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ABSTRACT

In this work, we study the notion of competing campaigns in a so-
cial network and address the problem of influence limitation where
a “bad” campaign starts propagating from a certain node in the net-
work and use the notion of limiting campaigns to counteract the
effect of misinformation. The problem can be summarized as iden-
tifying a subset of individuals that need to be convinced to adopt
the competing (or “good”) campaign so as to minimize the num-
ber of people that adopt the “bad” campaign at the end of both
propagation processes. We show that this optimization problem is
NP-hard and provide approximation guarantees for a greedy solu-
tion for various definitions of this problem by proving that they are
submodular. We experimentally compare the performance of the
greedy method to various heuristics. The experiments reveal that
in most cases inexpensive heuristics such as degree centrality com-
pare well with the greedy approach. We also study the influence
limitation problem in the presence of missing data where the cur-
rent states of nodes in the network are only known with a certain
probability and show that prediction in this setting is a supermod-
ular problem. We propose a prediction algorithm that is based on
generating random spanning trees and evaluate the performance of
this approach. The experiments reveal that using the prediction al-
gorithm, we are able to tolerate about 90% missing data before the
performance of the algorithm starts degrading and even with large
amounts of missing data the performance degrades only to 75% of
the performance that would be achieved with complete data.
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F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems

General Terms

Theory
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1. INTRODUCTION
Online social networks have many benefits as a medium for fast,

widespread information dissemination. They provide fast access
to large scale news data, sometimes even before the mass media
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as in the case of the announcement of death of Michael Jackson
[34]. They also serve as a medium to collectively achieve a social
goal. For instance with the use of group and event pages in Face-
book, events such as “Day of Action” protests reached thousands
of protestors [16]. While the ease of information propagation in
social networks can be very beneficial, it can also have disruptive
effects. One such example was observed during the recent shoot-
ings at Fort Hood, Texas, when a soldier inside the base sent out
messages via Twitter as the event unfolded. Her incorrect reports
of multiple shooters and shooting locations quickly spread through
the social network and even to the mass media where it was re-
ported on television broadcasts [22]. Another example is the spread
of misinformation on swine flu in Twitter [35]. The spread of mis-
information in this case reached a very large scale causing panic in
the population. Although social networks are the main source of
news for many people today, they are not considered reliable due
to such problems.

Clearly, in order for social networks to serve as a reliable plat-
form for disseminating critical information, it is necessary to have
tools to limit the effect of misinformation. In the presence of a
misinformation cascade, we aim to find a near-optimal way of dis-
seminating “good information” that will minimize the devastating
effects of a misinformation campaign. For instance in the case of
[35, 22], we seek ways of making sure that most of the users of
the social network hear about the correct information before the
bad one, making social networks a more “trustworthy” or “reliable”
source of information. In addition to the implication our work has
in limiting the effect of misinformation, our methods can be applied
to any two simultaneously spreading competing campaigns.

In this work, we study the problem of minimizing the number of
people that adopt the misinformation and prove that even though
the general problem does not exhibit the submodular property, cer-
tain restricted versions of it are in fact submodular. We exploit this
property to provide efficient solutions with approximation bounds.
We also evaluate the performance of our algorithm on a number
of close-knit regional networks obtained from the Facebook so-
cial network comparing its performance with some well-known
heuristics including degree centrality. We show that in many cases,
heuristics have performance comparable to the more computation-
ally intense greedy method. Since in the real world, decisions about
how to deploy a limiting campaign need to be made with incom-
plete data, we also consider the case where the states of only a
fraction of the nodes in network can be observed. We show that,
although the naive solution to the optimization problem in this set-
ting is intractable, using matrix tree theorem [27] and the fact that
the specific problem is supermodular [39], a polynomial time so-
lution can be used where polynomial time is defined in terms of
calls to an oracle function. However, this solution is still expensive
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for large scale social networks, so we propose a prediction method
that is based on generating random spanning trees on a set of likely

to have been infected nodes to predict the missing information. We
show that in most cases, this method has good performance, i.e. de-
cisions made as to who to first influence by the limiting campaign
under uncertain data still result in effective inoculation.

We start with a brief overview of information propagation in so-
cial networks in Section 2. In Section 3, we introduce our model
of communication and formalize the influence limitation problem.
In Section 4 we prove NP-hardness and submodularity of influence
limitation. Submodularity guarantees approximation bounds for a
greedy algorithm presented in Section 4.3. In Section 5, we provide
the experiments that compare the performance of the greedy solu-
tion with various heuristics. In Section 6, we explore the problem
in the presence of missing information and propose an algorithm
for predicting the missing data and limiting the spread of misinfor-
mation in that setting. Finally, Section 7 concludes the paper.

2. RELATED WORK
The identification of influential users in a social network is a

problem that has received significant attention in recent research.
For the influence maximization problem, given a probabilistic model
of information diffusion such as the Independent Cascade Model,
a network graph, and a budget k, the objective is to select a set A
of size k for initial activation so that the expected value of f(A)
(size of cascade created by selecting set A) is maximized [12, 37].
Early works relied on heuristics such as node degree and distance
centrality [42] to select the set A. Although the problem of finding
an optimal solution in this model is NP-hard, there is a greedy al-
gorithm that yields a spread that is within 1 − 1/e of optimal [24].
This solution depends on Monte Carlo simulations which are com-
putationally expensive. Work has been done to improve the per-
formance of this greedy algorithm [8, 31, 26, 9], but scalability re-
mains a significant challenge. In addition to the scale issues, these
definitions of influential users ignore certain aspects of real social
networks such as the existence of competing campaigns. In this
work we consider different models of communication that incorpo-
rate different aspects of real social networks. Similar to [24, 31],
we identify a problem that involves detecting “influential nodes”
and study the feasibility of a solution to this problem. However,
our problem formulation is more general since we model the exis-
tence of competing cascades dissipating in a network.

The existence of competing campaigns has been captured by a
number of studies recently. Dubey et al. [13] study the problem
as a network game focusing on quasi-linear model and consider
various cost, benefit and externality functions for competing firms.
They study the existence of Nash Equilibrium (NE) and show that
it is unique if there is enough competition between firms or if their
valuations of clients are anonymous. Bharathi et al. [4] augment
the Independent Cascade Model to capture the existence of com-
peting campaigns in a network. Their diffusion model is similar to
ours and captures the timing issues that are crucial in competing
campaigns optimization problems. The algorithmic problem de-
fined in [4] is: when there is more than one campaign dissipating
in a network and each campaign can select a set of early adopters
so as to maximize their benefit, what is the best strategy for the
players? This work studies the problem from both the first and last
player’s perspectives and shows that the problem of selecting the
early adopters for the last player is submodular. They also intro-
duce a fully polynomial time approximation scheme for the first
player when the network structure is a tree. Carnes et al. [7] con-
sider the same problem from the last player’s perspective and use a
diffusion model where nodes of the network choose the campaign

to adopt w.r.t. their distance to the early adopters of the campaigns
and another model where the nodes make a uniform random choice
among its active neighbors. The experimental results show that
the greedy approach performs better than the heuristics. They also
experimentally show that the best strategy for the first player is to
choose high degree nodes. Kostka et al. [29] study competing cam-
paigns as a game theoretical problem and show that being the first
player, i.e. the first to decide, is not always advantageous. Both
[7, 4] use diffusion models where the two campaigns propagate ex-
actly the same way, i.e. the probability of diffusion on a certain
edge is the same for both campaigns and both start at the same
time. In our work, we study the case where the competing cam-
paigns have different acceptance rates and one is in response to the
other, and therefore the campaign of the last player is started with a
delay. Also, different from previous work we address the problem
of influence limitation as opposed to maximization.

