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Summary. We calculate how a stochastic background of gravitational waves
might contribute to the ‘timing noise’ of pulsars. The published timing data,
extending over a timespan 7'S 10 yr, already provide a limit §,< 107> on
the fraction of the critical cosmological density contributed by waves with
-periods of a few years; less sensitive limits can also be set for waves of shorter
periods. Further analysis of existing data could tighten these limits; they will
also improve as the time-base 7 lengthens. A genuine contribution from back-
ground gravitational waves could be distinguished from irregularities intrinsic
to the pulsars by searching for correlations between the ‘timing noise’ of
different pulsars. The timing data set poor limits to backgrounds with periods
> T, because such waves would merely give a contribution to P indistinguish-
able from the effect of intrinsic spin-down, which is much larger and cannot
be predicted a priori. However, the orbital period of the binary pulsar
provides a ‘clock’ whose intrinsic secular behaviour can already be predicted,
on the basis of general relativity, with an accuracy ~ 10™ ! yr™!. Searches for
disparities between the predicted and measured changes in the orbit could,
within a few years, probe the gravitational wave background at periods up to
~ 10* yr with a sensitivity corresponding to Qg = 107%.

1 Introduction

A background flux of long-wavelength gravitational waves would induce small fluctuations
in the measured periods (P) of pulsars. The ‘timing noise’ — i.e. the small residuals when a
polynomial fit has been made to P and its derivatives — could be intrinsic to the pulsar
(Cordes & Helfand 1980), but the timing is so precise, and the ‘noise’ so low, that the same
data can be used to place limits to non-intrinsic influences on P and P due to gravitational
waves (Detweiler 1979; Mashhoon 1982). In this paper we attempt to quantify these limits.
If pg(w) is defined as the spectral energy density of the waves (cf. Isaacson 1968), then the
limits on a broad-band background become interesting if they imply wpgz(w) =< p., where
p. =3 H}5/8nG is the critical cosmological density (H, being Hubble’s constant). Following
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the notation of Bertotti & Carr (1980), we define Qg(w) = w pg(w)/p.. Interesting limits
can already be set: we find Qg(w)<S 107> for w =~ 10"%s™" and there are prospects of
improving and extending the limits when longer time-spans of pulsar data have been
accumulated.

Searches for gravitational waves by precise Doppler tracking of spacecraft involve
analogous physics (Mashhoon & Grishchuk 1980; Bertotti & Carr 1980), though the pulsar
data probe a lower range of wave frequencies. The fact that pulsar observations stretch over
a time-base T of < 10 yr renders the limits much less sensitive for w/27 < 0.1 yr™!, because
the influence of very long waves would be absorbed in the polynomial fit to P and its
derivatives. Mashhoon’s (1982) claim to have derived exceedingly strong upper limits,
Qg(w)S 1071 for w<107*yr™', is incorrect because he did not allow for this (see
Section 3).

If a ‘clock’ were available whose intrinsic long-term behaviour could be predicted (rather
than inferred from a fit to a stretch of timing data), one could in principle set better limits
to pg(w) for w< T-!. We suggest in Section 4 that the binary pulsar’s orbital motion
provides such a clock. It is changing on a time-scale ~ 3 x 10® yr, consistent with the
Landau—Lifshitz formula for gravitational radiation. If one accepts the Landau—Lifshitz
formula (rather than using the data to test it), then the binary pulsar provides a clock whose
intrinsic properties are well enough known to test already for < 1072 of the closure density
of gravitational waves at all frequencies 1yr ' 2 w2 107* yr™!; again, the sensitivity of the
limit will improve considerably when the timing data have accumulated for a few more
years.

