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Abstract

Limiting spectral distribution (LSD) of scaled eigenvalues of circulant, symmetric circulant and a

class of k-circulant matrices are known when the input sequence is independent and identically

distributed with finite moments of suitable order. We derive the LSD of these matrices when the

input sequence is a stationary, two sided moving average process of infinite order. The limits are

suitable mixtures of normal, symmetric square root of the chisquare, and other mixture distribu-

tions, with the spectral density of the process involved in the mixtures.
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1 Introduction

Suppose λ1,λ2, ...,λk are all the eigenvalues of a square matrix A of order k. Then the empirical

spectral distribution (ESD) of A is defined as

FA(x , y) = k−1
k∑

i=1

I{R(λi)≤ x , I (λi)≤ y},

where for any z ∈ C, R(z), I (z) denote the real and imaginary part of z respectively. Let {An}∞n=1

be a sequence of square matrices (with growing dimension) with the corresponding ESD {FAn
}∞n=1.

The limiting spectral distribution (or measure) (LSD) of the sequence is defined as the weak limit of

the sequence {FAn
}∞n=1, if it exists.

Suppose elements of {An} are defined on some probability space (Ω,F ,P), that is {An} are random.

Then {FAn
(·)} are random and are functions of ω ∈ Ω but we suppress this dependence. Let F be

a nonrandom distribution function. We say the ESD of An converges to F in L2 if at all continuity

points (x , y) of F , ∫

Ω

�
FAn
(x , y)− F(x , y)

�2
dP(ω)→ 0 as n→∞. (1.1)

If the eigenvalues are real then it is understood that {FAn
} and F are functions of one variable. It

may be noted that (1.1) holds if E[FAn
(t)]→ F(t) and V[FAn

(t)]→ 0 at all continuity points t of

F . We often write Fn for FAn
when the matrix under consideration is clear from the context.

For detailed information on existence and identification of LSD in different contexts, see Bai [1999]

and also Bose and Sen [2008]. There are many universality results available in this context. How-

ever, most of the existing work on LSD assumes the input sequence {x i} to be independent. With

the current methods used to establish LSD, such as the moment method or the Stietljes transform

method, it does not appear to be easy to extend the known results on LSD to general dependent

situations for all types of matrices. There are very few works dealing with dependent inputs. For

instance, Bose and Sen [2008] establishes LSD for some specific type of dependent entries for a few

matrices and Bai and Zhou [2008] establishes LSD of large sample covariance matrices with AR(1)

entries.

We focus on the LSD of circulant type matrices— the circulant, the symmetric circulant, the reverse

circulant and the so called k-circulant for suitable values of k. We assume that {x i} is a stationary

linear process. Stationary linear process is an important class of dependent sequence. For instance

the widely used stationary time series models such as AR, MA, ARMA are all linear processes. Under

very modest conditions on the process, we are able to establish LSD for these matrices. These LSD

are functions of the spectral density of the process and hence are universal. Consider the following

condition.

Assumption A {x i} are independent, E(x i) = 0, V (x i) = 1 and supi E|x i |3 <∞.

We first describe the different matrices that we deal with. These may be divided into four classes:

(i) The circulant matrix is given by
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Cn =
1p
n




x0 x1 x2 . . . xn−2 xn−1

xn−1 x0 x1 . . . xn−3 xn−2

xn−2 xn−1 x0 . . . xn−4 xn−3
...

x1 x2 x3 . . . xn−1 x0




n×n

.

Sen [2006] shows that if Assumption A is satisfied then the ESD of Cn converges in L2 to the

two-dimensional normal distribution given by N(0, D) where D is a 2 × 2 diagonal matrix with

diagonal entries 1/2. Meckes [2009] shows similar type of result for independent complex entries.

In particular, if E(x j) = 0, E|x j |2 = 1 and

lim
n→∞

1

n

n−1∑

j=0

E(|x j |21|x j |>ε
p

n) = 0

for every ε > 0, then the ESD converges in L2 to the standard complex normal distribution.

(ii) The symmetric circulant matrix is defined as

SCn =
1
p

n




x0 x1 x2 . . . x2 x1

x1 x0 x1 . . . x3 x2

x2 x1 x0 . . . x2 x3
...

x1 x2 x3 . . . x1 x0




n×n

.

Bose and Mitra [2002] show that if {x i} satisfies Assumption A, then the ESD of SCn converges

weakly in L2 to the standard normal distribution.

The palindromic Toeplitz matrix is the palindromic version of the usual symmetric Toeplitz matrix. It

is defined as (see Massey et.al. [2007]),

PTn =
1p
n




x0 x1 x2 . . . x2 x1 x0

x1 x0 x1 . . . x3 x2 x1

x2 x1 x0 . . . x4 x3 x2
...

x1 x2 x3 . . . x1 x0 x1

x0 x1 x2 . . . x2 x1 x0




n×n

.

Its behavior is closely related to the symmetric circulant matrix. It may be noted that the n×n princi-

pal minor of PTn+1 is SCn. Massey et.al. [2007] establish the Gaussian limit for FPTn
. Bose and Sen

[2008] show that if the input sequence {x i} is independent with mean zero and variance 1 and are

either (i) uniformly bounded or (ii) identically distributed, then the LSD of PTn is standard Gaus-

sian. They also observe that if the LSD of any one of PTn and SCn exist, then the other also exists

and they are equal.

(iii) The reverse circulant matrix is given by

2465



RCn =
1p
n




x0 x1 x2 . . . xn−2 xn−1

x1 x2 x3 . . . xn−1 x0

x2 x3 x4 . . . x0 x1
...

xn−1 x0 x1 . . . xn−3 xn−2




n×n

.

Bose and Mitra [2002] show that if {x i} satisfies Assumption A then the ESD of RCn converges

weakly in L2 to F , which is the symmetric square root of the chisquare with two degrees of freedom,

having density

f (x) = |x |exp(−x2), −∞ < x <∞. (1.2)

(iv) For positive integers k and n, the n× n k-circulant matrix is defined as

Ak,n =




x0 x1 x2 . . . xn−2 xn−1

xn−k xn−k+1 xn−k+2 . . . xn−k−2 xn−k−1

xn−2k xn−2k+1 xn−2k+2 . . . xn−2k−2 xn−2k−1
...




n×n

.

We emphasize that all subscripts appearing above are calculated modulo n. For 1 ≤ j < n− 1, its

( j + 1)-th row is obtained by giving its j-th row a right circular shift by k positions (equivalently,

k mod n positions). We have dropped the n−1/2 factor from the definition of the matrix so that

subsequent formulae for eigenvalues remain simple. Establishing the LSD for general k-circulant

matrices appears to be a difficult problem. Bose, Mitra and Sen [2008] show that if {x i} are i.i.d

N(0,1), k = no(1) (≥ 2) and gcd(k, n) = 1 then the LSD of Fn−1/2Ak,n
is degenerate at zero, in

probability. They also derive the following LSD. Suppose {x i} are i.i.d. satisfying Assumption C

given below. Let {Ei} be i.i.d. Ex p(1), U1 be uniformly distributed over (2g)-th roots of unity, U2

be uniformly distributed over the unit circle where {Ui}, {Ei} are mutually independent. Then as

n→∞, Fn−1/2Ak,n
converges weakly in probability to

(i) U1(
∏g

i=1 Ei)
1/2g if kg =−1+ sn, g ≥ 1, s = o(n1/3),

(ii) U2(
∏g

i=1 Ei)
1/2g if kg = 1+ sn, g ≥ 2 and

s =

(
o(n) if g is even

o(n
g+1

g−1 ) if g is odd.

We investigate the existence of LSD of the above matrices under the following situation.

Assumption B {xn; n≥ 0} is a two sided moving average process

xn =

∞∑

i=−∞
aiεn−i, where an ∈ R and

∑

n∈Z
|an|<∞.

Assumption C {εi}, i ∈ Z are i.i.d. random variables with mean zero, variance one and E|εi |2+δ <
∞ for some δ > 0.
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We show that the LSD of the above matrices continue to exist in this dependent situation under

appropriate conditions on the spectral density of the process. The LSD turn out to be appropriate

mixtures of, the normal distribution, the “symmetric” square root of the chisquare distribution, and,

some other related distributions. Quite expectedly, the spectral density of the process is involved in

these mixtures. Our results also reduce to the results quoted above for the i.i.d. situation.

In Section 2 we describe the nature of the eigenvalues of the above matrices, describe the spectral

density and set up notation. In Section 3 we state the main results and report some simulation

which demonstrate our theoretical results. The main proofs are given in Section 4 and the proofs of

some auxiliary Lemma are given in the Appendix.

Some of the results reported in this article have been reported in the (not to be published) technical

reports Bose and Saha [2008a], Bose and Saha [2008b], Bose and Saha [2009].

