature representations as near convex combinations (versus `2 or
other common loss functions). Furthermore, we empirically show that small amplification factors
can be obtained with relatively small sets of anchor points. We believe this work provides a first step
towards designing sample efficient algorithms that effectively balance per-iteration generalization and
sample complexity and the amplification of errors through iterations for general linear action-value
function solvers.

2 Preliminaries

We consider a fixed-horizon MDP M = hS,A, p, r,H, ⇢i defined by a continuous state space S, a
discrete action space A, a horizon H , an initial state distribution ⇢, a transition model p(s, a) and a
reward model r(s, a). We also denote by R(s, a) the random reward, with expected value r(s, a).
A deterministic policy ⇡t(s) is a mapping from a state and timestep to an action. The Q-value of a
policy ⇡ in state-action-timestep (s, a, t) is the expected return after taking action a in s at timestep t
and following policy ⇡ afterwards, and V ⇡

t (s) = Q⇡
t (s,⇡t(s)). An optimal policy ⇡? maximizes the

value function at any state and timestep, i.e., ⇡?
t = argmax⇡ V

⇡
t . We use V ?

t = V ⇡?

t and Q?
t = Q⇡?

t

to denote the functions corresponding to an optimal policy ⇡?.

We consider the so-called generative model setting, where p and r are unknown but a simulator can be
queried at any state-action pair (s, a) to obtain samples s0 ⇠ p(s, a) and R(s, a). As the generation
of each sample may be expensive, the overall objective is to compute a near-optimal policy with as
few samples as possible. Approximate dynamic programming algorithms can be used to replace p
and r with a finite number of simulator samples, and can be used for high dimensional or continuous
spaces. Approximate value iteration (AVI) (related closely to fitted value iteration), takes as input a
regression algorithm F , and it proceeds backward from horizon H to 1. At each timestep t, given the

2

approximation bQ?
t+1, it queries the simulator n times and obtains a set of tuples {(si, ai, ri, s

0
i)}

n
i=1,

used to construct a regression dataset Dt = {(si, ai), yi)}
n
i=1 with yi = ri +maxa bQ?

t+1(s
0
i, a). AVI

then computes bQ?
t = F(Dt), returns the approximated optimal policy b⇡?

t (s) = argmaxa bQ?
t (s, a),

and proceed to timestep t� 1.

A popular instance of AVI is to use linear regression to approximate Q-functions. We refer to this
general scheme as linear AVI (LAVI). Let �t : St ⇥ At ! R

d be a feature mapping for timestep
t. We define Φt = {� 2 R

d : 9s 2 S, a 2 At,s,�t(s, a) = �} as the subset of Rd obtained by

evaluating �t at any state-action pair (s, a). Any approximate action-value function bQt is represented

as a linear combination of weights bwt 2 R
d and features �t as bQt(s, a) = bw>

t �t(s, a), where bwt

is usually computed by minimizing the `2-loss on the dataset Dt. Linear function approximation
requires only O(d/✏2) samples to have an ✏ estimation error, independent from the size of S and
A. Nonetheless, at each timestep t the combination of the `2-loss minimization (i.e., F) with the
application of the Bellman operator to the function computed at timestep t+ 1 may correspond to an
expansive operation. In this case, errors at each iteration may be amplified and eventually lead LAVI
to diverge.

3 Linear Approximate Value Iteration with Extrapolation Reduction

We introduce IER (Interpolation for Extrapolation Reduction), a novel approximation algorithm
that interpolates Q-values at a set of anchor points. We study its prediction error and we analyze the
sample complexity of the LAVI scheme obtained by executing IER backward from H to 1.

