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Abstract

Based on a nonequilibrium–statistical relativistic diffusion model that is consistent with quantum chromodynamics (QCD), we in-

vestigate baryon stopping in relativistic heavy-ion collisions at SPS, RHIC, and LHC energies. The net-proton rapidity distributions

of the individual fragments exhibit a scaling behaviour similar to limiting fragmentation (LF) that is related to geometric scaling in

the colour-glass condensate (CGC) and depends upon the gluon saturation scale. Forward-angle net-proton data at energies reached

at the LHC are required to verify the prediction.
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1. Introduction

Limiting fragmentation (LF) was first shown to occur in

charged-hadron production at large pseudorapidities in the frag-

mentation region of pp̄ data in an energy range of
√

s = 53–

900 GeV [1]. Here, the charged-particle pseudorapidity yield

dNch/dη does not depend on energy over a large range of

pseudorapidities η̃ = η − ybeam, with the beam rapidity ybeam.

The phenomenon had been predicted earlier theoretically for

hadron–hadron and electron–proton collisions [2].

In the context of relativistic heavy-ion physics, it was first

shown at the Relativistic Heavy Ion Collider (RHIC) in 2002

that the approach to a universal limiting curve is a characteristic

feature of the particle production process, and this was even-

tually confirmed in the energy range
√

sNN = 19.6–200 GeV

[3–5]. Here, the LF hypothesis also holds in a given centrality

class within the experimental error bars.

Since forward-rapidity data are missing at the Large Hadron

Collider (LHC), it is presently unclear whether LF in hadron

production is fulfilled at energies reached at the LHC, with

the emphasis on 2.76 TeV and – in the forthcoming Run 3 –

5.36 TeV Pb–Pb collisions. Various model calculations have

come to differing conclusions [6–9], with our phenomenologi-

cal three-source relativistic diffusion model (RDM) predicting

that LF in charged-hadron production should be approximately

fulfilled at LHC energies as well [9, 10], even though the cross

sections rise with increasing energy.

Apart from the LF behaviour of produced charged hadrons

in relativistic heavy-ion collisions, it is of interest to investi-

gate the scaling properties of the stopping distributions of net

baryons. These are much more sensitive to the initial-state

physics, because stopping occurs on a very short timescale of

t < 0.1 fm/c that is of the order of the local thermalization time

for gluons [11]. The stopping process can be measured through

the net-proton distributions (protons minus produced antipro-

tons), with some uncertainty in the conversion to net baryons

[12], which are the conserved quantity.

In this Letter, we account for the time-dependence of the

stopping process and the accompanying rapidity loss of the

net-baryon distributions in a relativistic diffusion model that

is consistent with QCD, and predict the LF properties of the

net-baryon distributions from SPS to LHC energies. In Sec-

tion 2, an outline of the time-dependent model [13] is given.

In Section 3, we focus on the time-asymptotic equilibrium so-

lutions that coincide with the QCD-inspired stopping model of

Refs. [14, 15], and investigate their scaling behaviour, compar-

ing to data from SPS and RHIC. The linear dependence of the

position of the stopping peak on the beam rapidity is discussed.

The conclusions are drawn in Section 4.

2. A nonequilibrium–statistical stopping model

Baryon stopping is modelled as a diffusive process in rapid-

ity space. Our approach is inspired by the phenomenological

relativistic diffusion model [16] and uses similar key assump-

tions, but is based on stochastic particle trajectories constructed

from relativistic Markov processes in phase space [13]. The

latter reduce to non-Markovian stochastic processes in posi-

tion space, consistent with the requirements of special relativity

[17]. Time evolution is governed by a fluctuating background

that represents the partons of the fragments. The nucleon distri-

bution function that is shaped by the interactions of the valence

quarks with the fluctuating background – in particular, soft glu-

ons in the other nucleus – can then be expressed as a super-

position of time-dependent single-particle probability density

functions. To determine the coefficient functions of the associ-

ated drift–diffusion processes, fluctuation–dissipation relations

are derived from the particles’ expected time-asymptotic be-

haviour, which allows us to construct transport coefficients for

stopping that are physically motivated from QCD.

Starting at time t = ti from a given initial distribution that is

provided by the Fermi-gas model, we take any particle trajec-

tory to evolve in time towards an expected asymptotic equilib-

rium state. Here, the term ‘equilibrium’ refers to a stationary

state that is not thermal; it is reminiscent of a nonthermal fixed
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point. Since strong interactions in relativistic heavy-ion colli-

sions effectively cease at a finite interaction time, the time evo-

lution is terminated at t = tf > ti before the equilibrium state

is reached, so that the system remains in a final nonequilibrium

state.