2 Preliminaries

2.1 Spectral density and related facts

Under Assumptions B and C, γh = Cov
�

x t+h, x t

�
is finite and

∑
j∈Z |γ j | <∞. The spectral density

function f of {xn} exists, is continuous, and is given by

f (ω) =
1

2π

∑

k∈Z
γk exp(ikω) =

1

2π

�
γ0+ 2

∑

k≥1

γk cos(kω)
�

for ω ∈ [0,2π].

Let

In(ωk) =
1

n

��
n−1∑

t=0

x t e
−i tωk

��2, k = 0,1, . . . , n− 1, (2.1)

denote the periodogram of {x i} where ωk = 2πk/n are the Fourier frequencies. Let

C0 = {t ∈ [0,1] : f (2πt) = 0} and C ′0 = {t ∈ [0,1/2] : f (2πt) = 0}. (2.2)

Define

ψ(eiω) =

∞∑

j=−∞
a je

i jω, ψ1(e
iω) =R[ψ(eiω)], ψ2(e

iω) = I [ψ(eiω)], (2.3)

where ai ’s are the moving average coefficients in the definition of xn. It is easy to see that

|ψ(eiω)|2 = [ψ1(e
iω)]2+ [ψ2(e

iω)]2 = 2π f (ω).

Let

B(ω) =

�
ψ1(e

iω) −ψ2(e
iω)

ψ2(e
iω) ψ1(e

iω)

�
and for g ≥ 2,

B(ω1,ω2, ..,ωg) =




ψ1(e
iω1) −ψ2(e

iω1) 0 0 · · · 0

ψ2(e
iω1) ψ1(e

iω1) 0 0 · · · 0

0 0 ψ1(e
iω2) −ψ2(e

iω2) · · · 0

0 0 ψ2(e
iω2) ψ1(e

iω2) · · · 0

0 0 0 0
... 0

0 0 0 · · · ψ1(e
iωg ) −ψ2(e

iωg )

0 0 0 · · · ψ2(e
iωg ) ψ1(e

iωg )




.
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The above functions will play a crucial role in the statements and proofs of the main results later.

2.2 Description of eigenvalues

We now describe the eigenvalues of the four classes of matrices. Let [x] be the largest integer less

than or equal to x .

(i) Circulant matrix. Its eigenvalues {λi} are (see for example Brockwell and Davis [2002]),

λk =
1
p

n

n−1∑

l=0

x l e
iωk l = bk + ick ∀ k = 1,2, · · · , n,

where

ωk =
2πk

n
, bk =

1
p

n

n−1∑

l=0

x l cos(ωk l), ck =
1
p

n

n−1∑

l=0

x l sin(ωk l). (2.4)

(ii) Symmetric circulant matrix. The eigenvalues {λi} of SCn are given by:

(a) for n odd:

λ0 =
1
p

n

�
x0+ 2

[n/2]∑

j=1

x j

�

λk =
1
p

n

�
x0+ 2

[n/2]∑

j=1

x j cos
2πk j

n

�
, 1≤ k ≤ [n/2]

(b) for n even:

λ0 =
1
p

n

�
x0+ 2

n

2
−1∑

j=1

x j + xn/2

�

λk =
1
p

n

�
x0+ 2

n

2
−1∑

j=1

x j cos
2πk j

n
+ (−1)k xn/2

�
, 1≤ k ≤

n

2

with λn−k = λk for 1≤ k ≤ [n/2] in both the cases.

(iii) Palindromic Toeplitz matrix. As far as we know, there is no formula solution for the eigenval-

ues of the palindromic Toeplitz matrix. As pointed out already, since the n× n principal minor of

PTn+1 is SCn, by interlacing inequality PTn and SCn have identical LSD.

(iv) Reverse circulant matrix. The eigenvalues are given in Bose and Mitra [2002]:





λ0 = n−1/2
∑n−1

t=0 x t

λn/2 = n−1/2
∑n−1

t=0 (−1)t x t , if n is even

λk =−λn−k =
p

In(ωk), 1≤ k ≤ [ n−1

2
].

(v) k-circulant matrix. The structure of its eigenvalues is available in Zhou (1996). A more de-

tailed analysis and related properties of the eigenvalues, useful in the present context, have been
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developed in Section 2 of Bose, Mitra and Sen [2008]. Let

ν = νn := cos(2π/n) + i sin(2π/n) and λk =

n−1∑

l=0

x lν
kl , 0≤ j < n. (2.5)

For any positive integers k, n, let p1 < p2 < . . .< pc be all their common prime factors so that,

n= n′
c∏

q=1

p
βq

q and k = k′
c∏

q=1

p
αq

q .

Here αq, βq ≥ 1 and n′, k′, pq are pairwise relatively prime. For any positive integer s, let Zs =

{0,1,2, . . . , s− 1}. Define the following sets

S(x) = {xkb mod n′ : b ≥ 0}, 0≤ x < n′.

For any set A, let |A| denote its cardinality. Let gx = |S(x)| and

υk,n′ =
��{x ∈ Zn′ : gx < g1}

�� . (2.6)

We observe the following about the sets S(x).

1. S(x) = {xkb mod n′ : 0≤ b < |S(x)|}.

2. For x 6= u, either S(x) = S(u) or S(x)∩S(u) = φ. As a consequence, the distinct sets from the

collection {S(x) : 0≤ x < n′} forms a partition of Zn′ .

We shall call {S(x)} the eigenvalue partition of {0,1,2, . . . , n−1} and we will denote the partitioning

sets and their sizes by

{P0,P1, . . . ,Pl−1}, and ni = |Pi|, 0≤ i < l. (2.7)

Define

y j :=
∏

t∈P j

λt y , j = 0,1, . . . , l − 1 where y = n/n′.

Then the characteristic polynomial of Ak,n (whence its eigenvalues follow) is given by

χ
�

Ak,n

�
= λn−n′

ℓ−1∏

j=0

�
λn j − y j

�
. (2.8)

3 Main results

For any Borel set B, Leb(B) will denote its Lebesgue measure in the appropriate dimension.
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3.1 Circulant matrix

Define for (x , y) ∈ R2 and ω ∈ [0,2π],

HC(ω, x , y) =

¨
P
�
B(ω)(N1, N2)

′ ≤
p

2(x , y)′
�

if f (ω) 6= 0,

I(x ≥ 0, y ≥ 0) if f (ω) = 0,

where N1 and N2 are i.i.d. standard normal distributions.

Lemma 1. (i) For fixed x , y, HC is a bounded continuous function in ω.

(ii) FC defined as follows is a proper distribution function.

FC(x , y) =

∫ 1

0

HC(2πs, x , y)ds. (3.1)

(iii) If Leb(C0) = 0 then FC is continuous everywhere and can be expressed as

FC(x , y) =

∫∫
I{(v1,v2)≤(x ,y)}

h∫ 1

0

1

2π2 f (2πs)
e
−

v2
1
+v2

2
2π f (2πs) ds

i
dv1dv2. (3.2)

Further, FC is bivariate normal if and only if f is constant almost everywhere (Lebesgue).

(iv) If Leb(C0) 6= 0 then FC is discontinuous only on D1 = {(x , y) : x y = 0}.

The proof of the Lemma is easy and we omit it. The normality claim in (iii) follows by applying

Cauchy Schwartz inequality to compare fourth moment and square of the variance and using the

fact that for the normal distribution their ratio equals 3. We omit the details.

Theorem 1. Suppose Assumptions B and C hold. Then the ESD of Cn converges in L2 to FC(·) given in

(3.1)–(3.2).

Remark 1. If {x i} are i.i.d with finite (2 + δ) moment, then f (ω) ≡ 1/2π, and FC reduces to the

bivariate normal distribution whose covariance matrix is diagonal with entries 1/2 each. This agrees

with Theorem 15, page 57 of Sen [2006] who proved the result under Assumption A.

3.2 Symmetric Circulant Matrix

For x ∈ R and ω ∈ [0,π] define,

HS(ω, x) =

¨
P
�p

2π f (ω)N(0,1)≤ x) if f (ω) 6= 0,

I(x ≥ 0) if f (ω) = 0.
(3.3)

As before, we now have the following Lemma. We omit the proof.

Lemma 2. (i) For fixed x, HS is a bounded continuous function in ω and HS(ω, x) +HS(ω,−x) = 1.

(ii) FS defined below is a proper distribution function and FS(x) + FS(−x) = 1.

FS(x) = 2

∫ 1/2

0

HS(2πs, x)ds. (3.4)
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(iii) If Leb(C ′0) = 0 then FS is continuous everywhere and may be expressed as

FS(x) =

∫ x

−∞

h∫ 1/2

0

1

π
p

f (2πs)
e
− t2

4π f (2πs) ds
i

d t. (3.5)

Further, FS is normal if and only if f is constant almost everywhere (Lebesgue).