At each timestep t, IER receives as input an estimate bQ?
t+1 of the action-value function at timestep

t+ 1, the feature map �t, and a set Kt ✓ S ⇥A of Kt anchor state-action pairs. IER first estimates
Q?

t (si, ai) at any anchor point (si, ai) 2 Kt by repeatedly sampling from the simulator and using the

approximation bQ?
t+1 to compute the backup values. We define the anchor values as

bQ?
t,i=

1

nsupp

nsuppX

j=1

⇣
R

(j)
t +max

a2A

bQ?
t+1(s

(j)
t+1, a))

⌘
, (1)

where R
(j)
t and s

(j)
t+1 are the samples generated from the generative model at (si, ai) and nsupp is the

budget at each anchor point. Given these estimations, the approximation bQ?
t (s, a) returned by IER at

any state-action pair (s, a) is obtained by a linear combination of the bQ?
t,i values as

bQ?
t (s, a) =

KtX

i=1

✓
�t(s,a)
t,i

bQ?
t,i, (2)

where the interpolation vector ✓
�t(s,a)
t 2 R

K is the solution to the optimization problem

min
✓�t(s,a)

k✓�t(s,a)k1 subject to �t(s, a) =

KtX

i=1

✓
�t(s,a)
i �t(si, ai). (3)

As long as the image of the anchor points {�(si, ai)}
Kt

i=1 spans R
d, (3) admits a solution. This

problem is a linear optimization program with linear constraints and it can be solved efficiently

using standard techniques [BV04; NW06]. Notice that the weights ✓
�t(s,a)
t change with s, a and no

positiveness constraint is enforced.

3.1 Prediction Error and Sample Complexity of IER

In most problems, the optimal action-value function Q?
t cannot be exactly represented by a low

dimensional inner product w>
t �t(·, ·). The best approximator that can be expressed by features � and

its associated approximation error are defined as

w?
t = argmin

w2Rd

��w>�t(·)�Q?
t (·)

��
1
; ✏

app
t = min

w2Rd

��w>�t(·)�Q?
t (·)

��
1
, (4)

where k · k1 denotes the infinity norm, i.e., the maximum over state-action pairs in S ⇥A. Stan-
dard linear function approximation methods rather minimize the `2-norm (i.e., least-squares) or a
regularized version of it.

3

We are interested in studying whether IER approaches the performance of w?. Before analyzing IER,

we focus on its “exact” counterpart. We introduce eQ?
t (s, a) as the interpolator obtained by combining

the exact Q?-function evaluated on the anchor points as

eQ?
t (s, a)

def
=

KtX

i=1

✓
�(s,a)
i Q?

t (si, ai) (5)

where the vector ✓�(s,a) is the solution of (3). We prove the following.

Lemma 1 (Error Bounds of fQ?
t). Let ✏

app
t be the approximation error of the best linear model (Eq. 4).

If ✏
app
t = 0, i.e., Q?

t (s, a) = (w?
t)

>�t(s, a), then eQ?
t (s, a) = (w?

t)
>�t(s, a). Otherwise the (exact)

interpolator in Eq. 5 has an error

max
(s,a)2S⇥A

��� eQ?
t (s, a)�Q?

t (s, a)
��� (1 + Ct)✏

app
t , (6)

where Ct
def
= max(s,a)2S⇥A k✓�(s,a)t k1 is the amplification factor.

This result shows that the interpolation done in (5) preserves the linearity of the model whenever
the function evaluated at the anchor points is linear itself. Furthermore, the prediction error is a
factor (1 + Ct) bigger than the best approximator. The optimization program (3) plays a crucial role
in obtaining both results. In particular, the constraint ensures that the linear structure is preserved,

while the minimization over ✓
�(s,a)
t aims at controlling the amplification factor Ct. We now study the

sample complexity of IER at timestep t when an approximation of the optimal value function V ?
t+1 at

timestep t+ 1 is available (the proof and definition of �0 is postponed to the supplementary).

Lemma 2. Let ✏
app
t be the error of the best linear model at timestep t and bV ?

t+1 be the approximation

of V ?
t+1 used in estimating the values at the anchor points in Eq. 1. Let kbV ?

t+1 � V ?
t+1k1 ✏biast+1 be

the prediction error of bV ?
t+1. If IER is run with Kt anchor points, then the prediction error of bQ?

t is

k bQ?
t �Q?

t k1
�
(1 + Ct)✏

app
t + Ct✏

est
t

�
| {z }

errors at timestep t

+ Ct✏
bias
t+1| {z }

propagation error

(7)

with probability at least 1� �/H as long as nsupp � ln(2/�0)/(2✏estt)2.