In this work, we concentrate on the rapidity variable for net

baryons, or net protons, to investigate the scaling behaviour

in stopping. Because net-baryon distributions cannot be ac-

cessed experimentally, we either consider participant protons,

and compare to measured net-proton number density distribu-

tions in rapidity space, or net-baryon distributions whenever

these have been constructed by the experimental collaborations

from their net-proton data.

We incorporate the spatial separation of the two nuclear frag-

ments through a two-source ansatz [16]. The time evolution

of particles originating from the forward- and backward-going

fragments is then represented through separate probability den-

sities and fluctuation–dissipation relations. Since the system

is symmetric with respect to its centre of momentum, the net-

proton number density in rapidity space in the system’s centre-

of-momentum frame can be expressed in terms of the superpo-

sition of the forward- and backward-going distributions as

dNp−p̄

dy
(t; y) ≃

Np−p̄

2

[

ψ(t;+y) + ψ(t;−y)
]

. (1)

Here, Np−p̄ is the net-proton number, andψ(t; y) dy the probabil-

ity to find a participant proton from the forward-going fragment

at time t with rapidity in [y, y + dy].

As initial state in the time evolution, ψi(y) ≡ ψ(ti; y), we ap-

proximate each nucleus by a zero-temperature gas with Fermi

momentum pF, corresponding to the Fermi rapidity yF =

asinh(pF/m). Following the steps outlined in Ref. [13], this

leads to an initial distribution in rapidity space (outer peaked

blue curves in Fig. 1 for central
√

sNN = 200 GeV Au–Au,

centre-of-momentum frame)

ψi(y∗ + ybeam) =

1

2
sinh(yF)−3Θ(yF − |y∗|) cosh(y∗)















(

cosh(yF)

cosh(y∗)

)3

− 1















, (2)

where y∗ denotes the proton rapidity in the rest frame of the

forward-going nucleus.

Based on a description of the baryon trajectories as relativis-

tic Markov processes in phase space, we obtain in Ref. [13]

a Kramers equation for the marginal probability density func-

tion f (t; x3, y) of longitudinal position x3 and rapidity y. Since

x3 is unobservable, we integrate it out, resulting in a Fokker–

Planck equation (FPE) for the marginal probability density

function ψ(t; y)

∂tψ(t; y) = −∂y

[

µ(y)ψ(t; y)
]

+ D ∂2
yψ(t; y) , (3)

ψ(t; y) =

∫

dx3 f (t; x3, y) . (4)

The drift function µ(y) and the diffusion coefficient D –

which we assume to be constant with respect to rapidity at a
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Figure 1: Nonequilibrium net-proton rapidity distribution functions for cen-

tral Au–Au collisions with centre-of-mass energy
√

sNN = 200 GeV at 0–5%

centrality as calculated in the relativistic diffusion model [13]. Solid lines mark

different interaction times (tf − ti) × D = 0; 0.01; 0.03; 0.1; 0.3; 1; 3; 10. The

latter are compared with experimental data (black circles) recorded earlier at

RHIC by the BRAHMS Collaboration [20].

given energy in the present work – are derived from the ex-

pected mesoscopic behaviour as proposed in Refs. [18, 19],

rather than from microscopic considerations, which are more

difficult to assess. For this, a fluctuation–dissipation relation

between drift and diffusion coefficient is established by dif-

ferentiating the stationary equilibrium solution ψeq of the FPE

(∂tψeq = 0) with respect to rapidity,

µ(y)

D
= ∂y ln

[

ψeq(y)
]

, (5)

such that the drift becomes a function of D and y. Here, we

identify the equilibrium ψeq with a state created by inelastic

scattering off a color-glass condensate (CGC). More details on

the underlying formalism are given in Section 3.

For comparisons with experimental data, the solutions of the

FPE are evaluated at the final time tf , when partonic interac-

tions between the receding nuclei cease due to their increasing

distance. This time is, however, not an observable quantity in

heavy-ion collisions, and in the actual solutions it appears al-

ways in products with other quantities, such as the diffusion

coefficients (see below). The latter can be determined in χ2

minimizations to the data.

With the drift function µ(y), the diffusion constant D, and

the initial distribution Eq. (2), the FPE can be written in dimen-

sionless form by substituting the time t with the dimensionless

evolution parameter δ = (t− ti)/(tf − ti). It is solved numerically

for 0 < δ ≤ 1 as detailed in Ref. [13], where we had already

presented results for central Pb–Pb at
√

sNN = 17.3 GeV and
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Au–Au at
√

sNN = 62.4 GeV. Here, we compute correspond-

ing results for central 200 GeV Au–Au, with several interac-

tion times tf − ti shown in Fig. 1 in comparison with the 0–5%

BRAHMS stopping data [20].