2 The spectrum of timing fluctuations induced by the gravitational wave background

Following Mashhoon (1982) and Mashhoon & Grishchuk (1980), we choose a coordinate
gauge in which the only metric component we need reads

ha(t,x) = —%Zy sin? 0 Re [H(k) expi(wt +k-x)]. (1)

Here, 6 is the angle between k = wk and the pulsar, which is placed on the z-axis at distance
L.H=H, +H, is the sum of the complex amplitudes of the two polarization modes; the
experiment does not distinguish between them. The factor sin? @ arises from the transverse
character of the waves. The energy flux in each mode is

2

w 2 2

Fk)=— [IH,1* +|H|*] ()
64 :

(taking units with G = ¢ = 1); the spectral energy density is defined by

pg(w) dw = Y F(K) = Qe(w)pe dw. 3)
wL<k<w+dw

Integrating — % 0h,,/0¢t along the electromagnetic path, one readily obtains the redshift

[1 —exp (u~ iwuL)]

zg(f) =% 2y Re {H(k) sin2 9 exp (w t)}, 4)

where u = 1+ cosf.
The gravitational background has a random phase distribution; we also assume an
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isotropic spectrum. The spectrum of z, is the Fourier transform of the correlation function:

(zg(t)zg(t + 7)) = 2f de cos WT Sy (w). (5)
0
One obtains
87 po(w
Sg(w) = — 3(2) B(wl), (6)
3 w

where the distance-dependence is contained in the function

3 (™  sin®@ Xu 3 /2x—sin2x
B(x)=2| b sin2 <_2_)=1—- i 7)

0 u? 4 x>
[proportional to Mashhoon’s R (x)]. For x < 1, B(x) = O(x?);forx » 1,B(x) ~ 1.

The isotropic background we are looking for is determined statistically by its energy
spectrum p,(w), the phases and polarization of each mode being random. Consequently the
theory enables us to calculate only the expectation value of any physical quantity over the
random phase ensemble. Mashhoon (1982) used this averaging procedure to evaluate mean-
square residuals, and compared these with the actual time-averaged square residual over an
observational time T of only a few years. The ergodic theorem, however, ensures equality
of the ensemble and time averages only if 7 exceeds the characteristic time-scale of the
phenomenon (which is ~ L/c because the convergence of the spectrum (6) is ensured by
wL < 1). We prefer to proceed by deducing upper limits to pg(w) for each accessible
frequency (i.e. w2 T™') and only afterwards draw conclusions about the total energy
density £2g.

A few remarks are in order about the distance-dependence. On intuitive grounds one
would expect the integral along the ray path that yields the frequency shift to be (for
wL> 1) the sum of many contributions, corresponding to gravitational wave packets
crossing the ray; this would lead to a spectrum proportional to L. Equation (6) shows,
contrariwise, that there is no such secular effect (B~ 1 when L - o). This is a consequence
of the transverse character of the gravitational waves. A secular term can arise only from
those waves with wul < 1, from (4), which requires |§ —m | < (wL)"2. On the other hand,
these waves have a negligible effect because of the transversality factor sin?§ appearing in
equation (4). Were purely longitudinal modes present, the function B(x) would be propor-
tional to L, as naively expected. Secular terms in the electromagnetic effects of gravitational
waves are also absent, for essentially the same reason, in the scintillation of a distant source
(Zipoy & Bertotti 1968; Bertotti & Trevese 1972).

One wonders whether the refractive index due to interstellar plasma, tampering with the
resonance between electromagnetic and gravitational waves, might perhaps restore the
secular behaviour. This is indeed the case, under some conditions, for scintillation (Bertotti
& Catenacci 1975). To estimate the magnitude of this effect, note that the only change
induced by a propagation velocity different from ¢ for the radio waves is that the quantity
u becomes u = 1+ (1+8v) cosf. In equation (7) the resonance corresponds to the interval
in u for which wLu < O(1) and hence the function u~2sin? wLu/2 is ~ w?L*/4. If v < 0,
no such interval exists and there is no resonance; if v > 0, we need wL§v> 1 so that there
is a resonance peak at § =7 —(28v)Y? with width A =~ (26v)V?/wL. This interval
contributes to B (equation 7) a secular term of order

AO(S V)2 w2 = (v)*wlL, (8)

interesting only when wL > (§v)™3, For an electrostatic plasma, § v = wj/2wam has the right
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sign but its value in interstellar space is far too small. (We expect a plasma frequency wy, of
only ~ 10® Hz, far below the electromagnetic frequency wem.)