Lem. 2 shows that the prediction error of IER is bounded by three main components: an estimation

error ✏estt due to the noise in estimating the Q-values bQ?
t,i at the anchor points, an approximation

error (1+Ct)✏
app
t due to the linear model defined by the features �t, and a propagation error Ct✏

bias
t+1

due to the prediction error of bV ?
t+1 at timestep t+ 1. The key result from this lemma is to illustrate

how Ct not only impacts the approximation error as in Lem. 1, but it determines how the errors

of bV ?
t+1 propagates from timestep t+ 1 to t. While for a standard least-square method, Ct may be

much larger than one, the approximator (2) with the interpolation vector obtained from (3) aims at
minimizing the extrapolation and lowering Ct as much as possible, while preserving the linearity of
the representation. As discussed in Sect. 4, a suitable choice of the anchor points may significantly
reduce the amplification factor by leveraging the additional degrees of freedom offered by choosing
Kt larger than d. In general, we may expect that the larger Kt, the smaller Ct. Nonetheless, the
overall sample complexity of IER increases as Ktnsupp. This shows the need of trading off the
number of anchor points (hence possibly higher variance) in exchange for better control on how
errors gets amplified. In this sense, Lem. 2 reveals a critical extrapolation-variance trade-off.

3.2 Sample Complexity of LAVIER

We analyze LAVIER (Linear Approximate Value Iteration with Extrapolation Reduction) obtained
by running IER backward from timestep H to 1 and we derive a sample complexity upper bound to
achieve a near-optimal policy. Under the assumption of bounded value function V ?

t (s) 2 [0, 1] and
bounded immediate reward random variables R(s, a) 2 [0, 1], we obtain the following result.1

1This assumption is inspired by [JA18], who suggested this is a more expressive framework, as it allows
some rewards to be substantially larger than others in terms of contributing to the final value function.

4

Theorem 1. Let Ct C and ✏
app
t ✏app for all t = 1, . . . , H . If LAVIER is run with failure

probability � > 0, precision ✏ > 0 and constant C > CH , ntot � KH5C
2
ln(2KH/�)/✏2 samples,

then with probability 1� � LAVIER returns a policy b⇡? such that

V ?
1 (s0)� V b⇡?

1 (s0) ✏|{z}
est. error

+4H2C✏app| {z }
app. error

. (8)

Algorithm 1 LAVIER algorithm.

Input: Failure probability �, accuracy ✏, set of anchor points
{Kt}t=1,...,H , time horizon H , total amplification constant C.

Set �0 = �/(
PH

t=1
Kt), nsupp =

l
H4C

2

✏
2 ln(2(

PH

t=1
Kt)/�)

m

bQ?

H+1(·) = 0 (zero predictor at terminal states)
for t = H downto 1 do

Call IER with param. (nsupp,Kt, bQ?

t+1(·)) and obtain bQ?

t (·)
end for
Return policy b⇡?

t (s) = argmaxa2At,s
bQ?

t (�t(s, a))

This bound decomposes the predic-
tion error in two components: an es-
timation error due to the noise in the
samples and an approximation error
due to the features {�t}t and the tar-
get functions {Q?

t }t. Thm. 1 illus-
trates the impact of the amplification
factor on the overall sample complex-

ity and final error. If C > 1, C grows
exponentially with the horizon. Fur-
thermore, the error ✏app itself is ampli-

fied by C, thus leading to an approx-
imation error scaling exponentially with H . This result is not unexpected, as it confirms previous
negative results showing how the extrapolation typical of linear models may lead the error to diverge
over iterations [Bai95; TV97]. Nonetheless, if the amplification constant is C < (1 + 1

H
), then

C (1 + 1
H
)H e, which gives a polynomial sample complexity bound of order Õ(KH5/✏2) and

a final error where the approximation error is only amplified by H2. While this configuration does
remove the divergence problem, it may still lead to a sample inefficient algorithm. In fact, in order to
achieve C ⇡ 1, we may need to take K very large. This raises the fundamental question of whether
low amplification error and low sample complexity can be obtained at the same time. In the next
section, we first discuss how anchor points with small amplification C can be efficiently constructed,
while in Sect. 5 we empirically show how in some scenarios this can be achieved with a small number
of anchor points K and thus low sample complexity. Finally, we notice that when the features are
chosen to be averagers, the interpolation scheme corresponds to a convex combination of anchor
weights, thus corresponding to C = 1. As a result, Thm. 1 is also a sample complexity result for
averagers [Gor95].