(iv) If Leb(C ′0) 6= 0 then FS is discontinuous only at x = 0.

Theorem 2. Suppose Assumptions B and C hold and

lim
n→∞

1

n2

[np/2]∑

k=1

�
f (

2πk

n
)
�−3/2 −→ 0 for all 0< p < 1. (3.6)

Then the ESD of SCn converges in L2 to FS given in (3.4)–(3.5). The same limit continues to hold for

PTn.

Remark 2. (i) (3.6) is satisfied if infω f (ω)> 0.

(ii) It is easy to check that the variance, µ2 and the fourth moment µ4 of FS equal
∫ 1/2

0
4π f (2πs)ds

and
∫ 1/2

0
24π2 f 2(2πs)ds respectively. By Cauchy-Schwartz inequality it follows that

µ4

µ2
2

≥ 3 and equal

to 3 iff f ≡ 1

2π
. In the latter case, FS is standard normal. This agrees with Remark 2 of Bose and Mitra

[2002] (under Assumption A).

3.3 Reverse circulant matrix

Define HR(ω, x) on [0,2π]×R as

HR(ω, x) =

(
G
�

x2

2π f (ω)

�
if f (ω) 6= 0

1 if f (ω) = 0,

where G(x) = 1− e−x for x > 0, is the standard exponential distribution function.

Lemma 3. (i) For fixed x, HR(ω, x) is bounded continuous on [0,2π].

(ii) FR defined below is a valid symmetric distribution function.

FR(x) =





1

2
+
∫ 1/2

0
HR(2πt, x)d t if x > 0

1

2
−
∫ 1/2

0
HR(2πt, x)d t if x ≤ 0.

(3.7)

(iii) If Leb(C ′0) = 0 then FR is continuous everywhere and can be expressed as

FR(x) =





1−
∫ 1/2

0
e
− x2

2π f (2πt) d t if x > 0
∫ 1/2

0
e
− x2

2π f (2πt) d t if x ≤ 0.
(3.8)

Further, FR is the distribution of the symmetric version of the square root of chisquare variable with two

degrees of freedom if and only if f is constant almost everywhere (Lebesgue).

(iv) If Leb(C ′0) 6= 0 then FR is discontinuous only at x = 0.
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The proof of the above lemma is omitted.

Theorem 3. Suppose Assumptions B and C hold. Then the ESD of RCn converges in L2 to FR given in

(3.7)–(3.8).

Remark 3. If {x i} are i.i.d, with finite (2+δ) moment, then f (ω) = 1/2π for all ω ∈ [0,2π] and the

LSD FR(·) agrees with (1.2) given earlier.

3.4 k-Circulant matrix

As mentioned before, it appears difficult to prove general results for all possible pairs (k, n). We

investigate two subclasses of the k-circulant.

3.4.1 n= kg + 1 for some fixed g ≥ 2

For any d ≥ 1, let

Gd(x) = P
� d∏

i=1

Ei ≤ x
�
,

where {Ei} are i.i.d. Ex p(1). Note that Gd is continuous. For any integer d ≥ 1, define

Hd(ω1, . . . ,ωd , x) on [0,2π]d ×R≥0 as

Hd(ω1, . . . ,ωd , x) =





Gd

�
x2d

(2π)d
∏d

i=1 f (ωi)

�
if

∏d

i=1 f (ωi) 6= 0

1 if
∏d

i=1 f (ωi) = 0.

Lemma 4. (i) For fixed x, Hd(ω1, . . . ,ωd , x) is bounded continuous on [0,2π]d .

(ii) Fd defined below is a valid continuous distribution function.

Fd(x) =

∫ 1

0

· · ·
∫ 1

0

Hd(2πt1, . . . , 2πtd , x)

d∏

i=1

d t i for x ≥ 0. (3.9)

The proof of lemma is omitted.

Theorem 4. Suppose Assumptions B and C hold. Suppose n = kg + 1 for some fixed g ≥ 2. Then as

n → ∞, Fn−1/2Ak,n
converges in L2 to the LSD U1(

∏g

i=1 Ei)
1/2g where {Ei} are i.i.d. with distribution

function Fg given in (3.9) and U1 is uniformly distributed over the (2g)th roots of unity, independent

of the {Ei}.

Remark 4. If {x i} are i.i.d, then f (ω) = 1/2π for all ω ∈ [0,2π] and the LSD is U1(
∏g

i=1 Ei)
1/2g

where {Ei} are i.i.d. Ex p(1), U1 is as in Theorem 4 and independent of {Ei}. This limit agrees with

Theorem 3 of Bose, Mitra and Sen [2008].

Remark 5. Using the expression (2.8) for the characteristic polynomial, it is then not difficult to man-

ufacture {k = k(n)} such that the LSD of n−1/2Ak,n has some positive mass at the origin. For example,
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suppose the sequences k and n satisfy kg = −1+ sn where g ≥ 1 is fixed and s = o(n1/3). Fix primes

p1, p2, . . . , pt and positive integers β1,β2, . . . ,βt . Define

en= p
β1

1 p
β2

2 . . . p
βt

t n.

Suppose k = p1p2 . . . pt m → ∞. Then the ESD of en−1/2Ak,en converges weakly in probability to the

LSD which has 1 −
�
Πt

s=1p
βs
s

�−1

mass at zero, and rest of the probability mass is distributed as

U1(
∏g

i=1 Ei)
1/2g where U1 and {Ei} are as in Theorem 4.

3.4.2 n= kg − 1 for some g ≥ 2

For zi , wi ∈ R, i = 1,2, .., g, and with {Ni} i.i.d. N(0,1), define

Hg(ωi, zi , wi , i = 1, . . . , g) = P
�
B(ω1,ω2, ..,ωg)(N1, ..., N2g)

′ ≤ (zi, wi , i = 1,2, .., g)′
�
.

Lemma 5. (i)Hg is a bounded continuous in (ω1, . . . ,ωg) for fixed {zi , wi , i = 1, . . . , g}.
(ii) Fg defined below is a proper distribution function.

Fg(zi, wi , i = 1, . . . , g) =

∫ 1

0

· · ·
∫ 1

0

Hg(2πt i , zi , wi , i = 1, . . . , g)
∏

d t i . (3.10)

(iii) If Leb(C0) = 0 then Fg is continuous everywhere and may be expressed as

Fg(zi, wi , i = 1, .., g)

=

∫
· · ·
∫
I{t≤(zk ,wk ,k=1,..,g)}

h∫ 1

0

· · ·
∫ 1

0

I{
∏

f (2πui) 6=0}

(2π)g
∏g

i=1[π f (2πui)]

g∏

i=1

e
− 1

2

t2
2i−1

+t2
2i

π f (2πui )

∏
dui

i
dt.

where t = (t1, t2, . . . , t2g−1, t2g) and dt =
∏

d t i . Further Fg is multivariate (with independent com-

ponents) if and only if f is constant almost everywhere (Lebesgue).

(iv) If Leb(C0) 6= 0 then Fg is discontinuous only on Dg = {(zi , wi , i = 1, . . . , g) :
∏g

i=1 ziwi = 0}.

The proof of lemma is omitted.

Theorem 5. Suppose Assumptions B and C hold. Suppose n = kg − 1 for some g ≥ 2. Then as

n → ∞, Fn−1/2Ak,n
converges in L2 to the LSD (

∏g

i=1 Gi)
1/g where (R(Gi),I (Gi); i = 1,2, . . . g) has

the distribution Fg given in (3.10).

Remark 6. If {x i} are i.i.d, with finite (2 + δ) moment, then f (ω) ≡ 1/2π and the LSD simpli-

fies to U2(
∏g

i=1 Ei)
1/2g where {Ei} are i.i.d. Ex p(1), U2 is uniformly distributed over the unit circle

independent of {Ei}. This agrees with Theorem 4 of Bose, Mitra and Sen [2008].