3 Comparison with the timing noise of pulsars

The observed pulsar phase ¢(r) is affected by measurement noise ¢p(#) which can be
assumed to have a white spectrum. Its average over a time At has a rms value proportional to
(Ar) V2

1 t+At 2
X [Jt dt'qﬁM(t')] >= Ty = constant. 9)

Observations suggest that this is the dominant noise for the binary pulsar up to # = 3.8 x 10*s
(Taylor & Weisberg 1982). The spectrum of ¢y is simply Ty ; if P is the pulsar period, then

P
()= — — (10)

and the corresponding spectrum for the frequency residuals is

Szm (W) = (%)2 w*Ty. (11)

This simulates a gravitational spectral density « w* (cf. equation 6).

In all other pulsars the phase residuals ¢g(¢) are apparently dominated by the effects of
intrinsic fluctuations in the rotation rate. It is found that ¢g(¢) is not a stationary stochastic
variable, but it can be modelled as a random walk in the phase (PN), the frequency (FN), or
the time derivative of the frequency (SN) (Helfand et al. 1980; Cordes 1980). For these
three cases, the quantity

1 (T
ozms—T-j dt dr(0)? (12)
0

grows with integration time (on the average) like 7, T2 and T'® respectively:

(1
ESPNT (PN)

(6¥(T)) = I%SFN T3 (FN) (13)

1
- 5
50 SsnT (SN)
(Cordes & Greenstein 1981).

Each process is entirely determined by its strength, Spyn, Spny Or Ssn. When the time-
origin is displaced, a random walk in phase is changed by the addition of a constant, the
sum of all the random phase jumps that have been produced in the added time interval. If
we have a random walk in frequency, the added frequency jumps change the phase by a term
linear with time; for a random walk in P, a shift of time-origin adds a quadratic term to the
phase. Consequently, a combination of these three processes can be defined consistently in
a manner independent of the time-origin only to within an arbitrary quadratic form in time.
To make the process definite one chooses, for each time interval of the data analysis, ¢g
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to satisfy the conditions
T T T
0=j dt¢R=f dt tog = f dt t* pg. (14)
() 0 0

They are fulfilled by fitting to the phase in each interval a quadratic polynomial a + bt + ct?.

The actual phase residuals ¢g(?) for a given pulsar are obtained from the observed phase
by applying the appropriate astrometric correction due to the motion of the receiver and the
source, and by subtracting the systematic component due to the spin-down. The polynomial
fitting method described above then leads, for each interval, to three numbers a, b and c.
These are each the sum of: (1) a constant average component corresponding to the initial
phase, the period P and its time-derivative; and (2) a component which varies from interval
to interval and should be ascribed to the residual random phase. The separation between
these two parts is a delicate procedure, depending on the total length of the record and on
the size and number of single data blocks that one can usefully construct. This, however, is a
problem of no concern to us. It is essential to our purpose only to point out that the actual
observables which we can get from the timing residuals are the quantities o(7") (equation
12), where the phase has been normalized to fulfil (14) so as to take away an additive
constant and any linear or quadratic trend. This is, of course, equivalent to cutting off the
Fourier transform of the phase at a frequency a/7T (where a =~ 1). The actual value of the
numerical constant a (or, more precisely, the shape of the cut-off) would need to be
computed separately for different assumptions about the low-frequency spectrum. Such
precision does not seem worthwhile at present, so we take a = 2m: we know that a full sine-
wave cannot be fitted by a quadratic form, whereas up to a half-period of a sine-wave can.