When a linear approximation for the drift function is used

together with a constant diffusion coefficient and a simplified

initial state, analytical solutions of the FPE can directly be com-

pared to data [16, 21].

3. Equilibrium solutions and scaling in stopping

If the stochastic process that accounts for stopping continued

past t = tf , it would converge to a stationary equilibrium state.

We take this state to arise from the inelastic scattering of the

protons’ valence quarks with a colour-glass condensate (CGC)

[22–25], a coherent state based on the saturation of the gluon

density below a characteristic momentum scale Qs. The CGC

framework is an effective theory for high density matter of satu-

rated gluons that is based on QCD, which is expected to hold in

the present context. An important property of cross sections de-

rived in the CGC framework is geometric scaling: The energy

dependence is fully determined through Q2/Q2
s ≡ ζ, as used,

e.g., in the models of Ref. [26] for deep-inelastic electron–

proton scattering, or Ref. [14] for heavy-ion collisions, where

the momentum exchange is approximated by the transverse mo-

mentum of the produced hadron, Q2 ≃ (p1)2 + (p2)2. Since

we incorporate this scaling property in the propagation of the

time-dependent distribution functions via µ(y), our approach is

consistent with the CGC framework, and thereby with QCD.

The equilibrium distribution of the forward-going

(‘projectile-like’) participant protons is then given by [27–29]

ψeq(y) =
C

2π

∫ 1

0

dx qv(x) g(x2+λ eτ(y)) . (6)

The longitudinal momentum fraction carried by the protons’ va-

lence quarks is x, and qv denotes the valence-quark distribution

function calculated from the NNLO result [30]. The normaliz-

ing constant C sets the integral of ψeq to unity. We solve the

integral in Eq. (6) numerically with adaptive Gauss–Kronrod

quadrature in the full rapidity space. For sufficiently large ra-

pidities, also analytical approximate solutions exist (see below),

which can be used to check the accuracy of the full numerical

solutions in the tails.

The distribution function g of the condensed soft gluons in

the backward-going fragment can be reduced to a simple func-

tion of the scaling variable ζ =
[

(p1)2 + (p2)2
]

/Q2
s using the

Golec-Biernat–Wüsthoffmodel [26],

g(ζ) = 4πζe−ζ . (7)

The x dependence of Qs is determined by the gluon-saturation-

scale exponent λ

Q2
s = Q2

0 A1/3 x−λ , (8)

where the constant Q2
0

sets the dimension, and the mass num-

ber A the scaling with the nuclear size. For a given centre-

of-mass energy per nucleon pair
√

sNN, these three parameters
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Figure 2: Stationary distribution function (a) and fluctuation–dissipation rela-

tion (b) for ψeq of the forward-moving nucleus in a central collision of Pb nuclei

with centre-of-mass energy
√

sNN = 5.36 TeV for three different values of the

gluon-saturation-scale exponent: λ = 0.1 (dotted), 0.2 (solid), and 0.3 (dashed).

The right dotted vertical line indicates the beam rapidity ybeam = 8.651. Stop-

ping increases with rising λ.

completely determine the rapidity dependence of ψeq through

the dimensionless function

τ(y) = ln













sNN

Q2
0













− 1

3
ln(A) − 2 (1 + λ) y

= 2ybeam + ln















m2
p

Q2
0















−
1

3
ln(A) − 2 (1 + λ) y .

(9)

This formalism had already been used in Refs. [14, 15],

where we had fitted corresponding distribution functions di-

rectly to stopping data at SPS and RHIC energies, without con-

sidering a time evolution of the system. Typical values for

the saturation-scale exponent in stopping are λ = 0.2–0.3, and

we use λ = 0.2 together with Q2
0
= 0.09 GeV2 in this work.

These values compare well with fit results from deep-inelastic

electron–proton data from the DESY Hadron–Electron Ring

Accelerator HERA, where λ ≃ 0.288 and Q2
0
≃ 0.097 GeV2

[26].