The problem of limiting the effect of misinformation in a social
network can be seen as similar to the problem of epidemics and in-
oculation. There are many studies on the spread of infections and
immunization [41, 3, 25]. A recent work on identifying influen-
tial people in a social network [28] uses SIS (susceptible-infected-
susceptible), SIR (susceptible-infected-recovered) models [2, 11,
21] and concludes that the influence of a node is more dependent
on its location in the network than the number of connections it has.
This work captures the notion of being “immunized” but the immu-
nization is limited to the node that is inoculated by external means.
Conversely, we consider the case where once a node is inoculated,
it can inoculate more people (by virally spreading the “good” in-
formation). Inoculation has also been studied in the game theory
literature. Meier et al. [33] study inoculation games in social net-
works. The problem is posed in terms of virus propagation where
the owner of each node decides whether or not to protect itself.
Here inoculation has a direct effect only on the inoculated node,
meaning that the “good” information does not propagate. The deci-
sion to “protect” oneself is a distributed process, each node decides
for itself and aims to maximize its own function whereas we con-
sider the problem of finding the best solution for the community.

3. DIFFUSION OF MISINFORMATION
A social network can be modeled as a directed graph G = (N, E)

consisting of nodes N and edges E. In the context of influence
spread, N can be viewed as the users of the social network. A node
w is a neighbor of a node v if and only if there is ev,w ∈ E, an edge
from v to w in G. In addition to this, pv,w is assigned to each edge
ev,w which is used to model the direct influence v has on w.

3.1 Diffusion Models
Independent cascade model (ICM) is one of the most basic and

well-studied diffusion models that has been used in different con-
texts [14, 32, 17, 19]. In the ICM, a process starts with an initial
set of active nodes A0, and unfolds in discrete steps. When node v

first becomes active in step t, it has a single chance to activate each
currently inactive neighbor w; it succeeds with probability pv,w. If
v succeeds, then w will become active in step t + 1; but whether or
not v succeeds, it cannot make any further attempts in subsequent
rounds. The process runs until no more activations are possible. If
w has incoming edges from multiple newly activated nodes, their
attempts are sequenced in an arbitrary order.

We now introduce the Multi-Campaign Independent Cascade

Model (MCICM) which models the diffusion of two cascades evolv-
ing simultaneously in a network. Let C (for “campaign”) and L (for
“limiting campaign”) denote the two cascades. The initial set of ac-
tive nodes for cascade L (C) is denoted by AL (AC ). When a node
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v first becomes active in campaign L (or C) in step t, it has a single
chance to activate each currently inactive neighbor w in campaign
L (or C) and it succeeds with probability pL,v,w (or pC,v,w) given
that no neighbor of w tries activating w in the competing campaign
at the same step. We also refer to pL,v,w (or pC,v,w) as the prob-
ability of the edge ev,w being live. If there are two or more nodes
trying to activate w at a given time step, at most one of them can
succeed. In independent cascade, when w has several newly ac-
tivated neighbors, their attempts are sequenced in arbitrary order.
However in our studies, we will assume that there is a natural order
to the two campaigns, more specifically one is “good” while the
other is the “bad” campaign and if the “bad information” and the
“good information” reach a node w at the same step, “good infor-
mation” takes effect. Once a node becomes active in one campaign,
it never becomes inactive or changes campaigns and the process
continues until there is no newly activated node in either campaign.

We also consider another model of diffusion in which the proba-
bilities of each edge being live is independent of the campaign. In
this setting we only associate one probability pv,w with each edge
ev,w. No matter which information reaches a node v, v forwards
this information to its neighbor w with probability pv,w. Although
this model is not a perfect fit for the inoculation of misinforma-
tion, it is a good fit for modeling competing campaigns where the
two information cascades are more likely to be of similar “qual-
ity” and the nodes would agree to the campaign that reaches out
to them first. Consider for example two news articles L and C
about the same event spreading in a social network. The probabil-
ity of a user forwarding article L and C is more dependent on the
news itself rather than which agency the news is from. Similar to
the Multi-Campaign Independent Cascade model, there are three
states a node can be in; inactive, in campaign L, in campaign C and
once a node becomes active in either L or C, it cannot change its
state. As before, we assume that in the case of simultaneous trials
of activation at a node, campaign L is ordered before C. We call
this model Campaign-Oblivious Independent Cascade (COICM).
COICM is similar to the diffusion model used in [4]. However we
assume that one of the campaigns is prioritized over the other in the
case of simultaneous activation trials whereas independent and ex-
ponentially distributed continuous random variables are assigned
to each edge as delay in [4] to ensure there are no simultaneous
activation trials. The earlier studies using similar diffusion mod-
els support the validity of MCICM and COICM. However whether
such models reflect the real influence spread in social networks is
still an open problem. In future work, we plan to investigate this
problem by studying the behavior in real social networks.

3.2 Problem Definition
While a substantial amount of research has been done in the con-

text of influence maximization, a problem that has not received
much attention is limiting the influence of a misinformation cam-
paign. One strategy to deal with a misinformation campaign is to
limit the number of users who are willing to accept and spread it.
We will assume the Multi-Campaign Independent Cascade Model

described in Section 3.1 as the model of communication. W.l.o.g.
we will assume that the spread of influence for campaign C starts
from one node na and is detected with delay r and at that point
campaign L is initiated. However the algorithms can be easily ex-
tended to the case where C starts from a set of nodes and the proofs
of NP-hardness and submodularity still hold for this case.

Depending on the context that the influence limitation problem
is introduced in, we need to consider different objective functions.
The objective can be to try and “save” as many nodes as possible,
to limit the lifespan of the “bad” information campaign or to maxi-

mize the effect of the “good” campaign in the presence of the “bad”
campaign. In this paper, we will focus on minimizing the number
of nodes that end up adopting campaign C when the information
cascades from both campaigns are over. We refer to this problem
as the eventual influence limitation problem (EIL).

4. EVENTUAL INFLUENCE LIMITATION
Given a network and the Multi-Campaign Independent Cascade

Model defined in Section 3.1, suppose that a campaign C spreading
bad information is detected with delay r. Given budget k, select
AL as seeds for initial activation with the limiting campaign L such
that the expected number of nodes that adopt campaign C, σ(AC)
is minimized. Let IF (AC) denote the influence set of C in the
absence of L, i.e the set of nodes that would accept campaign C
if there were no limiting campaign. We define the function π(AL)
to be the size of the subset of IF (AC) that campaign L prevents
from adopting campaign C. Then, the influence limitation problem
is equivalent to selecting AL such that the expectation of π(AL)
is maximized. Note that we are not necessarily interested in the
number of inoculated nodes but the inoculated nodes that would be
infected otherwise. We will refer to this set of nodes as saved.