4 Anchor Points and Amplification Factor

While averagers attain C = 1, in general they may not generalize as well as linear models. Further-
more, averagers usually have poor sample complexity, as they may require a number of samples
scaling exponentially with the dimension of the state-action space [see e.g., Thm.3 in OS02]. The aim
of the minimization program (3) is to trade off the generalization capacity of linear models and their
extrapolation, without compromising the overall sample complexity. The process of constructing a
“good” set of anchor points can be seen as a form of “experimental design”. While in experimental
optimal design the objective is to find a small number of anchor points such that least-squares achieves
small prediction error, here the objective is to construct a set Kt such that the amplification factor Ct

is small. We have the following result.

Proposition 1. Let Φ(Kt) = {� 2 R
d, 8(si, ai) 2 Kt,�(si, ai) = �} be the image of the anchor

points through �. If the convex hull of Φ(Kt) contains all the features in Φt, i.e.,

Φt ✓ conv
�
Φ(Kt)

�
= {� 2 R

d : 9✓� 2 R
Kt ,� =

KtX

i=1

✓
�
i �i, with ✓

�
i � 0,

KtX

i=1

✓
�
i = 1},

then the amplification factor is Ct 1.

Under the condition of Prop. 1, prediction errors propagates linearly through timesteps. In general, it
is not possible to provide a bound on Kt, as the number of anchor points needed to construct a convex
hull containing Φt may largely vary depending on the structure of Φt.

2 If the convex hull is not known

2For instance, if Φt is a polyhedron in R
d, Kt may be as large as exponential in d.

5

or it contains too many features, an approximate convex hull could be found by standard techniques,
for example [GO17; Blu+17] or [SV16; HA13] and can still provably yield a linear propagation of the
error if it is of sufficient quality (i.e., Ct < (1 + 1/H)). Importantly, finding an approximate convex
hull can be performed offline without accessing the generative model as it only requires access to the
mapping function �t(·, ·). Finally, as the algorithm solves the optimization program (3) during the

learning phase (to compute the backup bV ?
t+1(s

0) with the sampled next state s0) the actual value of

k✓�(s,a)k1 is computed and therefore the algorithm can identify whether significant extrapolation is
taking place and whether the set of anchor points Kt may need to be increased or adjusted. While we
defer adaptive construction of approximate convex hulls as future work, we propose a simple greedy
heuristic to construct a good set of anchor points before the learning process.

Let C be a target amplification error, at timestep t we would like to find the smallest set Kt such

that C(Kt) = maxs,a k✓�t(s,a)
t k1 is below C, where the interpolation vector ✓

�t(s,a)
t is computed as

in (3). As this problem may be NP-hard, we propose a sequential greedy scheme where anchor points
are added to Kt until the condition is met. Starting with Kt including a single arbitrary state-action

(s1, a1), if C(Kt) > C, we compute (s, a) = argmaxs,a k✓�t(s,a)
t k1 and add it to Kt. Notice that

this process does not necessarily return a positive interpolation vector ✓
�t(s,a)
i and thus bQ?

t may not
be a convex combination of the anchor values. This extra degree of freedom w.r.t. convex hulls may
allow us to obtain a small amplification factor with fewer anchor points. Although we do not have
theoretical guarantees about the number of anchor points K = |Kt| added through this heuristic
process, we report experiments where we show that it is possible to effectively obtain small C, and
thus small prediction error, with few anchor points.

5 Numerical Simulations

We investigate the potential benefit of LAVIER over least-squares AVI (LS-AVI). Although LAVIER
shares similarity with averagers, a fair comparison is difficult and out of the scope of this preliminary
empirical study. In fact, in designing an averager, the choice of structure and parameters (e.g., the
position of the points in a nearest neighbor procedure) heavily affects the corresponding function
class, i.e., the type of functions that can be accurately represented. As a result, any difference in
performance would mostly depend on the different function class used by the averager and the linear
model (i.e., �) used by LAVIER.