The amount of stopping depends on the gluon saturation mo-

mentum Qs, and hence, on the saturation-scale exponent λ. In

Fig. 2, we show the stationary forward-going distribution ψeq

from Eq. (6) in central 5.36 TeV Pb–Pb collisions together with

the corresponding fluctuation–dissipation relation Eq. (5) for

Q2
0
= 0.09 GeV2 and three different values of the saturation-

scale exponentλ = 0.1 (dotted), 0.2 (solid), and 0.3 (dashed), or

Qs ≃ 1.03, 1.46, and 2.06 GeV at x = 10−3. Stopping is seen to

increase with an increasing gluon saturation scale, and thereby

affects the longitudinal scaling behaviour. For λ > 0, when the

gluon saturation scale depends on the gluon’s Bjorken-x, lim-
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Figure 3: (a) Experimental normalized net-baryon rapidity distributions as

functions of y − ybeam for central Pb–Pb at
√

sNN = 6.3 GeV [31] (triangles)

and 17.3 GeV [12] (squares), central Au–Au at
√

sNN = 62.4 GeV [32] (cir-

cles) and 200 GeV [20] (diamonds). Contributions from the backward-going

sources have been subtracted, see text. LF scaling is almost fulfilled at SPS

and RHIC energies within the error bars, but LHC data are not available. Solid

curves are our results for the forward-going fragments. (b) Calculated equilib-

rium net-baryon distribution functions at
√

sNN = 6.3, 17.3, 62.4, 200, 2760,

and 5362 GeV (right to left). Contributions from the forward-going sources

are solid, from the backward-going sources dashed. The forward contributions

from the backward-going sources are negligible at both LHC-energies. In the

model, LF scaling in the variable y − ybeam is violated in stopping.

iting fragmentation is broken in our model, and the size of the

LF violation increases with λ.

As detailed in the full account of our nonequilibrium–

statistical model in Ref. [13], ψeq(y) in Eq. (6) decays exponen-

tially at large positive and negative values of the rapidity. In

the backward-going region, in particular, the exponential damp-

ing with τ(y) causes only small x values to contribute. Here,

the valence-quark distribution is x qv(x) ∼ axb, and Eq. (6) be-

comes

ψeq(y) ∼
y→−∞

exp(α−y + const.) (10)

with α− = 2b (1 + λ)/(2 + λ). The corresponding decay rate at

large positive rapidities is α+ = −2 (1 + λ). As a consequence,

the drift function µ(y) defined via Eq. (5) does not depend on

rapidity for y→ ±∞ and constant diffusion D.

Whereas the time dependence of the stopping process as dis-

cussed in the previous section is itself of physical interest, it is

eventually determined by the equilibrium distributions whether

limiting fragmentation (LF) or a comparable scaling behaviour

is present in stopping, or not. In Ref. [13], we found the final

nonequilibrium distributions to be close to equilibrium at high

RHIC and LHC energies, and it is therefore sufficient to study

the scaling behaviour of the equilibrium state, where analytic

calculations are possible [14].
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Figure 4: (a) Experimental normalized net-baryon rapidity distributions as

functions of y+ [ln(A)/6− ybeam]/(1+λ) for central Pb–Pb at
√

sNN = 6.3 GeV

[31] (triangles) and 17.3 GeV [12] (squares), central Au–Au at
√

sNN =

62.4 GeV [32] (circles) and 200 GeV [20] (diamonds). Contributions from the

backward-going sources have been subtracted. The solid cuve is the corre-

sponding model result. LF scaling is fulfilled within the error bars. (b) Cal-

culated equilibrium net-baryon distributions for central Pb–Pb and Au–Au at√
sNN = 6.3, 17.3, 62.4, 200, 2760, and 5362 GeV (top to bottom) as functions

of the variable y + [ln(A)/6 − ybeam]/(1 + λ). Contributions from the forward-

going sources are solid, from the backward-going sources dashed. The model

results – here, for λ = 0.2 and Q2
0
= 0.09 GeV2 – exhibit exact scaling as

function of this variable.

To properly account for the scaling behaviour, we deduct

from the data the respective backward-going contributions that

we calculate in our model in order to isolate the net-baryon ra-

pidity distribution for the forward-going source. Contributions

from the backward-going source are small at LHC energies, but

significant at RHIC energies, and even more so at SPS energies

where the separation of the stopping peaks in rapidity space can

become so small that they appear as a single peak.

Considering only the forward-going distributions at six

centre-of-mass energies as functions of the LF variable y−ybeam,

we compare in Fig. 3 with the corresponding SPS and RHIC

data. The deducted contributions from the backward-going

sources are shown as dashed curves in the lower frame. Apart

from the outlying point1 at 200 GeV, limiting fragmentation

seems to be almost fulfilled at SPS and RHIC energies within

the experimental error bars, but at 6.3 GeV and 17.3 GeV, the

small violation of LF scaling that our model predicts actually

agrees with the data.

The solid curves are the normalized stopping distributions

for the forward-going (‘projectile’) source. These are repeated

in the lower frame together with our results at LHC energies.

