Limiting the Number of Dirty Cache Lines

Pepijn de Langen and Ben Juurlink
Computer Engineering Laboratory
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands
Email: pepijn@ieee.org, b.h.h.juurlink @tudelft.nl

Abstract—Caches often employ write-back instead of write-
through, since write-back avoids unnecessary transfers for mul-
tiple writes to the same block. For several reasons, however,
it is undesirable that a significant number of cache lines will
be marked ‘dirty”. Energy-efficient cache organizations, for
example, often apply techniques that resize, reconfigure, or turn
off (parts of) the cache. In such cache organizations, dirty lines
have to be written back before the cache is reconfigured. The
delay imposed by these write-backs or the required additional
logic and buffers can significantly reduce the attained energy
savings. A cache organization called the clean/dirty cache (CD-
cache) is proposed that combines the properties of write-back
and write-through. It avoids unnecessary transfers for recurring
writes, while restricting the number of dirty lines to a hard limit.
Detailed experimental results show that the CD-cache reduces
the number of dirty lines significantly, while achieving similar
or better performance. We also use the CD-cache to implement
cache decay. Experimental results show that the CD-cache attains
similar or higher performance than a normal decay cache, while
using a significantly less complex design.

I. INTRODUCTION

To hide the long latency of off-chip memories, most pro-
cessors employ several levels of caches, either on- or off-chip.
For writes, a distinction is made between two policies: write-
back or write-through. The advantage of write-back over write-
through is that it avoids unnecessary transfers for recurring
writes to the same block, which results in higher performance
and less power dissipation in the memory bus.

Although a write-back cache generally outperforms a write-
through cache, it will contain a significant number of dirty
cache lines. Table I depicts the average number of dirty
cache lines in a 32kB write-back cache, measured using the
experimental setup explained in Section IV. On average, 45%
of the cache lines are marked dirty in a conventional write-
back cache. For several reasons, a high number of dirty cache
lines is undesirable. Dirty cache lines cause additional delay
or complexity for caches that need to flush cache lines on
certain occasions. Examples are caches that need to be flushed
on context switches as well as caches that need to empty
cache lines to use partial shutdown, drowse modes, or cache
reconfiguration [1]. Another reason against a large number of
dirty caches lines comes from the area of fault tolerance. In
caches, error detection is sufficient for clean data, since date
can be reloaded from the next memory level when an error is

This research was supported in part by the Netherlands Organisation for
Scientific Research (NWO).

978-3-9810801-5-5/DATE09 © 2009 EDAA

TABLE I: Percentage of dirty cache lines in a 32kB cache.

gce mcf parser twolf | vortex vpr
51.5% | 263% | 45.5% | 51.9% | 39.6% | 57.1%

detected. For dirty data, however, error correction is required
since there is no other up-to-date copy if an error occurs.

In this work we explore the potential of a cache organi-
zation called the clean/dirty cache (CD-cache). The proposed
organization consists of a cache that is only used for loads,
and a much smaller write-back cache that is used to store
dirty data. Experimental results show that the CD-cache attains
similar or higher performance than a write-back cache, while
restricting the number of dirty cache lines to a hard upper limit.
In addition, since accessing a smaller cache structure requires
less energy than accessing a larger one, the CD-cache reduces
the dynamic energy consumption by directing all writes and
a significant number of loads to the smaller cache structure.
This is also exploited in the filter cache [2].

This paper is organized as follows. Section II discusses
related work. The design of the CD-cache is presented in
Section III. Experimental results are presented in Section IV,
and a case study with cache decay is provided in Section V.
Section VI summarizes this work and presents directions for
future research.

II. RELATED WORK

The CD-cache shows some similarities with the write
cache [3], which in turn shows similarities with the miss
cache and victim cache [4]. The write cache is in principle
a write-buffer except that instead of writing updates to the
next memory level as soon as possible, it only writes back
data in case it needs to make room for new entries. This
way, it is possible to coalesce more writes and hence decrease
the amount of write traffic. The write-cache, however, uses
the allocate-on-write and the no-fetch-on-write policies. This
requires valid bits for each sub-block in a cache line and
imposes additional complexity to support stores smaller than
the sub-block size.