We can now compute the average of the quantity (12) for an arbitrary gravitational wave
spectrum:

(o*(T)) = (2};)2% LT dt K dt, j{: dty (zg(t1) z4(12))- (15)

Using the definition (5), we get

) 2 27\? [ T t t
(0 (T)>=~(—) f dez(w)f a’tf dfxf dt, cosw(ty—t,)
T\P 0 0 0

/T
321 [2m\? [ w sinwT '
=—(—)f dcopg(4)(1— ) (16)
3 \P T w wT

Mashhoon (1982) has a similar expression, but his frequency integral starts from zero; this is
the formal error which invalidates his conclusions. This also explains why z,(?), a stationary’
random variable, can appear as a random walk of some sort if sampled over a limited time
interval much shorter than L/c. If the sampling procedure is not extended over times > L/c,
and therefore does not include frequencies < (L/c)™ ', the convergence of the spectrum is not
assured and the mean-square-value of the frequency shift diverges. The stationary character
and ergodicity of z,(¢) are recovered only if it is sampled over an interval > L/c (Papoulis
1965).

It is easy to see that an appropriate power spectrum for the gravitational waves can lead
to o(T') growing with any positive power of 7' If p, (w) = p, w", then from equation (16) we
have (writingx = wT),

327 /27\2 oo sin x
<02(T)>=—”(—’3) pm‘"f dx x"~ (1— 2 ) (17)
3 \P « x
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Denoting the integral as
bt sin x

fn(a)EJ dx x"™* (1——), (18)
o x

we get phase-noise forn =2,

27\?
Spn = 64w (?) p2f2(@); (19)

frequency noise for n =0,

27\?
Sen = 1287 (?) pofo(); (20)

slowing-down (torque) noise for n = —2,

2m1\?
SSN=1280n(;) b f-a(@). 1)

The number f,(27) is easily evaluated in terms of the sine integral and gives 64 f,(2m)/3
= 10. However, fo(2m) =~ 1.2 x107* and f.,(27) ~ 1.5 x 10~ % are much smaller, making the
FN and SN spectra less powerful.

We have used the data given by Cordes & Helfand (1980) to set limits to pg(w). These
authors have studied 11 pulsars, determining the form of random walk and the corresponding
strength for each of them (cf. equation 13). PSR2217+47 and 1133 +16 are particularly
interesting because their PN spectra penetrate deeply into the ‘closure line’ defined by
Qg(w) = 1, yielding a limit on Qg(w) at w =2.6 x 107® s™* almost three orders of magnitude
below the closure line (see Fig. 1). In the figure we also plot the limits from PSR 2016 + 28,
found by Cordes & Helfand to have an FN spectrum, Cordes & Greenstein (1981) quote limits
to the contributions of the other (non-dominant) forms of noise; we have checked that they
do not modify the gravitational wave limits drawn in Fig. 1. With the lengthening of the time
record, the limits will improve, not only because of the higher accuracy, but also because the
frequency cut-off 27/T will become lower.

For most pulsars, we have no definite information about the spectrum of the timing
residuals, and their amplitude is measured by a single parameter, the ‘activity’ of the pulsar
(Cordes & Helfand 1980). This is essentially the quantity o?(7") for a time-span of length
from a third to the full available record, and it provides a relevant limit to the dimensionless
integral (cf. equation 16)

1 [~ Qg(w) sinwT
K= 7-[ dw ; (1— .
T Jyr w wT

(The upper limit is really the reciprocal of the resolution time.) The ‘activity parameter’
then provides an upper limit o w* to the value of Q,(w) in any waveband with w > 1/T:

Qg(w) <K (wT)*, (23)

This is essentially the argument first given by Detweiler (1979). Values of K can be
calculated from the data in table I of Cordes & Helfand (1980); the values obtained for
some specific pulsars are given in Table 1 of this paper.