We now outline a solution to a simplified version of this problem
where there is only a single source of information for C, meaning
|AC | = 1. We refer to this node as the adversary node or na As it
may be much easier to convince a user of the truth than a falsehood,
we also assume that the limiting campaign information is accepted
by users with probability 1 (pL,v,w = 1 if there is an edge from v
to w and pL,v,w = 0 otherwise). We refer to this notion as high-

effectiveness property. Even with these restrictions, EIL is NP-hard
and therefore finding the optimal solution is expensive. However as
we will establish in Section 4.2, the problem is submodular which
guarantees that we can provide approximation bounds with a sim-
ple hill climbing approach. Later we will investigate a more general
form of this problem where we allow arbitrary values for pL,v,w

and show that this problem is no longer submodular.

4.1 NP-Hardness of EIL
THEOREM 4.1. EIL is NP-hard even with the high effectiveness

property.

PROOF. Consider an instance of the NP-complete Set Cover
problem, defined by a collection of subsets S1, S2, ..., Sm for a
universe set U = {u1, u2, ..., un}; we wish to know whether there
exist k of the subsets whose union is equal to U . We show that this
can be viewed as a special case of EIL. Given an arbitrary instance
of the Set Cover problem, we define a corresponding directed bi-
partite graph with n+m+1 nodes: there is a node i corresponding
to each set Si, a node j corresponding to each element uj , and a
directed edge (i, j) whenever uj ∈ Si. In addition, there is an ad-
versary node a and a directed edge (a, j) for all uj with activation
probability pa,j = 1. The Set Cover problem is equivalent to decid-
ing if there is a set AL of k nodes in this graph with π(AL) ≥ n+k
when we become aware of campaign C at time step 0 (when a itself
is active in campaign C but has not contacted any of its neighbors
yet). Note that for the instance we have defined, activation is a de-
terministic process, as all probabilities for adversary to infect its
neighbors are 0 or 1. Initially activating the k nodes corresponding
to sets in a Set Cover solution results in saving all n nodes corre-
sponding to the ground set U , and if any set AL of k nodes has
π(AL) ≥ n+k, then the Set Cover problem must be solvable.

4.2 Submodularity of EIL
A function f(.) is said to be submodular or have “diminishing

returns” if it satisfies the following property: f(S ∪ v) − f(S) ≥
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f(T ∪ v) − f(T ), for all elements v and all pairs of sets S ⊂ T ,
i.e. the marginal gain from adding an element to a set S is at least
as high as the marginal gain from adding the same element to a su-
perset of S. As proved by Nemhauser, Wolsey, and Fisher [10, 36],
for submodular and monotone functions, the greedy hill-climbing
algorithm of starting with the empty set, and repeatedly adding an
element that gives the maximum marginal gain approximates the
optimum solution within a factor of (1− 1/e). Here we will prove
that the influence limitation problem is submodular when the lim-

iting campaign has the high effectiveness property. We omit the
proofs of monotonicity of EIL due to space limitations but to give
an intuition for monotonicity we note that having more nodes to
initially activate in campaign L can never have a negative effect

under the models of diffusion we study.
Since influence spread over G is a stochastic process, the influ-

ence function for a set of nodes is tricky to define. Following the
same approach presented in [24], we view an event of a newly acti-
vated node v attempting to activate its neighbor w and succeeding
with pC,v,w as flipping a coin with bias pC,v,w. It does not matter
whether the coin is flipped at the moment when v tries to activate
w, or if it was pre-flipped and stored to be examined at the time
when v tries to activate w. So while considering a specific instance
of influence spread, we can pre-flip all the coins to determine which
edges of the graph G are live (meaning if the start node of this edge
were to be activated, it would succeed in activating its neighbor)
or blocked (meaning the attempt would be unsuccessful). In this
setting, the spread of “bad campaign” C can be modeled as graph
G′ = (N ′, E′). where N ′ represents the set of nodes that are
reachable from adversary node na via live edges and E′ represents
the set of live edges amongst the nodes in N ′.

Consider the graph of 10 nodes represented in Figure 1(a). As-
sume that by pre-flipping the coins, we end up with probabilities
such that the solid lines are live edges and dotted lines are blocked

edges. In this case a campaign starting from adversary node 0
would reach nodes 0, 1, 2, 3 if there was no limiting campaign. A
first look at this graph (or the general EIL in general) suggests that
in order to save node 3, we need to make sure both 1 and 2 should
be saved (or 3 should be saved directly). Superficially, it would
seem that submodularity is no longer viable. Since saving only 1
or 2 would not be sufficient to save 3, but their combination would.
However, a closer look at this problem reveals that we do not need
to secure all the possible paths to a node from an adversary but just
the shortest path. If L can reach 3 before C, 3 can never be in-
fected. For instance, for the campaign in Figure 1(a), if campaign
L reaches node 1 by r = 1, it will be saved. In this case the good
campaign will reach node 3 at r = 2 and even if node 2 is not
saved, that still guarantees that node 3 will be saved. Next we pro-
vide the formal proof of submodularity for EIL. Note that the proof
depends on the high-effectiveness property of the good campaign.
Later on, we will show that when this property does not hold, EIL

is not, in general, a submodular function.

CLAIM 1. In MCICM with the high effectiveness property a

node w can be saved if and only if ∃ v such that v ∈ AL and

|SPG(v, w)| + r ≤ |SPG′(na, w)| where SPG(v, w) denotes a

shortest path from node v to w in graph G.

PROOF. 1. If ∃ v such that v ∈ AL and |SPG(v, w)| + r ≤
|SPG′(na, w)|, then w is saved: Assume that such a v exists but
w could not be saved. This is only possible if the bad campaign
C reaches w strictly before L since otherwise w would be saved
at ts = |SPG(v, w)| + r. So there must exist a path PG′(na, w)
from na to w such that |PG′(na, w)| < |SPG(v, w)| + r. Since
|SPG(v, w)|+r ≤ |SPG′(na, w)|, |PG′(na, w)| < |SPG′(na, w)|.

This means there is a shorter path from na to w in G′ than the short-
est path which is a contradiction.

2: If ∄ v such that |SPG(v, w)| + r ≤ |SPG′(na, w)|, then

w cannot be saved: Assume contrary, i.e. ∄ v s.t. SPG(v, w) ≤
SPG′(na, w) and w is saved. If w is saved, at least one of the
nodes in one of those shortest paths must have been activated in L
since otherwise C would propagate on one of those paths to w and
infect it. W.l.o.g. let a shortest path from na to w consist of nodes
na, n1, n2..., ni, w and nj ∈ SPG′(na, w) be a node activated in
L, nj can only be activated in L if L reaches nj at ts ≤ j because
SPG′(na, j) = na, n1, n2, ..., nj−1, nj . Therefore ∃ v ∈ AL

s.t. |SPG(v, nj)| + r ≤ |SPG′(na, nj)|. Since |SPG(nj , w)| ≤
|SPG′(nj , w)|, |SPGv, w|+ r ≤|SPG(v, nj)|+ SPG(nj , w)|+
r ≤ |SPG′(na, nj)| + |SPG′(nj , w)| ≤ |SPG′(na, w)|. This
contradicts with the initial assumption that ∄ v s.t. |SPG(v, w)| +
r ≤ |SPG′(na, w)|.