LF scaling as function of the variable y − ybeam is clearly not

fulfilled in the model calculations, although the differences are

1this point was omitted in Fig.1
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Figure 5: Calculated positions ypeak of the stopping peaks as function of

the beam rapidity ybeam (solid line) compared to corresponding peak posi-

tions as inferred [33] from data for central Pb–Pb at
√

sNN = 6.3 GeV [31]

(triangle), 17.3 GeV [12, 31] (filled and open squares), and central Au–Au at√
sNN = 62.4 GeV [32] (circle). The stopping-peak positions for 200 GeV

Au–Au (diamond), 2.76 TeV Pb–Pb (inverted triangle), and 5.36 TeV Pb–Pb

(square) are as calculated in the model. The gluon-saturation-scale parameters

are λ = 0.2 and Q2
0
= 0.09 GeV2.

small at SPS and RHIC energies as shown in the upper frame.

Indeed, LF has recently assumed to be valid in baryon stopping

by Braun-Munzinger et al. [34]. At present, however, only at

SPS energies significant data beyond the stopping peak exist.

It is interesting that the model is compatible with a slightly

different scaling relation, which is based on geometric scaling:

Since the function τ(y) from Eq. (9) encodes the entire y depen-

dence of the equilibrium distribution ψeq(y), the latter becomes

independent of
√

sNN, A, λ, and Q0 when plotted against τ(y).

Assuming that the saturation-scale parameters λ and Q0 agree

for all collisions under consideration, this is also true for

ln

(

m2
p

Q2
0

)

− τ(y)

2 (1 + λ)
= y +

1
6

ln(A) − ybeam

1 + λ
, (11)

as shown in Fig. 4. A corresponding invariance has already

been observed in our prior analysis [15].

The above is especially fulfilled at the position of the stop-

ping peak, y = ypeak, which establishes a linear relation between

ypeak and the beam rapidity ybeam,

ypeak = c0 + c1

[

ybeam − 1
6

ln(A)
]

, (12)

with the energy- and nucleus-independent coefficients

c0 =
ln

(

mp

Q0

)

− 1
2
τ(ypeak)

1 + λ
, c1 =

1

1 + λ
. (13)

Here, τ(ypeak) implicitly depends on λ and can be obtained by

maximizing Eq. (6). This relation is seen to be rather well ful-

filled at SPS and RHIC in Fig. 5 for λ = 0.2, Q2
0
= 0.09 GeV2

(c0 ≃ −0.39, c1 = 0.83), although the 17.3 GeV results are

somewhat uncertain because two successive measurements at

SPS [12, 31] differ slightly, and significant data beyond the

peaks are not available at RHIC energies. It would therefore

be valuable to obtain LHC data for the stopping peak positions,

as indicated in the figure, upper two symbols.

4. Conclusions

We have introduced a nonequilibrium–statistical diffusion

model for stopping in relativistic heavy-ion collisions that ac-

counts for the time-dependence of the stopping process, and

is consistent with QCD. While experimental data suggest that

limiting fragmentation (LF) in the variable y − ybeam is fulfilled

within the error bars for net-baryon rapidity distributions from

SPS to RHIC energies, our model yields in accordance with

Ref. [14] a slightly different scaling behaviour in central colli-

sions up to LHC energies that arises from geometric scaling in

the CGC. For noncentral collisions, similar results can be ex-

pected.

This is in contrast to charged-hadron production, where not

only data from SPS to RHIC energies agree with LF, but also

our phenomenological model calculations [9, 10] predict that

LF is approximately fulfilled in the variable η− ybeam from SPS

to LHC energies. The reason for this qualitative difference in

the scaling properties of stopping and particle production could

be the very different kinematics in the time evolution of incom-

ing baryons, as compared to produced charged hadrons. In gen-

eral, the stopping distributions that are generated on a very short

timescale are much more sensitive to the initial hard interac-

tions than the (pseudo-)rapidity distributions of light charged

hadrons that are mostly produced at the phase boundary, and

hence, at a much later stage. Moreover, in particle produc-

tion, the (unmeasurable) fragmentation peaks are much closer

to midrapidity than in baryon stopping, where they reflect the

kinematics of the incoming baryons more directly.

The degree of LF violation in baryon stopping as predicted

by our model depends on the centre-of-mass energy, the gluon

saturation scale, and to a lesser extent on the mass of the col-

liding nuclei. To verify this conclusion, forward-rapidity net-

proton data for Pb–Pb collisions at LHC energies would be

needed. Since their measurement using central Pb–Pb colli-

sions in the LHCb detector will likely not be possible, this

would require a new forward spectrometer in ALICE that is

capable of measuring identified protons at very small angles,

corresponding to rapidities y ≃ 6–8.
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