Chu et al. [5] evaluated several write buffer configurations.
They propose to either flush the write buffer at certain intervals
or on certain events, or to write back entries from the write
buffer in the background. This is done by writing updates
both to the L1 data cache and to the write buffer, and having

the write buffer clear the dirty bit in the L1 data cache after
writing back data. Lee et al. [6] proposed a technique called
Eager Write-Back. This write-back cache does not wait with
writing back data until a line is evicted. Instead, write-backs
are issued whenever the memory bus is idle. None of these
approaches, however, put a hard limit on the number of dirty
cache lines.

We also present a case study using the CD-cache for a cache
energy reduction technique called cache decay [1]. Cache
decay is based on a technique called the gated-Vdd [7], which
saves energy by turning of unused memory cells. In cache
decay, this technique is used to turn off individual data cache
lines. Our work extends upon this work by providing a method
to handle dirty data efficiently.

III. CLEAN/DIRTY CACHE

The proposed design comprises two caches: a primary clean
cache and a much smaller secondary cache called the dirty
cache. While the clean cache is only used to store ‘clean’
data, the cache lines in the dirty cache are marked ‘dirty’
by definition. Furthermore, the contents of these caches are
mutually exclusive. Figure 1 shows a schematic description of
the CD-cache.

address from CPU

Clean Cache
data from CPU
dat% data from L2
Dirty Cache e

Fig. 1: Schematic representation of the clean/dirty-cache

Writes always go to the dirty cache and are never allocated
in the clean cache. If a write misses in the dirty cache, a
lookup is performed in the clean cache. If the data is found in
the clean cache, this data is invalidated and copied to the dirty
cache, thereby keeping the two structures mutually exclusive.
If the data is not found in either cache, the cache line is
fetched from the next memory level and stored in the dirty
cache. The dirty cache employs the write-back policy. Data
that is evicted from the dirty cache is always written back to
the next memory level, since it is dirty by definition. When
this happens, the clean cache is probed again to see if the
corresponding cache line is still available, i.e., this cache line
is not used to store other data and is therefore in invalid state.
If this is the case, the data is also written back to the clean
cache. Our experimental results show that this causes a small
reduction of L2 accesses.

Data that is read can reside in either the clean or the dirty
part. Therefore, when a read is issued, a lookup has to be
performed in both caches. When a read misses in both caches,
the data is fetched from the next memory level and is stored
in the clean cache.

TABLE II: Baseline memory hierarchy.
L1 Data Cache 32 or 36kB, 2-way, 32B lines, 2 cycles
L1 Inst. Cache 32kB, 2-way, 32B lines, 2 cycles
L2 Unif. Cache 1MB, 4-way, 128B lines, 12 cycles
Memory Latency | 100 cycles

Using such a split cache design can impact both the access
time and the energy consumption. Since writes always go
to the dirty cache and since both structures are mutually
exclusive, there is no negative impact on the hit time for writes.
For reads, the data can reside in either cache. This implies the
tags in both caches have to be checked before the data can be
read out. It is therefore assumed that read hits experience a
one cycle additional delay compared to a normal write back
cache of the same size. This furthermore implies that for every
read, the proposed cache organization spends twice as much
energy on comparing tags as compared to a normal cache.
However, since the dirty cache is much smaller than the clean
cache, reading data from the dirty cache takes less energy than
reading from the clean cache or from a normal cache. The
same is true for writes, which always go to the smaller dirty
cache but often incur additional tag checks. A more detailed
discussion of the energies involved with comparing tags and
reading out data is presented in Section IV.

An important property of the proposed design is that data
allocated by load instructions can only be replaced by other
load instructions, and that data allocated by store instructions
can only be replaced by other store instructions. This implies
that issuing a load will never cause a write-back event, and
as such, are not delayed by these. Loads can, however, be
delayed by write-back events due to previous instructions.

By limiting the size of the dirty cache, the maximum
number of cache lines marked dirty is significantly reduced
compared to a cache that employs a write-back policy. By
keeping a small windows of recent stores in the L1 cache,
a significant number of L2 cache accesses can be avoided
compared to a cache that employs write-though.

IV. EXPERIMENTAL EVALUATION
A. Experimental Setup

For the experiments in this paper, a selection of the
SPEC2000 [8] integer benchmarks has been used. These
benchmarks could be compiled and simulated without errors.
All benchmarks were simulated for at least 500 million cycles,
using sim-outorder from the SimpleScalar toolset [9], which
was extended with a detailed memory hierarchy, including
write-buffers and miss-status-holding-registers (MSHRs). Sim-
outorder was configured to resemble a modern wide-issue
superscalar processor. The most important parameters for the
baseline system are shown in Table II. For the CD-cache, the
same parameters were used except from a 1 cycle higher L1
read hit time.