THEOREM 4.2. EIL is submodular when the limiting campaign

L has high-effectiveness property

PROOF. Consider the inoculation graph G′′ = (N ′′, E′′) s.t.
N ′′ = {u|u ∈ N ∧ u /∈ I} and E′′ = {(u, v)|v ∈ Su} where
Su = {v|v ∈ N ′ ∧ |SPG(u, v)| + r ≤ |SPG′(na, v)}| and I is
the set of nodes that are infected by time step r. Based on Claim
1, the EIL when L has high-effectiveness property is equivalent to
maximizing the number of nodes reachable from the set AL in G′′

and as established in [24], this is submodular.

Unfortunately, the general EIL problem where L does not have
the high-effectiveness property is not in general submodular. Con-
sider the graphs in Figure 1. Assume an instance of EIL where
G′′ representing the spread of influence for the good campaign L
consists of nodes 1,2,5,6 and the edges e5,1, e6,2. In this case,
f(5) = 1, f(6) = 2, f(5, 6) = 1, 2, 3 since by using 5(6) as a
seed, L can save node 1(2). (Since e1,3(e2,3) is not a live edge
for L, the good campaign will never reach node 3, and 3 will be
infected by node 2(1) at the next time step.) On the other hand if
AL = {5, 6} both 2,3 will be saved and since these are the only
two nodes that could infect 1, node 1 will also be saved. This ex-
ample shows that EIL without the high-effectiveness property is not
in general submodular.

Finally, consider the Campaign-Oblivious Independent Cascade

introduced in Section 3.1 where the probabilities on the edges are
campaign-independent. In this case we associate only one proba-
bility pv,w with each edge ev,w. This model fits competing cam-
paigns where the two campaigns are trying to get users to adopt
very similar products or ideas. In this case users are as likely to
adopt campaign L as they would adopt campaign C. Note that, this
model does not rely on either one of the campaigns being good or
bad and therefore can be applied to any two competing campaigns.

CLAIM 2. EIL is submodular for Campaign-Oblivious Inde-

pendent Cascade Model.

PROOF. Since a node can only be activated in one campaign,
an edge ev,w will only be visited at most once. Therefore, using
the same idea presented in 4.2, we can pre-flip all the coins to de-
termine which edges are live or blocked for an instance of influ-
ence dissemination from campaigns C and L. Consider the graph
Glive = (N, E′) where E′ is the set of live edges in E. Both L and
C can be modeled as propagating on this graph. Let N ′ denote the
nodes that are reachable from adversary na via live edges. In this
case, influence limitation problem is equivalent to maximizing the
number of nodes reachable from AL in G′′ where G′′ = (N ′′, E′′)
s.t. N ′′ = {u|u ∈ N ∧ u /∈ I} and E′′ = {(u, v)|v ∈ Su} where
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Su = {v|v ∈ N ′ ∧ |SPGlive(u, v)| + r ≤ |SPGlive(na, v)}|
and I is the set of nodes that are infected by time step r. Since
reachability problem is submodular [24], so is EIL on COICM.

(a) Spread of C. Solid
lines are live and dotted
lines are blocked edges.
The adversary node 0,
without an opposing cam-
paign, reaches 1,2 and 3

(b) The shortest
path structure for
spread of influ-
ence for the bad
campaign

Figure 1: General Influence Spread

4.3 Possible Solutions for EIL
Since EIL for MCICM where the limiting campaign has high

effectiveness property or for COICM in general are submodular
and monotone, the hill climbing approach provides a (1− 1/e) ap-
proximation [10, 36] for these problems. Figure 2 provides this
greedy algorithm that yields an AL for which π(AL) is within
1 − 1/e of optimal. The algorithm works for a given graph G, a
set of adversaries Sa, delay r and budget k, i.e. number of nodes to
initially activate in campaign L. According to our problem defini-
tion Sa consists of only one node na, however the proofs can easily
be generalized to hold for multiple initial adversaries. Since inde-
pendent cascade is a stochastic process, computing π for a given set
of nodes requires running a large number of simulations (#sim) as
demonstrated in steps (6,7). The procedure InfLimit (G,Sa,r,S,v)

decides liveness of edges in G based on the probability associated
with that edge and simulates the influence limitation given that the
set of adversaries that C starts from is Sa, the adversary campaign
is caught with delay r, the nodes we have already chosen to initially
activate in campaign L is S and the node that we are evaluating the
influence of is v. This method returns the marginal gain of v i.e.
number of people v could save but the set S could not, where the
nodes that could be saved by v are the nodes that have a shorter
path from v than of any node in set Sa.

Considering the large scale of social networks today and the
complexity of the EIL, even the greedy approach that is a polyno-
mial time algorithm is too costly to be used in real social networks.
Therefore, we seek alternatives that can potentially compare well
with the greedy approach which, as we have proved, is guaranteed
to be a good approximation. We consider three different heuristics.
The first heuristic we consider is the degree centrality which has
been used in early work to target “influential people” [42].

1: {Given (G,AC ,r,k) where G = (N, E), AC is the set of ad-
versaries and r is the delay and k is the number of seeds}

2: Initialize AL to ∅, R to #sim

3: for i = 1 to k do
4: for each vertex v ∈ N − AL do
5: sv = 0
6: for j = 1 to R do
7: sv+ = InfLimit(G, Sa, r, AL, v)
8: sv = sv/R
9: AL = AL ∪ {argmaxv∈V −AL

{sv}}
10: Output AL

Figure 2: Greedy algorithm to select the set for initial activation

The second heuristic we consider is called early infectees and
entails choosing seeds that are expected to be infected at time step
r. This is equivalent to reaching out to nodes that would be infected
early on but after L is started, since those nodes are likely to create
a large cascade for campaign C. In order to calculate this heuristic,
we run #sim simulations of infection spread from Sa and select
nodes AL in decreasing order, where the nodes are ordered w.r.t.
the number of simulations they were infected at time step r.

The third heuristic is largest infectees. This heuristic is very sim-
ilar to the early infectees but rather than choosing the nodes that are
expected to be infected early on, it chooses seeds that are expected
to infect the highest number of nodes if they were to be infected
themselves. In this case we only consider nodes that would be in-
fected after time step r. In order to calculate this heuristic, we run
#sim simulations of infection spread from Sa and at each simula-
tion we increase the value vali of a node ni that is infected after
time step r by the number of nodes nj s.t. ni is on the shortest path
from an adversary in Sa to nj . We select nodes AL in decreasing
order of vali. Note that both early infectees and largest infectees

are computationally more intensive to compute than degree cen-
trality. However they are still far less expensive than the greedy
method that involves shortest path computations. Though not di-
rectly applicable due to different natures of the problems, the large
body of research in influence maximization [8, 26] can be leveraged
from to obtain a larger pool of heuristics for EIL. We leave a more
extensive evaluation including such heuristics as future work.