The following MDPs are toy examples designed to investigate the differences between the LAVIER
and LS-AVI and confirm our theoretical findings. The empirical results are obtained by averaging
100 simulations and they are reported with 95%-confidence intervals.

w 2w END

1 ✏

1� ✏

Figure 1: Left: Two state MDP. Right: Prediction error for least-squares AVI and LAVIER.

Two-state MDP of Tsitsiklis and Van Roy The first experiment focuses on how the interpolation
scheme of IER may avoid divergence. The smallest-known problem where least-squares approxi-
mation diverges is reported in [TV96; SB18]. This problem consists of a two-state Markov reward
process (i.e., an MDP with only one action per state) plus a terminal state (Fig. 1). As there is only
one possible policy, the approximation problem reduces to estimating its value function. The feature
� maps a state to a fixed real number, i.e., �(·, ·) 2 R, and there is only one weight to learn. For
simplicity, we set the parameter ✏ = 0.01, and add a zero-mean noise to all rewards generated as
1/2� Ber(1/2), where Ber(·) is a Bernoulli random variable. We study the approximation error at
the left-most state when each algorithm is run for a varying number of iterations H and with 1000

6

samples at each timestep. The samples are generated uniformly from the left and middle node, which
serve as anchor points. Fig. 1 shows that the error of the least-square-based method rapidly diverges
through iterations, while LAVIER is more robust and its error remains stable.

s1 s2 s3 · · · sN�1 sN

r ⇠ N (1
10N , 1) r ⇠ N (1, 1)

1� 1
N

1
N

1

1� 1
N

1
N

1

1� 1
N

1

1� 1
N

1
N

1

1� 1
N

1

1
N

1
N

Figure 2: Left: Chain MDP. Right: Suboptimality of the policy at s1, V ?(s1)� V e⇡?

(s1).

Chain MDP. We now evaluate the quality of the anchor points returned by the heuristic method
illustrated in Sect. 4. In the chain MDPs of Fig. 2 the agent starts in the leftmost state and the optimal
policy is to always go right and catch the noisy reward in the rightmost state before the episode
terminate. However, a small reward is present in the leftmost state and settling for this reward yields a
suboptimal policy. We define the feature �(s, a) = [Q?(s, a), v(s, a)], where v(s, a) ⇠ Unif(0, 1) is
a random number fixed for each simulation and (s, a) pair. We run LS-AVI by sampling state-actions
in the reachable space uniformly at random, while for LAVIER we compute an anchor set with
C 1.2. Both algorithms use the same number of samples and LAVIER splits the budget of samples
uniformly over the anchor points to compute the anchor values. The length of the chain is N = 50,
which is also the time horizon. We report the quality of the learned policy at s1 and notice that
LAVIER is consistently better than LS-AVI (see App. A for further experiments).

s0

s
? s1 s2 sN

10$ 0$

�>w?
1 . . .

Figure 3: Left: MDP with a sequence of linear bandits with actions in 2 dimensions. Center: Example

of the anchor points generated by the heuristic greedy algorithm. Right: Accuracy V ?(st)� V ⇡̃?

(st)
as a function of state.

Successive Linear Bandits. We consider an MDP defined as a sequence of linear bandit problems
(Fig. 3) which is designed so that significant extrapolation occurs at each iteration. In this MDP,
there are N states s1, . . . , sN augmented with the starting state s0 and a terminal state s?. From the
starting state s0 there are two actions (left and right). The optimal policy is to take left and receive a
reward of 10. The states s1, . . . , sN are linear bandit problems, where each action gives a Gaussian
noisy return of mean 0 and variance 1 and the state transitions deterministically from s to s + 1.
This represents a sequence of linear bandits with no signal, i.e., the output is not correlated with the
features and the learner only experiences noise, hence V ?