The time-span T is typically ~ 1000 day. Inserting the values of Table 1 into (23) seems to
yield impressively low limits. However, we can only apply (23) with confidence when
wT > a=2m, and the sensitivity diminishes rapidly towards higher frequencies. A represen-

(22)
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Figure 1. This diagram shows, on a logarithmic plot, the upper limits on the energy density in a stochastic
gravitational wave background, in terms of the density parameter 4 (w): this is defined as the fraction of the
critical density in gravitational waves in the waveband w to 2w. The limits are drawn for 2 =0.5 (i.e. a
Hubble constant of 50kms™! Mpc™') and are proportional to A%, The two pulsars 1133+ 16 and
2217+47 display ‘phase noise’ (PN); 2016 + 28 displays “frequency noise’ (FN). The limits are strongest
for frequencies of 2m/(length of available record) = 2n/T = 2.6 X 1078 s!. We also plot as a dotted line
the limit (Qg « w*) that can be set from the ‘activity parameter’ of a typical quiet pulsar, 1237 + 25;
this limit is, however, less reliable than the others except when w > 2#/T (see text). The limits can be
extended to w < 2#/T (i.e. to wave periods exceeding the time-span of the data) because intense slow
waves would contribute a large second derivative to the observed period. These limits, shown by the
dashed lines, weaken as w2 at lower frequencies. Potentially much better limits down to w = 107 % yr*
come from a different argument involving the orbital behaviour of the binary pulsar, discussed in Section
4 of the text.

tative limit derived from the ‘activity parameter’ of 1237 + 25 is plotted in Fig. 1. These
limits are comparable to those for the more carefully-studied pulsars for periods ~ 1 yr; but
the limits on £,(w) worsen more steeply at higher frequency. This is because the activity
parameter does not tell us how o(7) diminishes as we consider shorter spans of data,
whereas for PN we get a TV2 dependence.

Table 1. Limits to K (equation
22) from the ‘activity parameter’
of selected pulsars.

Pulsar Limit on X
0818 --13 7.5%X1077
0834 + 06 1.1 X1077
1237 + 25 5.7x10°8
1913 + 16 1.35x10°°
1919 + 21 1.2%X1077
1946 + 35 1.1X10°°
2303 + 30 2.1X10°¢
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The contribution to o(7) from waves with w7 <1 is truncated owing to the
[1 — (sinwT)/wT] term in the integrals (16) and (22); it is essentially absorbed in the
polynomial fit (cf. 14). Nevertheless, one can set some limits to 2,(w) at low frequencies —
albeit with poorer sensitivity — from the nature of the polynomial fit itself. This is because
a large-amplitude contribution to ¢(T’) from a wave with w < T~! would yield a quadratic
term (i.e. a second derivative) in the timing residuals. Cordes & Helfand (1980) show that
there is no evidence for a significant second derivative except in the Crab pulsar. (They do
this by comparing the size of the residuals after subtracting a second-order polynomial with
those obtained by a third-order fit). This limit to the quadratic term yields a limit on Q4(w)
proportional to w™? (for T™!» w > L™"). By matching this limit on to the results plotted in
Fig. 1, we can rule out £,(w) = 1 for periods between ~ 1 month and ~ 100 yr.

These (already significant) limits have been derived from data collected and analysed for
other purposes. Substantial improvements could be made by concentrating efforts on pulsars
with the ‘quietest’ spin-rates (e.g. the binary pulsar). Furthermore, one can distinguish
between ‘noise’ intrinsic to the pulsar and the effects of gravitational waves by correlating
data from different pulsars. The gravitational wave contribution to z, arises half from the
phasesof the metric variations at the pulsar and half from the phases at the Earth (equation 4);
the latter would yield correlations between the timing data of different pulsars. If this were
found, it would be positive evidence for a stochastic gravitational wave background.

4 A limit on the background at lower frequencies from the binary pulsar

The reason why the pulsar timing residuals do not provide useful information about the
background at frequencies < T~ ! is that they are not predictable enough clocks. As we show
below, we are looking for fractional period changes of order 107!° yr™! (the Hubble
constant); for typical pulsars, /P is 1078 yr™! — two orders of magnitude larger — and we
have no independent way of calculating what P should be. Things are better if one considers
the gravitational clock provided by the binary pulsar PSR 1913 + 16. The work by Taylor
and co-workers (Taylor et al. 1976; McCulloch, Taylor & Weisberg 1979; Taylor, Fowler &
McCulloch 1979; Boriakoff et al 1982; and especially Taylor & Weisberg 1982) has pinned
down the parameters of the system so well that the general relativistic secular speed-up of
the orbital period due to gravitational radiation is predicted to be | Px/Px | ~ (3 x 108 yr)™!
with an uncertainty of only 0.2 per cent (i.e. we have a ‘clock’ whose behaviour is known
with precision better than 107! yr !). The observations have a precision of (5 x 10° yr)™*
and agree with this prediction; moreover, there will be a rapid improvement in the
measurement of | Px/Px | as the data accumulate over a longer time-base.