5. EVALUATION
Here we evaluate the performance of the greedy algorithm w.r.t.

the three heuristics. Note that since influence propagation is a
stochastic process, in order to evaluate value of each seed set with
an error ǫ with high probability, we need to perform Monte Carlo
simulations polynomial in 1/ǫ and the number of nodes of the net-
work [23]. This is one of the major scalability issues inherent in
this type of problem. However, in our specific problem each sim-
ulation involves the expensive computation of shortest paths which
is crucial to EIL and this makes EIL even more computationally
intense then the influence maximization problems [24, 31]. We
ran experiments choosing the adversary uniformly randomly. As
part of our experiments, we also evaluated how factors like the
degree centrality of the adversary, delay of campaign L, and the
weight distribution for pC,v,w and pL,v,w influence our choice of
best fit algorithm. This requires performing the computationally
expensive simulations for each choice of such parameters. Taking
these factors into consideration we performed experiments on 4 re-
gional network graphs obtained from Facebook that exhibit proper-
ties such as power-law degree distribution, high clustering and pos-
itive assortativity [43]. The data sets are as follows: 2009 snapshot
of Santa Barbara regional network with 26455 nodes and 453132
edges (bi-directional edges count as two edges); 2008 snapshot of
the same network with 12814 nodes and 184482 edges; 2009 snap-
shot of the Monterey Bay regional network with 14144 nodes and
186582 edges; and 2008 snapshot of the same network with 6117
nodes and 62750 edges.

In Figure 3 we present our evaluation of the 4 methods on MCICM
when L has the high effectiveness property and pC,v,w values of
0.1 using the Santa Barbara 2008 data set. The y-axis represents
the percentage of the population that was saved. The x-axis repre-
sents the number of nodes that are initially activated in L. Figure
3(a) demonstrates the case where delay = 20% i.e. the ratio of
the delay of the algorithm L to the duration of the campaign C is
0.2. In this case, all of the methods perform well, saving a large
portion of the population. Figure 3(b) shows the rapid decay of the
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(a) delay = 20% (b) delay = 50%

Figure 3: Evaluation on SB08 for MCICM with high effective-

ness property

performance of all the approaches in the case where delay is 50%.
Here we omit the case where delay is 70% since all of the algo-
rithms were doing poorly, especially degree centrality had near-0
value. We conducted the same experiments on the other data sets
for which the result were similar. We also conducted experiments
setting pC,v,w values to 0.5 instead of 0.1. Though the percent-
age saved is smaller for all algorithms, the trend w.r.t. increasing k
was similar. Due to space limitations, we omit the graphs for these
experiments. It is evident that for MCICM when L has the high

effectiveness property, the biggest determining factor is how late
the limiting campaign L is started. When L is started early, all the
methods perform well whereas when the delay is large, all the al-
gorithms perform poorly. For larger delays, greedy performs better
than the other algorithms but the portion of the population saved is
so small in all cases that this improvement is not significant.

(a) delay = 20% (b) delay = 20%, deg(na) ≥ 40

Figure 4: Evaluation on SB08 for COICM

In Figure 4 we present our evaluation of the 4 methods on COICM
using the Santa Barbara 2008 data set and setting pv,w values to
0.1. Figure 4(a) shows that when the delay is 20% both the largest

infectees and degree centrality heuristics perform similar to the
greedy method. Due to space limitations we omit the graph pre-
senting the performance of the approaches when the delay is large.
However as an example we note that when the delay is 50% and the
number of seeds is 10, the greedy method performs 8%, 36% and
116% percent better than largest infectees, degree centrality and
early infectees respectively. The reason for the decay of perfor-
mance of degree centrality heuristic w.r.t. the delay is that degree
centrality is purely a structural heuristic so the expectation of being
infected is not computed for the seeds in AL. When L is started
too late, the highly connected nodes and their neighbors are more
likely to have already been activated in campaign C. Comparing
Figure 3(a) and 4(a), we observe the importance of high effective-

ness since for the latter an average of 72% of the population can be
saved with 10 seeds whereas the former shows consistent savings
of 90-95% even with only one seed. Figure 4(b) presents the case
where the delay of L is 20% and the adversary that C starts from,
has degree ≥ 40. All methods are less effective when the start node
of C is a highly connected node, since a highly connected adver-

sary is likely to infect more people early on in which case when L
is started a large portion of the population is already infected.

Next, we evaluate MCICM where L does not have the high effec-

tiveness property. In this case, the greedy algorithm is too costly to
perform since many of the optimizations we performed for the ear-
lier two cases cannot be applied. Considering the results obtained
from the earlier two sets of experiments, we conclude that, at least
for close-knit social networks, the heuristics introduced above re-
sult in a good performance. Therefore we evaluated how well they
perform on a slightly larger social network to see if there was con-
sistency in their behavior. Figure 5 presents the test results for the
Santa Barbara 2009 data set. Figure 5(a) presents the case where
the limiting campaign is started early (delay is 20%) but campaign
C is more dominant (0 ≤ pC,v,w ≤ 0.5 for all edges) than L
(0 ≤ pL,v,w ≤ 0.1 for all edges) in the sense that nodes are more
likely to adopt C than L. Figure 5(b) presents the opposite case
where L is more dominant than C. In both cases, the degree cen-
trality and largest infectees heuristics have similar behavior while
early infectees performs worse than both. The savings are much
larger for Figure 5(b) compared to Figure 5(a). We also note the
similarity of Figure 5(b) with Figure 3(a), and claim that even if
campaign L does not have the high effectiveness property, if it is
more dominant than C, it is still likely to save a large population.

(a) delay = 20%, 0 ≤ pC,v,w

≤ 0.5, 0 ≤ pL,v,w ≤ 0.1
(b) delay = 20%, 0 ≤ pC,v,w

≤ 0.1, 0 ≤ pL,v,w ≤ 0.5

Figure 5: Evaluation on SB09 for MCICM

There are crucial lessons we can extract from the tests we per-
formed: 1) In almost all cases, largest infectees performs compara-
ble with the greedy algorithm while being far less computationally
intense. The early infectees heuristic, on the other hand, performs
poorly since it strictly targets nodes that are expected to be infected
at time step r. In many cases even the simpler heuristic of degree
centrality is a better alternative. 2) Parameters such as the delay
of L, the connectedness of the adversary na are crucial to iden-
tify correctly to choose the right method for determining influential
nodes for limiting a bad campaign C. For instance, when the delay
is large, degree centrality is not a good option whereas it performs
well for small delays. Having sufficient information about such
parameters can help identify the best method for EIL.

6. EIL WITH INCOMPLETE DATA
So far, we have focused on the problem where AC and the delay

r are known. Therefore, we can provide an approximation algo-
rithm with error bounds for the expected case. However, such pre-
cise data is not easy to attain. Practically, decisions must be made in
the face of missing information. Therefore, we study a more realis-
tic formulation of the EIL where the information about the current
state of the nodes is incomplete and an approximate value for the
number of currently infected nodes is known. The question we ad-
dress is: “Can effective inoculation be performed in the presence of
incomplete data and how fast does the performance degrade w.r.t.
the amount of missing data?”