1 (s1) = 0. The feature map �t(s, a) = �a

returns the features describing the action itself, and the solution Q?
t (s, a) = 0 is exactly representable

by a zero weight vector. The solution is unique. The learner should estimate the value of V ?
t (s1)

accurately to infer the right action in state s0. At each state s1, . . . , sN , we represent actions in R
2

and we generate 100 actions by uniformly discretizing the circumference. As the canonical vectors
e1 and e2 are the most informative actions to estimate the reward associated to any other action

7

(see [SLM14] for the best policy identification in linear bandits), we collect our samples from these
two actions. The anchor points for LAVIER are chosen by our adaptive procedure for different value
of the extrapolation coefficient C 2 {1.05, 1.2, 1.5}. The extrapolation becomes more and more
controlled as C approaches one. Fig.3 shows the performance at different states. For small values of
C, LAVIER significantly outperforms LS-AVI. Furthermore, looking more closely into the rightmost
states (i.e., the states that are updated at early iterations) reveals the extrapolation-variance tradeoff
(see Fig. 5 in App. B for a zoomed version of the plot): a value of C = 1.5 ensures a more accurate
estimate (due to less variance) in the first timesteps, but the curve steeply diverges. By contrast,
C = 1.05 has initially a poorer estimate, but such estimate remains far more stable with the horizon.
We also report the support points selected by the algorithm. Although C is small, only a few points
are necessary. In fact, we do not need to cover the circle with an approximate convex hull and our
procedures can, for example, ‘flip’ the sign of the learned value without causing extrapolation (i.e.,
keeping C small).

In Fig. 3 we also report the performance of LS-AVI. In this case, the divergence of the estimate
of LS-AVI is extreme, and it does not allow to accurately estimate V ?(s1) = 0, yielding a policy
that cannot identify the correct initial action. Furthermore, in this example we additionally evaluate
Least Square Temporal Difference (LSTD) for off-policy prediction [SB18]. LSTD is not a policy
optimization algorithm but we can use it to evaluate the value of a policy that chooses for example the

action [1/
p
2, 1/

p
2] in every state of the chain. The training data for LSTD are identical to LS-AVI,

i.e., the canonical vectors e1 and e2. Despite collecting data along the informative direction e1 and
e2, the LSTD solution is of increasingly poor quality as a function of the chain length.

6 Conclusion

Related work. Most of literature in linear function approximation focused on designing feature maps
� that could represent action-value functions well, by optimizing parameterized features (e.g., in deep
networks or in [MMS05]), by an initial representation learning phase to extract features adapted to
the structure of the MDP [MM07; Pet07; Bel+19], or by adding features to reduce the approximation
error [Tos+17]. Unfortunately, accurately fitting value functions does not guarantee small inherent
Bellman error (IBE), and thus LAVI may still be very unstable. In this paper we assume � has small
approximation error but arbitrary IBE and we focus on how to reduce the amplification factor at each
iteration.

Yang and Wang [YW19] recently studied the sample complexity of LAVI under the assumption that
the transition model p admits a non-negative low-rank factorization in the features �. In particular,
they show that in this case, the inherent Bellman error is zero, thus avoiding the amplification of
errors through iterations of LAVI. In this paper, we consider the more general case where only the
optimal action-value function should be accurately approximated in �, which may be true even
when the transition model does not admit a low-rank decomposition. In fact, Thm. 1 holds even
when the inherent Bellman error is infinite and shows that whenever the amplification factor C is
small, LAVIER can still achieve polynomial sample complexity. Yang and Wang [YW19] used the
convexity condition in Prop. 1 to derive sample complexity guarantees in their setting, while in our
case, the same condition is used to control the amplification of errors. Furthermore, we notice that in
LAVIER we only need to control the `1-norm of the interpolation weights, which does not necessarily
require any convexity assumption (see also experiments). [YW19] introduced OPPQ-Learning and

proved a near-optimal sample complexity bound of order eO(K/✏2(1� �)3), where K is the number
of anchor points which are assumed to be provided.3 While this shows that both methods scale
linearly with the number of anchor points, OPPQ-Learning enjoys a much better dependency on the
horizon. It remains as an open question whether our analysis for LAVIER can be improved to match
their bound or the difference the unavoidable price to pay for the more general setting we consider.4

Averagers pursue the same objective but take an extreme approach, where no extrapolation is allowed
and Q-functions are approximated by interpolation of values at a fixed set of anchor points [Gor95;
Gor96; PP13; KKL03; MM99]. Unfortunately, such approach may suffer from a poor sample
complexity [PP13; KKL03], as the number of anchor points may scale exponentially with the

3Yang and Wang [YW19] point out that convex assumption requires the number of features d to scale with
the number of anchor points K.

4We conjecture that the dependency on H could be greatly improving using similar arguments as in [YW19],
such as monotonicity, tighter concentration inequalities, and variance reduction.