We calculate energy by multiplying counters produced by
sim-outorder with the corresponding costs. The exact energies
consumed by certain events, such as L1 accesses, depend

HCD

M write-
back

M write- BCD
back

‘le B L1 tag Ileata‘

IPC

L2 accesses /1000 cycl

relative energy

gcc parser vortex gcc parser vortex § S § S E S 5 S § S E 8
mcf twolf vpr mcf twolf vpr gcc mcf parser twolf vortex vpr
(a) L2 accesses per 1000 cycles (b) IPC (c) Dynamic energy consumed in L1 and L2
Fig. 2: Results for write-back of 36kB and CD-caches of 32+4kB
on the used implementation and technology. Table III de- TABLE III: Energy consumption of 32kB 2-way set-
picts results produced by CACTI 5.3 [10] for 32kB 2-way associative caches with cache lines of 32 bytes.
set-associative caches with 32-byte cache lines, using high- technology [nm] 45 45 65 65
performance transistors. Although there are significant differ- number of banks ! 2 ! 2
ences for different implementations, the relative differences access time [ns] 0.828 1/0.750 1 1.392 1 1.261
p . ’ ; . . dynamic read energy [nJ] | 0.061 | 0.048 | 0.107 | 0.084
between the energy consumption of various parts is fairly leakage power [W] 0.040 | 0.031 | 0.046 | 0.035
constant. More specifically, the dynamic energy involved with dynamic power by tags 49% | 5.9% | 3.1% | 5.9%

one access to the cache is approximately twice as high as the
energy dissipated through leakage in a single cycle. Similarly,
CACTI simulations show that approximately 5% of the energy
is dissipated by tag comparisons, and that a 4kB cache requires
less than half the energy of a 32kB cache.

The following model is therefore used to measure energy
consumption: An L1 cache access is assumed to consume
twice as much dynamic energy as is dissipated through leakage
in one cycle. Of this energy, 5% is used for the tag comparison
and 95% for reading out data. CACTI results show that
accesses to the IMB L2 cache require approximately 5 times
as much energy as accesses to the L1 cache. This implies
that an access to L2 requires 10 times as much energy as is
dissipated through leakage in the L1 cache. It is noted that Hu
et al. [1] use the same energy relation between L2 accesses
and L1 leakage in most of their work. For the CD-cache, twice
as many tag comparisons are required. On the other hand,
some read accesses and all write accesses are serviced by the
much smaller dirty cache. According to CACTI, accesses to
a 4kB cache require less than half the energy of accesses to
a 32kB cache. It is therefore assumed that accesses to the
dirty cache reduce the energy involved with reading out data
by half. Leakage energy is dissipated every cycle, even when
there are no cache accesses.

The CD-caches are equipped with a 32kB cache structure
to store the clean data, and a 4kB structure to store dirty
data. Since the capacity of a cache has a significant impact on
its performance, these CD-caches are compared with baseline
caches of 36kB.

B. Experimental Results

Figure 2a depicts the number of accesses to the unified
L2 cache for both write-back and CD-caches. As expected,
the CD-cache in general increases the number of L2 accesses
compared to the baseline write-back cache. In most cases these
increases are moderate, but for the twolf and vpr benchmarks
they are quite significant, both in absolute and relative terms.

Although the CD-cache increases the number of L2 ac-
cesses, this does not necessarily imply a performance reduc-
tion. Figure 2b depicts the IPC for the baseline and CD-caches
of 36kB. The difference between the baseline and CD-cache
is rather small, and in most cases are in favor of the CD-
cache. Even for the twolf and vpr benchmarks, which showed
significant increases in L2 accesses, there is no real reduction
in performance. This is due to the following reasons. First, the
out-of-order processor is able to effectively hide the latency
of the additional L2 accesses, especially if they do not occur
concurrently with other L2 accesses. Second, due to the limited
number of dirty cache lines in the CD-cache, the accesses to
L2 are higher in frequency but also better spread over time.
More importantly, in a normal write-back cache a read may
result in both a transfer from the next memory level to retrieve
the requested data and a transfer back to the next memory level
when dirty data is evicted from the cache. In the CD-cache,
reads can never result in writing back data, and as a result
experience less delay.