3.5 Simulations

To demonstrate the limits we did some modest simulations with MA(1) and MA(2) processes. We

performed numerical integration to obtain the LSD. In case of k-circulant (n = k2 + 1), we have

plotted the density of F2 defined in (3.9).
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symmetric circulant

Figure 1: (i) (left) dashed line represents the density of F2 when f (ω) = 1

2π
(1.25+ cos x) and the continuous line

represents the same with f ≡ 1

2π
. (ii) (right) dashed line represents the LSD of symmetric circulant matrix with entries

x t = 0.3εt + εt+1+ 0.5εt+2 where {εi} i.i.d. N(0, 1) and the continuous line represents the kernel density estimate of the

ESD of the same matrix of order 5000× 5000 and same {x t}.
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Figure 2: (i) (left) dashed line represents the LSD of the reverse circulant matrix with entries x t = 0.3εt+εt+1+0.5εt+2

where {εi} i.i.d. N(0, 1). The continuous line represents the kernel density estimate of ESD of the same matrix of order

5000× 5000 with same {x t}. (ii) same graphs with centered and scaled Bernoulli(1, 0.5).
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4 Proofs of main results

Throughout c and C will denote generic constants depending only on d. We use the notation an ∼ bn

if an − bn → 0 and an ≈ bn if
an

bn
→ 1. As pointed out earlier, to prove that Fn converges to F (say)

in L2, it is enough to show that

E[Fn(t)]→ F(t) and V[Fn(t)]→ 0 (4.1)

at all continuity points t of F . This is what we shall show in every case.

If the eigenvalues have the decomposition λk = ηk + yk for 1 ≤ k ≤ n, where yk → 0 in probability

then {λk} and {ηk} have similar behavior. We make this precise in the following lemma.

Lemma 6. Suppose {λn,k}1≤k≤n is a triangular sequence of Rd -valued random variables such that

λn,k = ηn,k + yn,k for 1≤ k ≤ n. Assume the following holds:

(i) limn→∞
1

n

∑n

k=1 P(ηn,k ≤ x̃) = F( x̃), for x̃ ∈ Rd ,

(ii) limn→∞
1

n2

∑n

k,l=1 P(ηn,k ≤ x̃ ,ηn,l ≤ ỹ) = F( x̃)F( ỹ), for x̃ , ỹ ∈ Rd

(iii) For any ε > 0, max1≤k≤n P(|yn,k|> ε)→ 0 as n→∞.

Then,

1. limn→∞
1

n

∑n

k=1 P(λn,k ≤ x̃) = F( x̃).

2. limn→∞
1

n2

∑n

k,l=1 P(λn,k ≤ x̃ ,λn,l ≤ ỹ) = F( x̃)F( ỹ).

Proof. We define new random variables Λn with P(Λn = λn,k) = 1/n for k = 1, . . . , n. Then

P(Λn ≤ x̃) =
1

n

n∑

k=1

P(λn,k ≤ x̃).

Similarly define En with P(En = ηn,k) = 1/n for 1 ≤ k ≤ n and Yn with P(Yn = yn,k) = 1/n for

1≤ k ≤ n. Now observe that Λn = En+ Yn and for any ε > 0,

P(|Yn|> ε) =
1

n

n∑

k=1

P(|yn,k|> ε)→ 0, as n→∞

by assumption (iii). Therefore Λn and En have the same limiting distribution. Now as n→∞,

P(En ≤ x̃) =
1

n

n∑

k=1

P(ηn,k ≤ x̃)→ F( x̃). (by assumption (i))

Therefore as n→∞,
1

n

n∑

k=1

P(λn,k ≤ x̃) = P(Λn ≤ x̃)→ F( x̃)
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and this is conclusion (i). To prove (ii) we use similar type of argument. Here we define new random

variables Λ̃n with P(Λ̃n = (λn,k,λn,l)) = 1/n2 for 1 ≤ k, l ≤ n. Similarly define Ẽn and Ỹn. Again

Λ̃n = Ẽn+ Ỹn and

P(‖Yn‖> ε) =
1

n2

n∑

k,l=1

P(‖(yn,k, yn,l)‖> ε)→ 0, as n→∞.

So Λ̃n and Ẽn will have same limiting distribution and hence conclusion (ii) holds.

We use normal approximation heavily in our proofs. Lemma 7 is a fairly standard consequence

of normal approximation and follows easily from Bhattacharya and Ranga Rao [1976] (Corollary

18.1, page 181 and Corollary 18.3, page 184). We omit its proof. Part (i) will be used in Section

4.1– 4.4 and Part (ii) will be used in Section 4.4.

Lemma 7. Let X1, . . . , Xk be independent random vectors with values in Rd , having zero means and an

average positive-definite covariance matrix Vk = k−1
∑k

j=1 Cov(X j). Let Gk denote the distribution of

k−1/2Tk(X1+ . . .+Xk), where Tk is the symmetric, positive-definite matrix satisfying T2
k
= V−1

k
, n≥ 1.

If for some δ > 0, E‖X j‖(2+δ) <∞, then there exists C > 0 (depending only on d), such that

(i)

sup
B∈C
|Gk(B)−Φd(B)| ≤ Ck−δ/2[λmin(Vk)]

−(2+δ)ρ2+δ

(ii) for any Borel set A,

|Gk(A)−Φd(A)| ≤ Ck−δ/2[λmin(Vk)]
−(2+δ)ρ2+δ + 2 sup

y∈Rd

Φd((∂ A)η− y)

where Φd is the standard d dimensional normal distribution function, C is the class of all Borel mea-

surable convex subsets of Rd , ρ2+δ = k−1
∑k

j=1E‖X j‖(2+δ) and η = Cρ2+δn−δ/2.

4.1 Proof of Theorem 1

The proof for circulant matrix mainly depends on Lemma 7 which helps to use normal approximation

and, Lemma 8 given below which allows us to approximate the eigenvalues by appropriate partial

sums of independent random variables. The latter follows easily from Fan and Yao [2003] (Theorem

2.14(ii), page 63). We have provided a proof in Appendix for completeness. For k = 1,2, · · · , n,

define

ξ2k−1 =
1
p

n

n−1∑

t=0

εt cos(ωk t), ξ2k =
1
p

n

n−1∑

t=0

εt sin(ωk t).

Lemma 8. Suppose Assumption B holds and {εt} are i.i.d random variables with mean 0, variance 1.

For k = 1,2, · · · , n, write

λn,k =
1
p

n

n−1∑

l=0

x l e
iωk l =ψ(eiωk)[ξ2k−1+ iξ2k] + Yn(ωk),

then we have max0≤k<nE|Yn(ωk)| → 0 as n→∞.
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Proof of Theorem 1: We first assume Leb(C0) = 0. Note that we may ignore the eigenvalue λn and

also λn/2 whenever n is even since they contribute atmost 2/n to the ESD Fn(x , y). So for x , y ∈ R,

E[Fn(x , y)] s n−1
n−1∑

k=1,k 6=n/2

P(bk ≤ x , ck ≤ y).

Define for k = 1,2, · · · , n,

ηk = (ξ2k−1,ξ2k)
′, Y1n(ωk) =R[Yn(ωk)], Y2n(ωk) = I [Yn(ωk)],

where Yn(ωk) are same as defined in Lemma 8. Then (bk, ck)
′ = B(ωk)ηk + (Y1n(ωk), Y2n(ωk))

′.
Now in view of Lemma 6 and Lemma 8, to show E[Fn(x , y)]→ FC(x , y) it is sufficient to show that

1

n

n−1∑

k=1,k 6=n/2

P(B(ωk)ηk ≤ (x , y)′)→ FC(x , y).

To show this, define for 1≤ k ≤ n− 1, (except for k = n/2) and 0≤ l ≤ n− 1,

X l,k =
�p

2εl cos(ωk l),
p

2εl sin(ωk l)
�′

.

Note that

E(X l,k) = 0 (4.2)

n−1
n−1∑

l=0

Cov(X l,k) = I (4.3)

sup
n

sup
1≤k≤n

[n−1
n−1∑

l=0

E ‖ X lk ‖(2+δ)]≤ C <∞. (4.4)

For k 6= n/2

�
B(ωk)ηk ≤ (x , y)′

	
=
�

B(ωk)(n
−1/2

n−1∑

l=0

X l,k)≤ (
p

2x ,
p

2y)′
	
.

Since {(r, s) : B(ωk)(r, s)
′ ≤ (
p

2x ,
p

2y)′} is a convex set in R2 and {X l,k, l = 0,1, . . . (n − 1)}
satisfies (4.2)–(4.4), we can apply Part (i) of Lemma 7 for k 6= n/2 to get

��P
�
B(ωk)(n

−1/2
n−1∑

l=0

X l,k)≤ (
p

2x ,
p

2y)′
�
− P
�
B(ωk)(N1, N2)

′ ≤ (
p

2x ,
p

2y)′
���

≤ Cn−δ/2[n−1
n−1∑

l=0

E‖X lk‖(2+δ)]≤ Cn−δ/2→ 0, as n→∞.