Consider a specific instance of propagation of a bad campaign C.

WWW 2011 – Session: Information Credibility March 28–April 1, 2011, Hyderabad, India

670



Assume that this process is detected at round r (value of r is un-
known) at which point the limiting campaign L is to be started. Let
the set of active, inactive and newly activated nodes for campaign
C at round r be denoted Λ, Σ and Ξ respectively. Assume further
that we are given the sets Λgiven and Σgiven where Λgiven ⊂ Λ
and Σgiven ⊂ Σ, i.e. we know for only a subset of nodes if cam-
paign C reached out to and activated them by the time campaign L
is to be started. Note that we assume Ξ is completely unknown, i.e.
the current infectors are unknown and the value of r is not given.

The main idea we employ in this section is to provide a good
prediction of the sets Λ, Σ and Ξ given Λgiven, Σgiven and ca (an
approximate value for |Λ|). Let the predicted sets be Λpred, Σpred,
Ξpred. We then use these sets to create a new instance of EIL to
provide a solution to the influence limitation problem under uncer-
tain data. In Section 6.1, we introduce our prediction algorithm.
Later in Section 6.2, we present the solution to the influence limita-
tion problem under uncertain data using the results of the prediction
method. Finally, Section 6.3 presents an evaluation of the methods.

6.1 Prediction Algorithms

6.1.1 Identifying Λ and Σ

The first step of the prediction is to predict Λ and Σ. Identifying
Λ and Σ is crucial for three reasons: 1) They will be used to further
identify the newly activated nodes Ξ, 2) nodes that are predicted to
be already active in campaign C will be eliminated from the set of
nodes to save, so inaccurately predicting inactive nodes to be active

might result in not saving nodes that could be saved otherwise and
3) predicting active nodes to be inactive might result in targeting
nodes that provide no savings which is a waste of resources.

Since we are given Λgiven, a subset of the nodes active in C and
ca, the total number of nodes active in C, our aim in this section
is to find the other ca − |Λgiven| nodes that are most likely to be
active in campaign C. This can be posed as an optimization prob-
lem, more precisely finding Λadd

∗, the set of ca − |Λgiven| nodes
that maximizes the number of possible scenarios of spread of C
including all nodes in Λgiven and no node from Σgiven.

Define Gadd = (Nadd, Vadd) where Nadd = Λadd ∪ Λgiven

and Eadd = {(u, v)|(u, v) ∈ E ∧ u ∈ Nadd ∧ v ∈ Nadd}. For a
set Λadd, the number of cascade scenarios including nodes in Λadd

and Λgiven (and no other node) can be calculated as the number of
spanning trees in Gadd

′ where Gadd
′ is the connected component

of Gadd that includes all the nodes in Λgiven (if no such component
exists Gadd

′ is an empty graph). This follows from the fact that
the spread of a cascade starting from one node under MCICM or
COICM follows a tree structure. Therefore, the value function of a
set Λadd can be computed by counting the number of such spanning
trees it would be able to produce and offsetting the value of each
spanning tree by the multiplication of the weights of the edges of
that spanning tree (to favor more likely scenarios of cascades) in
the following way:

f(Λadd) =
X

T∈T (Gadd
′)

Y

(u,v)∈T

pC,u,v (1)

where |Λadd| = ca − |Λgiven| and T (Gadd) is the set of pos-
sible spanning trees in Gadd

′. The ca − |Λgiven| nodes that are
most likely to be active can be detected by solving the optimiza-
tion problem: Λadd

∗ = arg max f(Λadd). Note that the number
of spanning trees of a graph can be exponential and therefore enu-
merating them is infeasible. Luckily, Kirchoff [27] introduced a
method for counting the spanning trees which later was developed
in a computationally useful form in [6]. For counting the number
of spanning trees of a graph G with n nodes, the algorithm uses an

nxn matrix D = di,j called the degree matrix. The entries of this
matrix are: di,i =

P

wj,i, di,j = −wi,j if ni and nj are neighbors
and di,j = 0 otherwise. Deleting the nth row and column from D,
we get the reduced matrix D′. The determinant of D′ is then the
number of directed spanning trees in G [6]. Creating one such D
matrix for graph Gadd

′ and setting the weights wi,j to pC,i,j , we
can find the number of spanning trees and compute the value of
a specific Λadd set. Same observation has been stated in a recent
study for inferring networks of diffusion [18]. However this does
not solve all scalability issues as there are

`|N|−|Λgiven|−|Σgiven|

|Λadd|

´

possible Λadd sets to evaluate.
The next observation we make is that Λadd

∗ can be found using
a supermodular function. A function f(.) is supermodular if it
satisfies: f(S ∪ v) − f(S) ≤ f(T ∪ v) − f(T ), for all elements
v and all pairs of sets S ⊂ T [39]. We will show f(Λadd)′ =
P

T∈T (Gadd
′)

Q

(u,v)∈T p′
C,u,v is supermodular where p′

C,u,v =

pC,u,v/pmin and pmin is the smallest non-zero pC,u,v in G (to set
p′

C,u,v ≥ 1 for each edge). Note that as we are augmenting each
probability with the same value, maximizing f(Λadd)′ for a fixed

size |Λadd| also maximizes f(Λadd). Consider two sets S and T
s.t. S ⊂ T and let S′ (T ′) denote the subset of nodes in S (T ) that
form a connected component that include all Λgiven. We define
similar subsets Su

′ (Tu
′) for S ∪u ( or T ∪u). Supermodularity in

the general case can be shown by a proof that shows each spanning
tree “lost” for the set S ∪ u by removing node u can be augmented
by the set of nodes in Tu

′ − Su
′ and shown to be lost when node

u is removed from the set T ∪ u. As the augmented tree has a
higher weight, the loss in larger for T ∪u. The details of this proof
is omitted due to space limitations. Instead we will demonstrate
for the case Su

′ − S′ − u = Tu
′ − T ′ − u = ∅, f(Λadd)′ is

supermodular:

THEOREM 6.1. f(Λadd)′ is a supermodular function.

PROOF. Consider two sets S and T s.t. S ⊂ T . Let the num-
ber of spanning trees (offset by the multiplication of the edges
p′

C,u,v) induced by the set S ∪ ni ( or T ∪ ni) that has ni as
a leaf be KS,1 (KT,1) and the number of spanning trees induced
by the set S ∪ ni (T ∪ ni) that has ni as an internal node be
KS,2 (KT,2). Let

P

v∈S p′
C,v,ni

(or
P

v∈T p′
C,v,ni

) be denoted
by degS(ni) (degT (ni)). Note that since S ⊂ T , degS(ni) ≤
degT (ni). By removing ni from set S ∪ ni, f ′ will decrease from

KS,1 + KS,2 to
KS,1

degS(ni)
, whereas the reduction from set T ∪ ni

to T will reduce f ′ from KT,1 + KT,2 to
KT,1

degT (ni)
. Since ev-

ery spanning tree that involves nodes in S ∪ ni and has ni as an
internal node can be augmented with the nodes in the set T − S
while still forming a spanning and since p′

C,u,v ≥ 1 for each edge,
we have KS,2 ≤ KT,2. Similarly, KS,1 ≤ KT,1. Factoring in
the fact that 1 − 1

degS(ni)
≤ 1 − 1

degT (ni)
, we can conclude that

KS,2 + (1− 1
degS(ni)

)KS,1 ≤ KT,2 + (1− 1
degT (ni)

)KT,1. This

shows that f(S ∪ ni)
′ − f(S)′ ≤ f(T ∪ ni)

′ − f(T )′.