Improving performance is, however, not the primary ob-
jective of the CD-cache. The goal is to limit the number of
dirty cache lines while maintaining comparable performance.
Furthermore, since the CD-cache is targeted at cache energy

reduction techniques, it is important to not increase energy
consumption in other parts. Figure 2c depicts the dynamic
energy consumption. The energy consumption in these figures
is measured by using the results produced by SimpleScalar
and multiplying these by the corresponding energy cost, as
described in Section IV-A. Fig. 2¢ depicts separate results for
the energies involved with tag comparisons, reading out data,
and L2 accesses.

For all benchmarks the CD-cache actually reduces energy
consumption. While twice as many tag comparisons are per-
formed and more requests to the L2 cache are issued, the
energy dissipated by reading/writing data to/from the L1 cache
is reduced. All write operations and also some reads are
performed on the much smaller dirty cache, which requires
significantly less energy per access.

V. CACHE DECAY CASE STUDY

Cache decay [1] reduces the static power consumption in
caches by switching off the power supply to cache lines that
have not been used for a certain number of cycles. Each line
is associated with a 2-bit saturating local counter. The local
counters are incremented on ticks from a global counter, while
a local counter is reset to O when a cache line is used. When a
local counter saturates, it generates a signal to switch off the
cache line. The valid bits are never switched off and indicate
whether a cache line is powered on.

In [1] it was shown that, based on the decay interval,
a significant number of cache lines will be switched off.
By switching off cache lines, however, the cache miss rate
increases. This can have a negative impact on performance.
Furthermore, the energy savings obtained by switching off
cache lines has to be offset against the increase in accesses to
the next memory level. The results show that a decay cache
can result in the same miss rate as a normal cache, while
having fewer powered-on cache lines, or in an improved miss
rate while having the same number of active cache lines.

Dirty cache lines, however, pose a problem as dirty lines
have to be written back to memory before they can be decayed.
Hu et al. [1] proposed to avoid bursts of write-backs on the
global tick signal by cascading the global signal from one
local counter to the next with a one cycle delay. This, however,
assumes that write-backs can always be written from the cache
to a buffer without experiencing stalls. The memory subsystem
is a known bottleneck and the same bandwidth that is used for
write-backs is also used for other means. This makes it hard, or
at least very costly, to always guarantee sufficient bandwidth
for writing back one cache line per cycle. Other solutions are
to stall the decay process whenever the write-back buffer is
full or to only decay dirty cache lines in case there is sufficient
room in the write buffers. Such solutions, however, would
require significantly more complex decay hardware and would
therefore consume additional energy.

We now show by experiments how the CD-cache can be
used to efficiently implement cache decay. The main advantage
of separating clean and dirty data in the CD-cache is that data
in the clean cache can be decayed without a problem. This

makes it possible to implement cache decay efficiently in this
part of the cache, without the need to include additional write-
back buffers.

Cache decay using the CD-cache is compared to a baseline
write-back cache that employs cache decay. The write-back
cache is assumed to have an additional write buffer with a
limited number of entries (4-16) for writing back data. It is
furthermore assumed that cache lines cannot be decayed if
there is no room in the write buffer.

To limit the complexity and simulation time, cache decay
is used only in the L1 data cache. Furthermore, performing
cache decay in L2 would give unrepresentative results as the
employed benchmarks do not significantly stress the L2 data
cache. In reality, cache decay would benefit any on-chip cache,
and especially large on-chip L2 caches as are common in many
modern CPUs. The results presented here are applicable to any
cache level.

Since cache decay is performed only in the L1 data cache,
the static energy saved by cache decay can be estimated by
the average fraction of L1 that is decayed multiplied with the
duration of the benchmark. This has to be offset against the
increased number of accesses to the next memory level. An
exact comparison between these two is very implementation
and technology specific. We therefore use the same energy
model as used in Section IV, which related the dynamic energy
involved with various operations in the caches to the leakage
current of the whole L1 data cache during 1 cycle.

Figure 3 depicts the average active size when employing
cache decay with varying periods on both a write-back and
a CD-cache. The active size of a cache is defined as the
percentage of cache lines that are powered on. As explained
before, cache decay in a normal write-back cache can be
limited due to the limited size of the write buffer. The results
depicted in this figure include data for write-back caches with
additional write buffers of 4, 8, and 16 entries. These are
labelled WB-4, WB-8, and WB-16 respectively.