Therefore

lim
n→∞

1

n

n−1∑

k=1,k 6=n/2

P
�
B(ωk)ηk ≤ (x , y)′

�
= lim

n→∞

1

n

n−1∑

k=1,k 6=n/2

HC(
2πk

n
, x , y) =

∫ 1

0

HC(2πs, x , y)ds.
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Hence

E[Fn(x , y)]∼ n−1
n−1∑

k=1,k 6=n/2

P(bk ≤ x , ck ≤ y)→
∫ 1

0

HC(2πs, x , y)ds. (4.5)

Now, to show V [Fn(x , y)]→ 0, it is enough to show that

1

n2

n∑

k 6=k′;k,k′=1

Cov(Jk, Jk′) =
1

n2

n∑

k 6=k′;k,k′=1

�
E(Jk, Jk′)−E(Jk)E(Jk′)

�
→ 0. (4.6)

where for 1≤ k ≤ n, Jk is the indicator that {bk ≤ x , ck ≤ y}. Now as n→∞,

1

n2

n∑

k 6=k′;k,k′=1

E(Jk)E(Jk′) =
�1

n

n∑

k=1

E(Jk)
�2−

1

n2

n∑

k=1

�
E(Jk)

�2→
�
∫ 1

0

HC(2πs, x , y)ds
�2

.

So to show (4.6), it is enough to show as n→∞,

1

n2

n∑

k 6=k′;k,k′=1

E(Jk, Jk′)→
�
∫ 1

0

HC(2πs, x , y)ds
�2

.

Along the lines of the proof used to show (4.5) one may now extend the vectors of two coordinates

defined above to ones with four coordinates and proceed exactly as above to verify this. We omit

the routine details. This completes the proof for the case Leb(C0) = 0.

When Leb(C0) 6= 0, we have to show (4.1) only on Dc
1 (of Lemma 1). All the above steps in the proof

will go through for all (x , y) in Dc
1. Hence if Leb(C0) 6= 0, we have our required LSD. This completes

the proof of Theorem 1.

4.2 Proof of Theorem 2

For convenience, we prove the result for symmetric circulant matrix only for odd n = 2m+ 1. The

even case follows by appropriate easy changes in the proof. The partial sum approximation now

takes the following form. For the interested reader, we provide a proof in the Appendix.

Lemma 9. Suppose Assumption B holds and {εt} are i.i.d random variables with mean 0, variance 1.

For n= 2m+ 1 and k = 1,2, · · · , m, write

1
p

n

m∑

t=1

x t cos
2πkt

n
=ψ1(e

iωk)
1
p

n

m∑

t=1

εt cos
2πkt

n
−ψ2(e

iωk)
1
p

n

m∑

t=1

sin
2πkt

n
+ Yn,k,

where ψ1(e
iωk), ψ2(e

iωk) are same as defined in (2.3). Then we have max0≤k≤mE(Yn,k) → 0 as

n→∞.

Proof of Theorem 2: As before, we provide the detailed proof only when Leb(C ′0) = 0. Note that we

may ignore the eigenvalue λ0 since it contributes 1/n to the ESD Fn(·). Further the term
x0p

n
can be

ignored from the eigenvalue {λk}. So for x ∈ R,

E[Fn(x)] s
2

n

m∑

k=1

P(
1
p

n
λk ≤ x) =

2

n

m∑

k=1

P
� 1
p

n

m∑

t=1

2x t cos
2πkt

n
≤ x
�
.
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Following the argument given in circulant case and using Lemma 6 and Lemma 9 it is sufficient to

show that

2

n

m∑

k=1

P

h
ψ1(e

iωk)
2

n

m∑

t=1

εt cos
2πkt

n
−ψ2(e

iωk)
2
p

n

m∑

t=1

sin
2πkt

n
≤ x
i

=
2

n

m∑

t=1

P

n
m−1/2

m∑

l=1

X l,k ∈ Ck

o
→ FS(x)

where

X l,k =
�
2σ−1

n εl cos
2πkl

n
, 2δ−1

n εl sin
2πkl

n

�
, σ2

n = 2− 1/m, δ2
n = 2+ 1/m,

Ck =
�
(u, v) : σnψ1(e

iωk)u+δnψ2(e
iωk)v ≤

p
n/mx

	
.

Note that

E(X l,k) = 0,
1

m

m∑

l=1

Cov(X l,k) = Vk and sup
m

sup
1≤k≤m

m−1
m∑

l=1

E‖X l,k‖2+δ ≤ C <∞ (4.7)

where

Vk =




1 − 1p
4m2−1

tan kπ

2m+1

− 1p
4m2−1

tan kπ

2m+1
1


 .

Let αk be the minimum eigenvalue of Vk. Then αk ≥ αm for 1≤ k ≤ m and

αm = 1−
1

p
4m2− 1

tan
mπ

2m+ 1
≈ 1−

2m+ 1

mπ
≈ 1−

2

π
= α, say.

Since {X l,k} satisfies (4.7) and Ck is a convex set in R2, we can apply Part (i) of Lemma 7 for

k = 1,2, · · · , m to get

���
2

n

m∑

k=1

h
P

n
m−1/2

m∑

l=1

X l,k ∈ Ck

o
−Φ0,Vk

(Ck)
i���≤ Cm−δ/2

2

n

m∑

k=1

α
−3/2

k
≤ Cm−δ/2α−3/2→ 0.

where Φ0,Vk
is a bivariate normal distribution with mean zero and covariance matrix Vk. Note that

for large m, σ2
n ≈ 2 and δ2

n ≈ 2. Hence C ′
k
=
�
(u, v) :ψ1(e

iωk)u+ψ2(e
iωk)v ≤px

	
serves as a good

approximation to Ck and we get

2

n

m∑

k=1

Φ0,Vk
(Ck)∼

2

n

m∑

k=1

Φ0,Vk
(C ′k) =

2

n

m∑

k=1

P(µkN(0,1)≤ x),

where µ2
k
= ψ1(e

iωk)2 +ψ2(e
iωk)2 + 2ψ1(e

iωk)ψ2(e
iωk) 1p

4m2−1
tan kπ

2m+1
. Define ν2

k
= ψ1(e

iωk)2 +

ψ2(e
iωk)2. Now we show that

lim
n→∞

���
2

n

m∑

k=1

�
P(µkN(0,1)≤ x)− P(νkN(0,1)≤ x)

����= 0. (4.8)
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Let 0< p < 1. Now as n→∞, using Assumption (3.6),

2

n

���
[mp]∑

k=1

�
P(µkN(0,1)≤ x)− P(νkN(0,1)≤ x)

���� =
2

n

[mp]∑

k=1

���
∫ x/µk

x/νk

1
p

2π
e−

t2

2 d t

���

≤
2|x |

n

[mp]∑

k=1

���
µ2

k
− ν2

k

µkνk(µk + νk)

���

≤
2|x | tan

pπ

2

m2

[mp]∑

k=1

1

ν3
k
α(1+α)

−→ 0

On the other hand, for every n,

2

n

���
m∑

[mp]+1

�
P(µkN(0,1)≤ x)− P(νkN(0,1)≤ x)

����≤ 4(1− p).

Therefore, by first letting n→∞ and then letting p→ 1, (4.8) holds. Hence

lim
n→∞

2

n

m∑

k=1

P
�
νkN(0,1)≤ x

�
= lim

n→∞

2

n

m∑

k=1

P
�p

2π f (2πk/n)N(0,1)≤ x
�
−→ 2

∫ 1/2

0

HS(2πs, x)ds.

Rest of the argument in the proof for symmetric circulant is same as in the proof of Theorem 1.

To prove the result for PTn, we use Cauchy’s interlacing inequality (see Bhatia, 1997, page 59):

Interlacing inequality: Suppose A is an n× n symmetric real matrix with eigenvalues λn ≥ λn−1 ≥
. . . ≥ λ1. Let B be the (n− 1)× (n− 1) principal submatrix of A with eigenvalues µn−1 ≥ . . . ≥ µ1.

Then

λn ≥ µn−1 ≥ λn−1 ≥ µn−2 ≥ . . .≥ λ2 ≥ µ1 ≥ λ1.

As a consequence

‖FA− FB‖∞ ≤
1

n

where FA denote the ESD of the matrix A and ‖ f ‖∞ = supx | f (x)|. We have already observed that

the n× n principal minor of PTn+1 is SCn. The result for PTn follows immediately.

4.3 Proof of Theorem 3

For reverse circulant we need the following Lemma. Its proof is given in Fan and Yao [2003] (The-

orem 2.14(ii), page 63).

Lemma 10. Suppose Assumption B holds and {εt} are i.i.d random variables with mean 0, variance

1. For k = 1,2, · · · , [ n−1

2
], write

In(ωk) = Ln(ωk) + Rn(ωk), where Ln(ωk) = 2π f (ωk)(ξ
2
2k−1+ ξ

2
2k)

and then we have as n→∞, max1≤k≤[ n−1
2
]E|Rn(ωk)| → 0.
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Proof of Theorem 3: As earlier, we give the proof only for the case Leb(C ′0) = 0. From the structure

of the eigenvalues, the LSD, if it exists, is going to be that of a symmetric distribution. So, it is

enough to concentrate on the case x > 0. As before we may ignore the two eigenvalues λ0 and λn/2.