Our goal is to maximize a supermodular function with cardinal-
ity constraints, as we are seeking to detect a set of ca − |Λgiven|
nodes that would maximize f(.)′. As evident from the definition,
if a function f(.) is supermodular, −f(.) is submodular and there-
fore maximizing a supermodular function is equivalent to minimiz-
ing a submodular function. Unlike maximizing submodular func-
tions, maximizing supermodular functions (or minimizing submod-
ular functions) in general is shown to be polynomial-time solvable
[20]. However maximizing supermodular functions with cardinal-
ity constraints are known to be NP-hard. The problem of minimiz-
ing a general submodular function under a cardinality constraint
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1: {Given (Λgiven,Σgiven,G,ca) where G = (N, E) is the net-
work graph, Λgiven,Σgiven are the incomplete sets of active
and inactive nodes and ca is an approximate value of |Λ| }

2: Λpred = Λgiven

3: Create a refined graph G′ that consists of nodes in N −Σgiven

4: Select a node ni at random from Λ
5: Tstein = min Steiner tree rooted at ni in G′ covering Λgiven

6: Nstein = nodes in Tstein

7: Λpred = Λpred ∪ Nstein

8: while |Λpred| ≤ ca do
9: Nchoose = ni ∈ N − Σgiven − Λpred

10: Λpred = Λpred ∪ {argmaxn∈Nchoose
{deg(n)Λpred

}}
11: Output Λpred

Figure 6: Heuristic to identify Λpred

is known to be inapproximable within o(
p

n/logn) [38]. Svitk-
ina et al. also provide a sampling-based solution that provides
approximation guarantees of the same order as this lower bound
[38]. The algorithm is a (5

p

n
lnn

, 1
2
) bicriteria decision proce-

dure. That is, given a feasible instance, it outputs a set U with
f(U) ≤ 5

p

n
lnn

B and w(U) ≥ W/2 with probability at least p,
where the cost of high p is more iterations. Although it is hard to
even approximate an arbitrary supermodular function with cardi-
nality constraints, certain functions can be solved exactly in poly-
nomial time. Maximizing f(Λadd)′ can be easily reduced to a su-
permodular knapsack problem with cardinality constraints which
is shown to be one such function [15]. Unfortunately, polynomial

time in this setting is defined based on the number of calls to an or-

acle function which answers whether a given set X belongs to the
base polyhedron associated with function f . We also note that even
for the case where there is a polynomial time algorithm for max-
imizing f(Λadd)′, this problem is still computationally expensive
for today’s online social networks since the value function depends
on computing a determinant which is an O(n3) problem.

As the optimization problem for identifying Λ and Σ proves to be
computationally expensive, we next investigate heuristics to tackle
this problem. A good heuristic should 1) provide a coherent an-
swer, i.e. the nodes in Λpred should form a connected component
so that there is at least one arborescence (directed spanning tree) in
the subgraph induced by nodes in Λpred, 2) have as many arbores-
cences as possible, therefore getting close to the optimal solution.
Figure 6 provides details of the heuristic we used to predict Λpred.
As our first goal is to provide a feasible solution, in the first step, we
choose a Steiner tree in G that covers all nodes in Λgiven to make
sure the infected nodes will form a connected component (Lines 2-
7). Since we are aiming for a minimum Steiner tree rooted at a spe-

cific node, this computation can be easily done in polynomial time
whereas the general minimum Steiner tree problem is NP-hard. As
the next step we choose additional nodes which will induce a large
number of arborescences. We do this by adding nodes that are con-
nected to the largest number of nodes that are already predicted to
be active. Note that, the more incoming edges a node has from ac-

tive nodes, the more chances for it to be activated. Clearly, choos-
ing nodes this way will result in choosing nodes that have a large
number of possible parents in a directed tree. After identifying the
set Λpred, we predict the inactive nodes to be: Σpred = N−Λpred.
Section 6.3 provides an evaluation of this heuristic.

6.1.2 Identifying Ξpred

The first, rather naive approach we implemented to predict Ξpred

was to select the most central node in set Λpred; i.e. the node that
has the shortest average path to all the other nodes in Λpred and to
perform a breadth-first-search from this node in Gpred (subgraph
of G containing only the nodes in Λpred and their interconnects)
to create a tree of information spread and to use the leaves of that
tree as the newly activated nodes. Our experiments revealed that

the influentials identified using this method have poor performance
which led us to identify the next method of prediction.

Considering an influence epidemic starting from a single node
under IC, MCICM or COICM diffusion models forms a tree since
a node can be activated by at most one node in campaign C, we in-
vestigate the performance of generating a random spanning tree on
graph Gpred to identify Ξpred. By constructing random spanning
trees in a finite space of ST spanning trees on graph Gpred and a
probability distribution γ on ST , we can sample a spanning tree
st with probability γ(st). Therefore, this method is more likely
to pick scenarios of information diffusion that are more likely to
happen. The algorithms for constructing random spanning trees
can be categorized into two families, ones that are based on com-
puting determinant [30] and ones that are based on random walks
on the graph. Random walk based algorithms can be further cat-
egorized as ones that work for undirected graphs [5, 1] and di-
rected graphs [45, 44]. Of those algorithms all except for [44]
run within the cover time, i.e. the expected time it takes for the
random walk to reach all the vertices. In this work, we use the al-
gorithm provided in [44] which generates random spanning trees
within mean hitting time (faster than the cover time) and provides
solutions for directed graphs. Using this algorithm, a random span-
ning tree can be sampled according to the probability distribution
on all spanning trees with probabilities proportional to the weights
of the trees. Since we have no means of distinguishing the impor-

tance of edges, in our experiments we assigned the same weight to
all the edges of the network which results in a unweighted graph
but given more data, for instance the relative importance of friend-
ships, this method will bias towards more likely scenarios where
information flows on edges with higher weights. After generating
a random spanning tree on Gpred, we select the leaves of the tree
as the newly activated nodes. Note that this method is a heuris-
tic. One could enumerate all possible spanning trees on Gpred and
identify nodes that repeatedly appear at the highest depth of the
tree as newly activated nodes. However this is a computationally
expensive solution. We leave finding a scalable solution for Ξ while
providing accuracy guarantees as an open problem.