Figure 3 shows that the effect of cache decay can be limited
if there is insufficient room to write back dirty cache lines.
While for some benchmarks, like gcc, a larger write buffer
leads to a decreased active size, a write buffer of more than
16 entries is required to attain the same number of decayed
cache lines as the CD-cache. This is because the CD-cache
can always decay cache lines in the clean part that have not
been used recently. The write-back cache, on the other hand,
may need to write back significantly more dirty cache lines
than there is room for in the write buffer.

When, based on the decay interval, the number of active
cache lines becomes really small, the size of the dirty cache
starts to play a significant role. This happens, for example,
with vortex with a decay interval of 4000 cycles, depicted
in Figure 3c. In this case, the CD-cache has on average 287
active cache lines in total. With a clean part of 32kB (1024
cache lines) and a dirty part of 4kB (128 cache lines), this
implies that only 159 clean cache lines are active on average,
and that almost half of the active cache lines are dirty cache
lines that cannot be decayed. When targeting such a significant

100% 100%

80% 80%

[0 ()

N] N

B 60% B 60%

0]

> 40% _02’ 40%

- +J

8 20% - o 20%
e 0% | 0%
W WB-s o
I WB-16 32 16 8 4
mco decay interval

(a) gee

Fig. 3: Average active size for write-back

100%

80%

60% —
40% —
20% —

active size

0% —

32 16 8 4 32 16 8 4
decay interval decay interval
(b) mcf (c) vortex

and CD-caches using cache decay (intervals in x 1000 cycles).

5 .
S S
() (&)
o o
o o
o o
— —
~ ~
0 0
o o
[write- © ©
back N o~
- -
mo ©w 32 16 8 4
cache decay interval

(a) gec

oo

9}
>
(9]
o
o
o
—
~
0
(9]
(9}
©
(aV]
32 16 8 4 — % 32 16 8 4
decay interval decay interval
(b) mcf (c) vortex

Fig. 4: L2 accesses per 1000 cycles for a write-back and a CD-cache using cache decay (intervals in x 1000 cycles).

reduction in active cache lines, a smaller dirty cache should
be employed.

Figure 4 depicts the number of L2 accesses per 1000 cycles
for the write-back cache and the CD-cache, using cache decay
with various decay periods. This figure also includes results
for the write-back and CD-caches without cache decay. These
are labelled oo, as they can be viewed as having an infinite
decay period. The write-back caches in these experiments are
equipped with a 16-entry write buffer.

As expected, the number of active cache lines decreases
and the amount of traffic to and from L2 increases with
decreasing decay periods. With a large decay period, hardly
any of the cache lines are turned off. With a very small decay
period, on the other hand, a significant number of additional
L2 accesses is generated. The optimal decay period depends
on the application and on the difference in energies due to
leakage currents and L2 accesses. Hu et al. [1] describe a
technique to adjust the decay period to the behavior of an
application. This, however, is beyond the scope of this work.

The exact energy savings attained by cache decay depends
on the relative amount of static energy consumed by the caches
versus the amount of dynamic energy required for a transaction
from or to the next memory level. In some cases, it might
be worthwhile to have a few additional accesses to the next
memory level to allow a significant part of the cache to be
shut down. In other cases, it might be better to shutdown a
smaller part of the cache, while making sure the number of
accesses is not increased.

Figure 5 depicts the total energy consumption in the L1

data cache, scaled to the baseline cache. The energy model
described in Section IV is used, where an L1 access is assumed
to consume twice as much energy as is dissipated through
leakage in one cycle, and where an L2 access is assumed to
cost 5 times as much as an L1 access. The results indicate the
amounts of energy consumed in the L1 data cache, separated
by static energy consumption due to leakage currents (L1
leakage), dynamic energy for reading and writing data (L1
data), and dynamic energy for tag comparisons. Since cache
decay increases the number of L2 accesses, we also include
the energy consumption due to additional L2 accesses in this
figure. As before, the write-back caches are equipped with a
16-entry write buffer.

The results show that the CD-cache with cache decay
consumes significantly less energy than a write-back cache
using cache decay. The additional energy consumed by the
increased number of tag comparisons in the CD-cache is easily
offset by the decrease in energy required for reading and
writing data. By separating clean and dirty data, the CD-
cache can employ cache decay on the clean part much more
successfully than a write-back cache, leading to a decrease in
the total energy.