Hence for x > 0,

E[Fn(x)]∼ 1/2+ n−1

[ n−1
2
]∑

k=1

P(In(ωk)≤ x2). (4.9)

Along the same lines as in the proof of Theorem 1, using Lemma 6 and Lemma 10 it is sufficient to

show

1

n

[ n−1
2
]∑

k=1

P
�

Ln(ωk)≤ x2
�
→ HR(2πt, x),

where Ln(ωk) is same as in Lemma 10. Define for k = 1,2, · · · , [ n−1

2
] and l = 0,1,2, · · · , n− 1,

X l,k =
�p

2εl cos(lωk),
p

2εl sin(lωk)
�′

, Akn =
�
(r1, r2) : π f (ωk)(r

2
1 + r2

2 )≤ x2
	
.

Note that {X l,k} satisfies (4.2)– (4.4) and
�

Ln(ωk) ≤ x2
	
=
�

n−1/2
∑n−1

l=0 X l,k ∈ Akn

	
. Since Akn is a

convex set in R2, we can apply Part (i) of Lemma 7 to get, as n→∞

1

n

[ n−1
2
]∑

k=1

|P(Ln(ωk)≤ x2)−Φ0,I(Akn)| ≤ Cn−δ/2→ 0.

But

1

n

[ n−1
2
]∑

k=1

Φ0,I(Akn) =
1

n

[ n−1
2
]∑

k=1

HR(
2πk

n
, x)→

∫ 1/2

0

HR(2πt, x)d t.

Hence for x ≥ 0,

E[Fn(x)]→
1

2
+

∫ 1/2

0

HR(2πt, x)d t = FR(x).

Now rest of the argument in the proof is same as in the proof of Theorem 1.

4.4 Proofs for Theorems 4 and 5

The proofs of the two theorems for k circulant matrices draw substantially from the method of

Bose and Mitra [2002] and uses the eigenvalue description given earlier.

4.4.1 n= kg + 1 for some fixed g ≥ 2

Proof of Theorem 4: For simplicity we first prove the result when g = 2. Note that gcd(k, n) = 1 and

hence in this case n′ = n in (2.8). Thus the index of each eigenvalue belongs to exactly one of the sets

Pl in the eigenvalue partition of {0,1,2, ..., n−1}. Recall that vk,n is the total number of eigenvalues

γ j of Ak,n such that j ∈ Pl and |Pl | < g1. In view of Lemma 7 of Bose, Mitra and Sen [2008], we
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have vk,n/n≤ 2/n→ 0 and hence these eigenvalues do not contribute to the LSD. Hence it remains

to consider only the eigenvalues corresponding to the sets Pl which have size exactly equal to g1.

Note that S(1) = {1, k, n−1, n−k} and hence g1 = 4. Recall the quantities n j = |P j|, y j =
∏

t∈Pl
λt ,

where λ j =
∑n−1

l=0 x lν
jl , 0 ≤ j < n given in (2.5). Also, for every integer t ≥ 0, tk2 = −t mod n,

so that, λt and λn−t belong to the same partition block S(t) = S(n− t). Thus each yt is real. Let us

define

In = {l : |Pl |= 4}.

It is clear that n/|In| → 4. Without any loss, let In = {1,2, ..., |In|}.
Let 1,ω,ω2,ω3 be all the fourth roots of unity. Note that for every j, the eigenvalues of Ak,n

corresponding to the set P j are: y
1/4
j

, y
1/4
j
ω, y

1/4
j
ω2, y

1/4
j
ω3. Hence it suffices to consider only

the modulus of eigenvalues y
1/4
j

as j varies: if these have an LSD F , say, then the LSD of the whole

sequence will be (r,θ ) in polar coordinates where r is distributed according to F and θ is distributed

uniformly across all the fourth roots of unity and r and θ are independent. With this in mind and

remembering the scaling
p

n, we consider for x > 0,

Fn(x) = |In|−1

|In|∑

i=1

I

�� y j

n2

� 1
4 ≤ x

�
.

Since the set of λ values corresponding to any P j is closed under conjugation, there exists a set

Ai ⊂Pi of size 2 such that

Pi = {x : x ∈Ai or n− x ∈Ai}.

Combining each λ j with its conjugate, we may write y j in the form,

y j =
∏

t∈A j

(nb2
t + nc2

t )

where {bt} and {ct} are given in (2.4). Note that for x > 0,

E[Fn(x)] = |In|−1

|In|∑

j=1

P
� y j

n2
≤ x4

�
.

Now our aim is to show

|In|−1

|In|∑

j=1

P
� y j

n2
≤ x4

�
→ F2(x).

We can write
y j

n2 = Ln, j + Rn, j for 1≤ j ≤ |In|, where

Ln, j = 4π2 f j

y j

n2
, y j =

∏

t∈A j

(nξ2
2t−1+ nξ2

2t), f j =
∏

t∈A j

f (ωt), 1≤ j ≤ |In|,

Rn, j = Ln(ω j1
)Rn(ω j2

) + Ln(ω j2
)Rn(ω j1

) + Rn(ω j1
)Rn(ω j2

),

Ln(ω jk
) = 2π f (ω jk

)(ξ2
2 jk−1+ ξ

2
2 jk
), k = 1,2.
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Now using Lemma 10 it is easy to see that for any ε > 0, max1≤ j≤|In|E(|Rn, j| > ε)→ 0 as n→∞.

So in view of Lemma 6 it is enough to show

|In|−1

|In|∑

j=1

P
�

Ln, j ≤ x4
�
→ F2(x).

To do this we will use normal approximation. Define

X l, j = 21/2

�
εl cos

�
2πt l

n

�
, εl sin

�
2πt l

n

�
, t ∈A j

�
0≤ l < n, 1≤ j ≤ |In|,

An, j =
n
(a1, b1, a2, b2) :

2∏

i=1

[2−1(a2
i + b2

i )]≤
x4

4π2 f j

o
, 1≤ j ≤ |In|.

Note that {X l, j} satisfies (4.2)–(4.4) and
�

Ln, j ≤ x4
	
=
�

n−1/2
∑n−1

l=1 X l, j ∈ An, j

	
. Now using Part

(ii) of Lemma 7 and Lemma 4 of Bose, Mitra and Sen [2008], arguing as in the previous proofs,

|In|−1

|In|∑

l=1

���P
�

Ln, j ≤ x4
�
−Φ4(An, j)

���→ 0.

Therefore

E[Fn(x)] =
1

|In|

|In|∑

j=1

P

� y j

n2
≤ x4

�
s

1

|In|

|In|∑

j=1

P

�
Ln, j ≤ x4

�
s

1

|In|

|In|∑

j=1

Φ4(An, j).

To identify the limit, recall the structure of the sets S(x),P j ,A j and their properties. Since |In|/n→
1/4, vk,n ≤ 2 and either S(x) = S(u) or S(x)∩ S(u) = φ, we have

lim
n→∞

1

|In|

|In|∑

j=1

Φ4(An, j) = lim
n→∞

1

n

n∑

j=1,|A j |=2

Φ4(An, j) (4.10)

Also for n = k2 + 1 we can write {1,2, . . . , n− 1} as {ak+ b; 0 ≤ a ≤ k− 1, 1 ≤ b ≤ k} and using

the construction of S(x) we have (except for at most two values of j)

A j = {ak+ b, bk− a} for j = ak+ b; 0≤ a ≤ k− 1, 1≤ b ≤ k.

Recall that for fixed x , H2(ω,ω′, x) is uniformly continuous on [0,2π]× [0,2π], . Therefore given

any positive number ρ we can choose N large enough such that for all n= k2+ 1> N ,

sup
0≤a≤k−1, 1≤b≤k

���H2

�2π(ak+ b)

n
,
2π(bk− a)

n
, x
�
− H2

�2πa
p

n
,
2πb
p

n
, x
����< ρ. (4.11)

Finally using (4.10), (4.11) we have

lim
n→∞

1

|In|

|In|∑

j=1

Φ4(An, j) = lim
n→∞

1

n

n∑

j=1

Φ4(An, j)
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= lim
n→∞

1

n

n∑

j=1

G2

� x4

4π2 f j

�

= lim
n→∞

1

n

[
p

n]∑

b=1

[
p

n]∑

a=0

H2

�2π(ak+ b)

n
,
2π(bk− a)

n
, x
�

= lim
n→∞

1

n

[
p

n]∑

b=1

[
p

n]∑

a=0

H2

�2πa
p

n
,
2πb
p

n
, x
�

=

∫ 1

0

∫ 1

0

H2(2πs, 2πt, x)ds d t = F2(x).