8

problem dimensionality. In LAVIER, we introduce a more explicit extrapolation-variance tradeoff,
where the anchor points should be designed to avoid extrapolation only when/where it happens.

Future work. There are several directions for future investigation. AVI is a core building block
for many exploration-exploitation algorithms [OVW16; Kum+18] and better LAVI may help in
building sample-efficient online learning algorithms with function approximation. Another venue
of investigation is off-policy prediction with batch data. The mismatch between behavioural and
target policies poses similar challenges as in the error propagation of AVI. In order to control the
extrapolation-variance tradeoff may need penalize a non-uniform use of the samples (to reduce the
variance) while the 1-norm minimization objective may reduce the amount of extrapolation to the
desired value.

Acknowledgment

This was was partially supported by a Total Innovation Fellowship. The authors are grateful to the
reviewers for the high quality reviews and helpful suggestions.

References

[ASM08] András Antos, Csaba Szepesvári, and Rémi Munos. “Learning near-optimal policies with Bellman-
residual minimization based fitted policy iteration and a single sample path”. In: Machine Learning
71.1 (2008), pp. 89–129.

[Bai95] Leemon Baird. “Residual algorithms: Reinforcement learning with function approximation”. In:
International Conference on Machine Learning (ICML). 1995.

[Bel+19] Marc G. Bellemare et al. “A Geometric Perspective on Optimal Representations for Reinforcement
Learning”. In: CoRR abs/1901.11530 (2019). arXiv: 1901.11530. URL: http://arxiv.org/
abs/1901.11530.

[Blu+17] Avrim Blum et al. Approximate Convex Hull of Data Streams. 2017. arXiv: 1712 . 04564
[cs.CG].

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[CJ19] Jinglin Chen and Nan Jiang. “Information-Theoretic Considerations in Batch Reinforcement
Learning”. In: arXiv e-prints, arXiv:1905.00360 (May 2019), arXiv:1905.00360. arXiv: 1905.
00360 [cs.LG].

[FSM10] Amir-massoud Farahmand, Csaba Szepesvári, and Rémi Munos. “Error propagation for approxi-
mate policy and value iteration”. In: Advances in Neural Information Processing Systems (NIPS).
2010.

[GO17] Robert Graham and Adam M. Oberman. Approximate Convex Hulls: sketching the convex hull
using curvature. 2017. arXiv: 1703.01350 [cs.CG].

[Gor95] Geoffrey J Gordon. “Stable function approximation in dynamic programming”. In: International
Conference on Machine Learning (ICML). 1995, pp. 261–268.

[Gor96] Geoffrey J Gordon. “Stable fitted reinforcement learning”. In: Advances in Neural Information
Processing Systems (NIPS). 1996.

[HA13] M Zahid Hossain and M Ashraful Amin. “On constructing approximate convex hull”. In: American
Journal of Computational Mathematics 3.1 (2013), p. 11.

[Hoe63] Wassily Hoeffding. “Probability inequalities for sums of bounded random variables”. In: Journal
of the American Statistical Association (1963).

[JA18] Nan Jiang and Alekh Agarwal. “Open Problem: The Dependence of Sample Complexity Lower
Bounds on Planning Horizon”. In: Conference on Learning Theory (COLT). 2018, pp. 3395–3398.

[KKL03] Sham M. Kakade, Michael Kearns, and John Langford. “Exploration in Metric State Spaces”. In:
International Conference on Machine Learning (ICML). 2003.

[Kum+18] Raksha Kumaraswamy et al. “Context-dependent upper-confidence bounds for directed explo-
ration”. In: Advances in Neural Information Processing Systems (NIPS). 2018.

[MM07] Sridhar Mahadevan and Mauro Maggioni. “Proto-value Functions: A Laplacian Framework for
Learning Representation and Control in Markov Decision Processes”. In: J. Mach. Learn. Res. 8
(Dec. 2007), pp. 2169–2231. ISSN: 1532-4435. URL: http://dl.acm.org/citation.cfm?
id=1314498.1314570.

[MM99] Remi Munos and Andrew W Moore. “Barycentric interpolators for continuous space and time
reinforcement learning”. In: Advances in Neural Information Processing Systems (NIPS). 1999.