So far, we have assumed that L2 accesses consume 10
times as much energy as is dissipated by the L1 cache in
a single cycle. This ratio may be different when using other
cache configurations or a different technology. From Figure 5,
however, it can be seen than even when L2 accesses would
dissipate twice as much energy, the CD-cache would still
consume less energy than a write-back cache.

[L1 leakage [l L1 data [L1 tags [l additional L2

accesses

0.9
0.8 —
0.7
0.6
0.5
0.4 —
0.3
0.2

0.1

relative energy consumption
o =
| |
relative energy consumption

no write- CD- no write- CD-
decay back cache decay back cache
(a) gee (b) mcf

1 —
0.9 —
S 5
= 0.8+ S
Q Q
€ 074 £
w w
c c
S 0.6 4]
> >
2 0.5 <
9] 9]
c c
@ 0.4+ @
9] 9]
2 2
© 0.3 ©
e e
0.2
0.1~
O —
no write- CD- no write- CD-
decay back cache decay back cache
(c) parser (d) twolf

relative energy consumption
relative energy consumption

no write- CD- no write- CD-
decay back cache decay back cache
(e) vortex (f) vpr

Fig. 5: Relative energy consumption in the L1 data cache when
using cache decay with a period of 16000 cycles.

VI. CONCLUSIONS

We have proposed the clean/dirty-cache, a novel cache
organization for handling writes in on-chip caches. The most
important property of the CD-cache is that it limits the number
of ‘dirty’ cache lines without having to ‘write-through’. As a
result, its performance is comparable to that of a conventional
write-back cache of the same size, while the number of dirty
cache lines is reduced by an order of magnitude. We have also
shown that the CD-cache, although generating more write-
backs, improves performance slightly compared to a write-
back cache.

In the proposed organization, all writes and some reads are
serviced by much smaller cache structure. It was shown that
this reduces the total cache energy consumption compared to
a normal write-back cache.

Reducing the number of dirty cache lines can be beneficial
in a number of ways. In this paper, it was shown how the
CD-cache can be used for a simple and efficient cache decay
implementation. Similarly, the CD-cache should be a prime
candidate for implementing other cache energy reduction
techniques, as well as for fault-tolerant caches.

In future research, we intend to investigate how the CD-
cache can be used to assist other energy reduction techniques,
and how it can be used to build energy-efficient fault-tolerant
caches.

REFERENCES

[1] Z. Hu, S. Kaxiras, and M. Martonosi, “Let Caches Decay: Reducing
Leakage Energy via Exploitation of Cache Generational Behavior,” ACM
Trans. on Computer Systems, vol. 20, no. 2, pp. 161-190, 2002.

[2] J. Kin, M. Gupta, and W. H. Mangione-Smith, “The Filter Cache: An
Energy Efficient Memory Structure,” in Proc. of the ACM/IEEE Int.
Symp. on Microarchitecture, 1997, pp. 184-193.

[3] N. P. Jouppi, “Improving Direct-Mapped Cache Performance by the
Addition of a Small Fully-Associative Cache and Prefetch Buffers,” in
Proc. Int. Symp. on Computer Architecture, 1990, pp. 364-373.

[4] ——, “Cache Write Policies and Performance,” in Proc. Int. Symp. on
Computer Architecture, 1993, pp. 191-201.

[5] P. P. Chu and R. Gottipati, “Write Buffer Design for On-Chip Cache,”
in Proc. IEEE Int. Conf. on Computer Design, 1994, pp. 311-316.

[6] H.-H. S. Lee, G. S. Tyson, and M. K. Farrens, “Eager Writeback - A
Technique for Improving Bandwidth Utilization,” in Proc. ACM/IEEE
Int. Symp. on Microarchitecture, 2000, pp. 11-21.

[71 M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar,
“Gated-Vdd: a Circuit Technique to Reduce Leakage in Deep-Submicron
Cache Memories,” in Proc. of the Int. Symp. on Low Power Electronics
and Design, 2000, pp. 90-95.

[8] S. P. E. Corporation, http://www.spec.org/.

[9] T. Austin et al., “Simplescalar 3.0,” http://www.simplescalar.com/.

[10] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi,
“CACTI 5.3,” http://www.hpl.hp.com/research/cacti/.