To show that V [Fn(x)]→ 0, since the variables involved are all bounded, it is enough to show that

n−2
∑

j 6= j′
Cov

�
I
� y j

n2
≤ x4

�
, I
� y j′

n2
≤ x4

��
→ 0.

Along the lines of the proof used to show E[Fn(x)]→ F2(x), one may now extend the vectors with

4 coordinates defined above to ones with 8 coordinates and proceed exactly as above to verify this.

We omit the routine details. This proves the Theorem when g = 2. The above argument can be

extended to cover the general (g > 2) case. We highlight only a few of the technicalities and omit

the other details. We now need the following lemma.

Lemma 11. Given any ε,η > 0 there exist an N ∈ N such that

P
���

s∏

i=1

Ln(ω ji
)

g∏

i=s+1

Rn(ω ji
)
��> ε)< η for all n≥ N,

where Ln(ω j), Rn(ω j) are as defined in Lemma 10.

Proof. Note

P
���

s∏

i=1

Ln(ω ji
)

g∏

i=s+1

Rn(ω ji
)
��> ε

�
≤ P

���Ln(ω j1
)
��≥ Mε

�

+P
���

s∏

i=2

Ln(ω ji
)

g∏

i=s+1

Rn(ω ji
)
��> 1/M

�
,

and iterating this argument,

P
���

s∏

i=1

Ln(ω ji
)

g∏

i=s+1

Rn(ω ji
)
��> ε

�
≤ P

���Ln(ω j1
)
��≥ Mε

�
+

s∑

i=2

P
���Ln(ω ji

)
��≥ M

�

+P
���

g∏

i=s+1

Rn(ω ji
)
��> 1/M s

�
.

Also note that

P
���

g∏

i=s+1

Rn(ω ji
)
��> 1/M s

�
≤ P

���
g∏

i=s+2

Rn(ω ji
)
��> 1/M s

�
+ P
���Rn(ω js+1

)
��> 1

�
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≤ P
���Rn(ω jg

)
��> 1/M s

�
+

g−1∑

i=1

P
���Rn(ω ji

)
��> 1

�

≤
�

M s + g − s− 1
�

max
1≤k≤n
E|Rn(ωk)|.

Combining all the above we get

P
���

s∏

i=1

Ln(ω ji
)

g∏

i=s+1

Rn(ω ji
)
��> ε

�
≤ P

���Ln(ω j1
)
��≥ Mε

�
+

s∑

i=2

P
���Ln(ω ji

)
��≥ M

�

+
�

M s + g − s− 1
�

max
1≤k≤n
E|Rn(ωk)|

≤
1

M
(s− 1+ 1/ε)4π max

ω∈[0,2π]
f (ω)

+
�

M s + g − s− 1
�

max
1≤k≤n
E|Rn(ωk)|.

First term in the right side can be made smaller than η/2 by choosing M large enough and since

max1≤k≤nE|Rn(ωk)| → 0 as n → ∞, we can choose N ∈ N such that the second term is less than

η/2 for all n≥ N , proving the lemma.

For general g ≥ 2, as before, n′ = n, the index of each eigenvalue belongs to one of the sets Pl in

the eigenvalue partition of {0,1,2, ..., n− 1} and vk,n/n→ 0. Hence it remains to consider only the

eigenvalues corresponding to the sets Pl which have size exactly equal to g1 and it follows from

the argument in the proof of Lemma 3(i) of Bose, Mitra and Sen [2008] that g1 = 2g. We can now

proceed as in g = 2 case. First we show

1

|In|

|In|∑

j=1

P
� y j

ng
≤ x2g

�
→ Fg(x). (4.12)

Now write
y j

ng as follows

y j

ng
= Ln, j + Rn, j for 1≤ j ≤ |In|, where Ln, j =

∏

t∈A j

Ln(ωt) = (2π)
g f j

y j

ng
.

Using Lemma 11 it is easy show that for any ε > 0, max1≤ j≤|In| P(|Rn, j| > ε)→ 0 as n→∞. So, by

Lemma 6, to show (4.12) it is sufficient to show that

1

|In|

|In|∑

j=1

P
�

Ln, j ≤ x2g
�
→ Fg(x).

For this we use normal approximation as we did in g = 2 case and define

Ān, j =
n
(ai, bi , i = 1,2, .., g) :

g∏

i=1

[2−1(a2
i + b2

i )]≤
x2g

(2π)g f j

o
.

Now using Part (ii) of Lemma 7 and Lemma 4 of Bose, Mitra and Sen [2008], we have
������
|In|−1

|In|∑

l=1

P

�
Ln, j ≤ x4

�
− |In|−1

|In|∑

l=1

Φ4(Ān, j)

������
→ 0.
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Now note that for n= kg+1 we can write {1,2, . . . , n−1} as {b1kg−1+b2kg−2+· · ·+bg−1k+bg ; 0≤
bi ≤ k − 1, for 1 ≤ i ≤ k − 1; 1 ≤ bg ≤ k}. So we can write the sets A j explicitly using this

decomposition of {1,2, . . . , n− 1} as done in g = 2 case, that is, n = k2 + 1 case. For example if

g = 3, A j = {b1k2 + b2k+ b3, b2k2 + b3k− b1, b3k2 − b1k− b2} for j = b1k2 + b2k+ b3 (except

for finitely many j, bounded by vk,n and they do not contribute to this limit). Using this fact and

proceeding as before we conclude that the LSD is now Fg(·), proving Theorem 4 completely.

4.4.2 n= kg − 1 for some fixed g ≥ 2

Proof of Theorem 5. First we assume Leb(C0) = 0. Note that gcd(k, n) = 1. Since kg = 1 + n =

1 mod n, we have g1|g. If g1 < g, then g1 ≤ g/α where α = 2 if g is even and α = 3 if g is odd. In

either case, it is easy to check that

kg1 ≤ kg/α ≤ (1+ n)1/α = o(n).

Hence, g = g1. By Lemma 3(ii) of Bose, Mitra and Sen [2008] the total number of eigenvalues γ j

of Ak,n such that j ∈Al and |Al |< g is asymptotically negligible.

Unlike the previous theorem, here the partition setsAl are not necessarily self-conjugate. However,

the number of indices l such thatAl is self-conjugate is asymptotically negligible compared to n. To

show this, we need to bound the cardinality of the following set for 1≤ l < g:

Dl = {t ∈ {1,2, . . . , n} : tkl =−t mod n}= {t ∈ {1,2, . . . , n} : n|t(kl + 1)}.

Note that t0 = n/gcd(n, kl +1) is the minimum element of Dl and every other element is a multiple

of t0. Thus

|Dl | ≤
n

t0

≤ gcd(n, kl + 1).

Let us now estimate gcd(n, kl + 1). For l > [g/2],

gcd(n, kl + 1)≤ gcd(kg − 1, kl + 1) = gcd
�
kg−l(kl + 1)− (kg−l − 1), kl + 1

�
≤ kg−l ,

which implies gcd(n, kl + 1)≤ k[g/2] for all 1≤ l < g. Therefore,

gcd(n, kl + 1)

n
=

k[g/2]

(kg − 1)
≤

2

k[(g+1)/2]
≤

2

((n)1/g)[(g+1)/2]
= o(1).

So, we can ignore the partition sets P j which are self-conjugate. For other P j ,

y j =
∏

t∈P j

(
p

nbt + i
p

nct)

will be complex.

Now for simplicity we will provide the detailed argument assuming that g = 2. Then, n= k2−1 and

we can write {0,1,2, . . . , n} as {ak+ b; 0 ≤ a ≤ k− 1, 0 ≤ b ≤ k− 1} and using the construction

of S(x) we have P j = {ak+ b, bk+ a} and |P j| = 2 for j = ak+ b; 0 ≤ a ≤ k− 1, 0 ≤ b ≤ k− 1

(except for finitely many j and hence such indices do not contribute to the LSD). Let us define

In = { j : |P j |= 2}.
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It is clear that n/|In| → 2. Without any loss, let In = {1,2, . . . , |In|}. Suppose P j = { j1, j2}. We

first find the limiting distribution of the empirical distribution of 1p
n
(
p

nb j1
,
p

nc j1
,
p

nb j2
,
p

nc j2
)

for those j for which |P j| = 2 and show the convergence in L2. Let Fn(x , y, z, w) be the ESD of

{(b j1
, c j1

, b j2
, c j2
)}, that is

Fn(z1, w1, z2, w2) =
1

|In|

|In|∑

j=1

I
�

b jk
≤ zk, c jk

≤ wk, k = 1,2
�
.