9

[MMS05] Ishai Menache, Shie Mannor, and Nahum Shimkin. “Basis Function Adaptation in Temporal
Difference Reinforcement Learning”. In: Annals of Operations Research 134.1 (Feb. 2005),
pp. 215–238. ISSN: 1572-9338. DOI: 10.1007/s10479-005-5732-z. URL: https://doi.
org/10.1007/s10479-005-5732-z.

[Mni+13] Volodymyr Mnih et al. “Playing Atari with Deep Reinforcement Learning”. In: Advances in
Neural Information Processing Systems (NIPS). 2013.

[MS08] Rémi Munos and Csaba Szepesvári. “Finite-time bounds for fitted value iteration”. In: Journal of
Machine Learning Research 9.May (2008), pp. 815–857.

[Mun05] Rémi Munos. “Error bounds for approximate value iteration”. In: AAAI Conference on Artificial
Intelligence (AAAI). 2005.

[NW06] Jorge Nocedal and Stephen Wright. Numerical Optimization. Springer, 2006.

[OS02] Dirk Ormoneit and Śaunak Sen. “Kernel-based reinforcement learning”. In: Machine Learning
49.2-3 (2002), pp. 161–178.

[OVW16] Ian Osband, Benjamin Van Roy, and Zheng Wen. “Generalization and Exploration via Randomized
Value Functions”. In: International Conference on Machine Learning (ICML). 2016.

[Pet07] Marek Petrik. “An Analysis of Laplacian Methods for Value Function Approximation in MDPs”.
In: Proceedings of the 20th International Joint Conference on Artifical Intelligence. IJCAI’07.
Hyderabad, India: Morgan Kaufmann Publishers Inc., 2007, pp. 2574–2579. URL: http://dl.
acm.org/citation.cfm?id=1625275.1625690.

[PP13] Jason Pazis and Ronald Parr. “PAC Optimal Exploration in Continuous Space Markov Decision
Processes”. In: AAAI Conference on Artificial Intelligence (AAAI). Bellevue, Washington, 2013,
pp. 774–781. URL: http://dl.acm.org/citation.cfm?id=2891460.2891568.

[SB18] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT Press,
2018.

[Sil+16] David Silver et al. “Mastering the game of Go with deep neural networks and tree search”. In:
Nature 529.7587 (2016), p. 484.

[Sil+17] David Silver et al. “Mastering the game of Go without human knowledge”. In: Nature 550.7676
(2017), p. 354.

[SLM14] Marta Soare, Alessandro Lazaric, and Rémi Munos. “Best-arm identification in linear bandits”.
In: Advances in Neural Information Processing Systems (NIPS). 2014, pp. 828–836.

[SV16] Hossein Sartipizadeh and Tyrone L. Vincent. Computing the Approximate Convex Hull in High
Dimensions. 2016. arXiv: 1603.04422 [cs.CG].

[Tos+17] Samuele Tosatto et al. “Boosted Fitted Q-Iteration”. In: Proceedings of the 34th International
Conference on Machine Learning. Ed. by Doina Precup and Yee Whye Teh. Vol. 70. Proceedings
of Machine Learning Research. International Convention Centre, Sydney, Australia: PMLR, June
2017, pp. 3434–3443. URL: http://proceedings.mlr.press/v70/tosatto17a.html.

[TV96] John N Tsitsiklis and Benjamin Van Roy. “Feature-based methods for large scale dynamic
programming”. In: Machine Learning 22.1-3 (1996), pp. 59–94.

[TV97] John N Tsitsiklis and Benjamin Van Roy. “Analysis of temporal-diffference learning with function
approximation”. In: Advances in Neural Information Processing Systems (NIPS). 1997.

[YW19] Lin F Yang and Mengdi Wang. “Sample-Optimal Parametric Q-Learning with Linear Transition
Models”. In: arXiv preprint arXiv:1902.04779 (2019).

[YXW19] Zhuoran Yang, Yuchen Xie, and Zhaoran Wang. “A Theoretical Analysis of Deep Q-Learning”.
In: CoRR abs/1901.00137 (2019). arXiv: 1901.00137. URL: http://arxiv.org/abs/1901.
00137.

10