6.2 Predictive Hill Climbing Approach (PHCA)
After constructing the sets Λpred, Σpred, Ξpred, we identify

ALP , the set of k nodes to influence by campaign L in graph G, in
the following manner: Create graph Greduced = (Nreduced, Ereduced)
where Nreduced = Σpred ∪ Ξpred and Epred = {(u, v)|(u, v) ∈
E ∧ u ∈ Nreduced ∧ v ∈ Nreduced}. We then use the algo-
rithm presented in Figure 2 on graph Greduced where AC = Ξpred

and delay r = 0. This method would provide 1 − 1/e approx-
imation guarantees for the case where Λpred = Λ, Σpred = Σ
and Ξpred = Ξ. We call this method Predictive Hill Climbing

Approach (PHCA). The true value of ALP (π(ALP )) can be com-
puted by calculating the expected number of nodes ALP would
save in Greal where Greal = (Nreal, Ereal) s.t. Nreal = Σ ∪ Ξ
and Ereal = {(u, v)|(u, v) ∈ E ∧u ∈ Nreal ∧ v ∈ Nreal} where
the set of adversaries is AC = Ξ and delay r is 0.

6.3 Evaluation of PHCA
Accuracy, precision and recall statistics of the prediction algo-

rithm are given in Table 1. Accuracy refers to the ratio of the nodes
whose true states are correctly identified. Precision refers to the
ratio of nodes that are active (or for Y : newly activated) to those
that are identified as active and recall refers to the ratio of nodes
identified as active to the total number of active nodes. Amount
of unknown data is modeled by using the parameter pknown which
denotes the probability that the state of a node is known. Decreas-

WWW 2011 – Session: Information Credibility March 28–April 1, 2011, Hyderabad, India

672



Table 1: Prediction Statistics
Accuracy Recall Precision

pknown = 0.5 X 0.964 0.796 0.801
Y 0.945 0.369 0.356

pknown = 0.1 X 0.933 0.614 0.617
Y 0.936 0.227 0.224

pknown = 0.01 X 0.919 0.567 0.569
Y 0.929 0.194 0.188

ing values of pknown would result in larger amounts of missing
information. The prediction algorithm provides good accuracy (es-
pecially since many nodes of the graph are inactive) but precision
and recall numbers decay with the amount of unknown data. Note,
however, that we are interested in the performance of EIL under
uncertain data rather than the accuracy, precision and recall statis-
tics. We will now show that poor recall statistics do not necessarily
translate to poor performance for PHCA.

We have studied 165,643 cascade scenarios under the MCICM

with high effectiveness property choosing the starter of campaign C
uniformly randomly and setting pC,v,w values to 0.1 in the Mon-
terey Bay 2008 network . Each of these scenarios required per-
forming in the order of 100,000 simulations to retrieve and eval-
uate influential nodes selected by each method. Figure 7 presents
the results. In the presence of missing information, where the newly
activated nodes in the network are unknown, using the greedy algo-
rithm is not possible without prediction. In this case, the best avail-
able base-line algorithm to compare our method to is the degree
centrality heuristic where seeds are chosen from the high degree
nodes that are not known to be infected. The X-axis in both Fig-
ures 7(a) and 7(b) presents the number of seeds whereas the Y-axis
presents the relative performance of the algorithm w.r.t. the perfor-
mance of the greedy method with complete data, i.e. ratio of the
number of the nodes saved using the respective method to the num-
ber of nodes that would be saved by the greedy method were we to
have complete data (Λ, Σ, Ξ). Figure 7(a) presents the performance
of the predictive hill climbing approach(PHCA) and the degree cen-
trality(Deg(i)) heuristic under various amounts of missing informa-
tion for the case where the limiting campaign L is started with 30%
delay. Figure 7(b) provides similar data for the case when the de-
lay is 70%. As it is evident from both figures, the performance of
predictive hill climbing approach is mostly resilient to missing in-
formation. Especially when delay is small, PHCA performs within
96-90% of the performance with complete data and when delay
is large it drops to 75% in the worst case (pknown = 0.01). The
performance of the degree centrality heuristic without using predic-
tion is not as robust and has consistently worse performance than
PHCA. When the delay is small and a large number of seeds can be
chosen, this heuristic performs well but when the delay is large, the
performance compared to the greedy method (with complete data)
fluctuates and consistently underperforms.

(a) delay = 30% (b) delay = 70%

Figure 7: Influence Limitation using incomplete data

We also considered another variation on EIL with missing data

where an outsider can observe “new activity” in the network, i.e.
one can detect only the newly activated nodes. This problem for-
mulation fits systems such as Twitter [40] where one can easily
retrieve new tweets on a topic but retrieving the entire history of
tweets on that topic is impractical. Interestingly, our experiments
on the Facebook Monterey Bay 2008 network revealed that, even
without using a prediction algorithm, i.e. assuming all the nodes
except the newly activated ones are inactive, the limiting campaign
performs within 99% of what would be achieved with complete
data when the delay r is small, and within 92-96% when the delay
is large. However, we believe deeper analysis and experimentation
is needed to generalize this finding before concluding of a predic-
tion method is not necessary for this case. In future work, we plan
to investigate this problem further.

7. CONCLUSION
In this work we performed an extensive study of the problem of

limiting the spread of misinformation in a social network. We in-
vestigated efficient solutions to the following question: Given a so-
cial network where a (bad) information campaign is spreading, who
are the k “influential” people to start a counter-campaign if our goal
is to minimize the effect of the bad campaign? We call this even-

tual influence limitation problem. We proved that this problem is
NP-hard and therefore an exact solution is infeasible for large scale
social networks. We also showed that two variations of this prob-
lem on two different communication models are submodular and
therefore a greedy method is guaranteed to provide a 1/(1 − e)
approximation. Although the greedy algorithm is a polynomial
time algorithm, it is still too costly for large scale social networks.
Therefore, we also experimentally studied the performance of the
greedy algorithm, comparing it with 3 different heuristics one of
which is degree centrality. We showed that in many cases the per-
formance of heuristics, even the simple degree centrality heuristic,
is comparable to the greedy algorithm. We explored different as-
pects of the problem such as the effect of starting the limiting cam-
paign early/late, or the properties of the adversary and how prone
the population is to accepting either one of the campaigns.

We also studied the more realistic problem of influence limita-
tion in the presence of missing information. We introduced an algo-
rithm called predictive hill climbing approach which first predicts
the current state of all the nodes of the network given the states of
a fraction of the nodes and then uses the hill climbing approach to
choose the set of “influentials” using the predicted data. We intro-
duced an optimization algorithm to choose the set of nodes that are
most likely to have been infected by the “bad campaign”. We show
that, even though the naive solution to this problem is exponen-
tial, using matrix-tree theorem, and supermodularity of the specific
problem at hand, one could provide a polynomial time algorithm
for this problem. However, the method requires using an oracle

function that is not available for our problem. Therefore we seek
heuristics to solve the prediction problem. Our method relies on
generating random spanning trees to capture “likely cascade sce-
narios”. Our experiments show that for most cases, the predictive

hill climbing approach provides good performance, within 96-90%
of the performance that would be achieved with no missing infor-
mation. Although for small delays the performance is consistently
within 96-90%, for large delays the performance degrades to 75%
when the amount of missing information increases dramatically,
i.e. states of the nodes are known with only 0.01 probability.
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