We show that for z1, w1, z2, w2 ∈ R,

E[Fn(z1, w1, z2, w2)]→F2(z1, w1, z2, w2) and V[Fn(z1, w1, z2, w2)]→ 0. (4.13)

Define for j = 1,2, · · · , n,

η j = (ξ2 j1−1,ξ2 j1
,ξ2 j2−1,ξ2 j2

)′,

and let Y1n(ω j) =R(Yn(ω j)), Y2n(ω j) = I (Yn(ω j)), where Yn(ω j) is same as defined in Lemma 8.

Define

Yn, j =
�
Y1n(ω j1

), Y2n(ω j1
), Y1n(ω j2

), Y2n(ω j2
)
�
.

Then (b j1
, c j1

, b j2
, c j2
) = B(ω j1

,ω j2
)η j + Y ′n, j . Note that by Lemma 8, for any ε > 0,

max1≤ j≤n P(‖Yn, j‖ > ε) → 0 as n → ∞. So in view of Lemma 6 to show E[Fn(z1, w1, z2, w2)] →
F2(z1, w1, z2, w2) it is enough to show that

1

|In|

|In|∑

j=1

P(B(ω j1
,ω j2

)η j ≤ (z1, w1, z2, w2)
′)→F2(z1, w1, z2, w2).

For this we use normal approximation and define

X l, j = 21/2

�
εl cos

�2π j1l

n

�
,εl sin

�2π j1l

n

�
,εl cos

�2π j2l

n

�
,εl sin

�2π j2l

n

��′
,

and N =
�
N1, N2, N3, N4

�′
, where {Ni} are i.i.d. N(0,1). Note

�
B(ω j1

,ω j2
)η j ≤ (z1, w1, z2, w2)

′	=
�

B(ω j1
,ω j2

)(n−1/2
n−1∑

l=0

X l, j)≤ (
p

2z1,
p

2w1,
p

2z2,
p

2w2)
′	.

Since
�
(r1, r2, r3, r4) : B(ω j1

,ω j2
)(r1, r2, r3, r4)

′ ≤ (
p

2z1,
p

2w1,
p

2z2,
p

2w2)
′	 is a convex set in R4

and {X l, j; l = 0,1, . . . , (n− 1)} satisfies (4.2)–(4.4), we can show using Part (i) of Lemma 7 that

1

|In|

|In|∑

j=1

��P(B(ω j1
,ω j2

)η j ≤ (z1, w1, z2, w2)
′)− P(B(ω j1

,ω j2
)N ≤ (

p
2z1,
p

2w1,
p

2z2,
p

2w2)
′)
��→ 0,

as n→∞. Hence

lim
n→∞

1

|In|

|In|∑

j=1

P(B(ω j1
,ω j2

)η j ≤ (z1, w1, z2, w2)
′)
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= lim
n→∞

1

|In|

|In|∑

j=1

P(B(ω j1
,ω j2

)N ≤ (
p

2z1,
p

2w1,
p

2z2,
p

2w2)
′)

= lim
n→∞

1

n

n∑

j=1

P(B(ω j1
,ω j2

)N ≤ (
p

2z1,
p

2w1,
p

2z2,
p

2w2)
′)

= lim
n→∞

1

n

n∑

j=1

H2(ω j1
,ω j2

, z1, w1, z2, w2)

= lim
n→∞

1

n

[
p

n]∑

a=0

[
p

n]∑

b=0

H2

�2π(ak+ b)

n
,
2π(bk+ a)

n
, z1, w1, z2, w2

�

= lim
n→∞

1

n

[
p

n]∑

a=0

[
p

n]∑

b=0

H2

�2πa
p

n
,
2πb
p

n
, z1, w1, z2, w2

�

=

∫ 1

0

∫ 1

0

H2(2πs, 2πt, z1, w1, z2, w2)ds d t.

Similarly we can show V [Fn(x)]→ 0 as n→∞.

Hence the empirical distribution of y j for those j for which |P j| = 2 converges to the distribution

of
∏2

i=1 Gi such that (R(Gi),I (Gi); i = 1,2) has distribution F2. Hence the LSD of n−1/2Ak,n is
�∏2

i=1 Gi

�1/2
, proving the result when g = 2 and Leb(C0) = 0.

When Leb(C0) 6= 0, we have to show (4.13) only on Dc
2 (of Lemma 5). All the above steps in the

proof will go through for all (zi, wi; i = 1,2) in Dc
2. Hence if Leb(C0) 6= 0, we have our required LSD.

This proves the Theorem when g = 2.

For general g > 2, note that we can write {0,1,2, . . . , n} as {b1kg−1+ b2kg−2+ · · ·+ bg−1k+ bg ; 0≤
bi ≤ k − 1, for 1 ≤ i ≤ k}. So we can write the sets A j explicitly using this decomposition of

{0,1,2, . . . , n} as done in n = k2 − 1 case. For example if g = 3, A j = {b1k2 + b2k + b3, b2k2 +

b3k+ b1, b3k2+ b1k+ b2} for j = b1k2+ b2k+ b3 (except for finitely many j, bounded by vk,n and

they do not contribute to this limit). Using this fact and proceeding as before we will have the LSD

as
�∏g

i=1 Gi

�1/g
such that (R(Gi),I (Gi); i = 1,2, . . . g) has distribution Fg .
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5 Appendix

Proof of Lemma 8.

λk =
1
p

n

n−1∑

t=0

x t e
iωk t

=
1
p

n

∞∑

j=−∞
a je

iωk j
n−1∑

t=0

εt− je
iωk(t− j)
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=
1
p

n

∞∑

j=−∞
a je

iωk j

 
n−1∑

t=0

εt e
iωk t + Un j

!

= ψ(eiωk)[ξ2k−1+ iξ2k] + Yn(ωk),

where

Un j =

n−1− j∑

t=− j

εt e
iωk t −

n−1∑

t=0

εt e
iωk t , Yn(ωk) = n−1/2

∞∑

j=−∞
a je

iωk jUn j .

Note that if | j| < n, Un j is a sum of 2| j| independent random variables, whereas if | j| ≥ n, Un j is

a sum of 2n independent random variables. Thus E|Un j|2 ≤ 2 min(| j|, n). Therefore, for any fixed

positive integer l and n> l,

E|Yn(ωk)| ≤
1
p

n

∞∑

j=−∞
|a j |(EU2

n j)
1/2 �
∵

∞∑

−∞
|a j |<∞

�

≤
r

2

n

∞∑

j=−∞
|a j |{min(| j|, n)}1/2

≤
p

2




1
p

n

∑

| j|≤l

|a j || j|1/2+
∑

| j|>l

|a j |


 .

The right side of the above expression is independent of k and as n → ∞, it can be made smaller

than any given positive constant by choosing l large enough. Hence, max1≤k≤nE|Yn(ωk)| → 0.

Proof of Lemma 9.

1
p

n

m∑

t=1

x t cos
2πkt

n

=
1
p

n

m∑

t=1

∞∑

j=−∞
a jεt− j

�
cos

2πk(t − j)

n
cos

2πk j

n
− sin

2πk(t − j)

n
sin

2πk j

n

�

=
ψ1(e

iωk)
p

n

m∑

t=1

εt cos
2πkt

n
−
ψ2(e

iωk)
p

n

m∑

t=1

sin
2πkt

n
+ Yn,k,

where

Yn,k =
1
p

n

∞∑

j=−∞
a j

�
cos

2πk j

n
Uk, j − sin

2πk j

n
Vk, j

�
,

Uk, j =

m∑

t=1

�
εt− j cos

2πk(t − j)

n
− εt cos

2πkt

n

�
, Vk, j =

m∑

t=1

�
εt− j sin

2πk(t − j)

n
− εt sin

2πkt

n

�
.

Note that if | j| < m, Uk, j , U ′
k, j

are sums of 2| j| independent random variables, whereas if | j| ≥ m,

Uk, j , U ′
k, j

are sums of 2m independent random variables. Thus E|Uk, j |2 ≤ 2 min(| j|, m). Therefore,

for any fixed positive integer l and m> l,

E|Yn,k| ≤
1
p

n

h ∞∑

j=−∞
|a j|E(U2

k, j)
1/2+

∞∑

j=−∞
|a j |(EV 2

k, j)
1/2
i �
∵

∞∑

−∞
|a j|<∞

�
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≤
2
p

2
p

n

∞∑

j=−∞
|a j |{min(| j|, m)}1/2

≤ 2
p

2
� 1
p

n

∑

| j|≤l

|a j || j|1/2+
∑

| j|>l

|a j |
�

.

The right side of the above expression is independent of k and as n → ∞, it can be made smaller

than any given positive constant by choosing l large enough. Hence, max1≤k≤mE(Yn,k)→ 0.
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