To see the potentialities of these observations for probing the gravitational wave back-
ground, we must compute the expectation value of the square of the frequency change,
A z4(2) = z4(t) — 2z4(0), which these waves would induce. Equations (5) and (6) give

o 64n [ dw wT
([Azg(T)]*)=4 f dw S, (W) (1-coswTl) = — — pg(w) sin® — B(wL).  (24)
0 3 0 W 2
The integral is effectively cut off below w ~ L', unless pg(w) falls off faster than w !, by
the function B(wL); the function 4/w?T?sin®> wT/2 provides the upper cut-off at
w~T"'> L', unless py(w) rises faster than w. Since these two functions are equal to
unity far from their respective cut-offs, the integral (24) is approximated by

167 T '
([Azg(T))*) = 5 T? f dw pg(w), (25)
L—l
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thus providing the precise upper limit 3/(167T?){ [Az,(T)]*) to the energy of the back-
ground between L™! and T~!'. For wavelengths > L, equation (24) still yields a limit, but
one which weakens as 2. Therefore, assuming that relativity describes the orbital

behaviour of the binary pulsar correctly, we get for this frequency interval

0 < l(Sp“)z =~ EP/PIC07 yr ) 26)
® 2\PH,/ 2 ’

where 4 is Hubble’s constant Hy in units of 100 kms™! Mpc™!, and 8 Py is the part of Pk that
could be due to gravitational waves (cf. equation 25). Contributions to § Py come from (a)
observational uncertainties and (b) uncertainties in the Py given by the Landau—Lifshitz
formula. The latter arise because the parameters of the system (masses, eccentricity, etc.) are
imperfectly known. At present, the measurement uncertainties (a) are dominant, and (26)
yields a limit no better than ;52 h™%. However, we now assess the various errors in order
to show that there are excellent chances of pushing this limit down by several powers of 10.

4.1 OBSERVATIONAL ERRORS

If all observations were of similar quality, we would expect the measured uncertainty in Py
to decrease as the 5/2 — power of the time-base of the observations, since we are measuring a
phase which increases quadratically with time. Since the present time-base is 6 yr, this would
imply an improvement in the next 6 yr of 2¥2=5.6. Since the newer data have higher
weight, the observational errors may fall still more rapidly.

4.2 THE PREDICTED Pgx FROM THE LANDAU—LIFSHITZ FORMULA

Gravitational radiation causes the binary orbit to contract, and the orbital period Pk to
decrease, at a rate

Py/Px = (constant) x Pg¥3 f(e)mymy(m+my) "3, 27)

where e is the orbital eccentricity and m, and m, are the component masses. The periastron
precession, which is known with high accuracy, determines (m; +m,)¥3; the main
uncertainty in the mass function comes from the mass ratio, which has to be inferred from
the gravitational redshift and second-order Doppler effect (Taylor & Weisberg 1982) and is
1+ 0.04. However, equation (27) shows that Px depends only quadratically on the error in
the mass ratio when this ratio is close to unity; it is for this reason that the predicted Py is
only uncertain by 0.002. The determination of m/m, will improve as 75?2 (since this is a
secular observable, at least for time-spans smaller than the periastron precession period).
The uncertainty in Py will therefore reduce as 7~ (quadratically with the error in m/m,)
until m,;/m, is found to differ significantly from unity, and thereafter as 7~%2. The
uncertainty in eccentricity e will diminish only as 7~ V2; but since this is already known with
1075 precision, it will be a long time before it becomes the dominant uncertainty in (27).

4.3 MOTION OF THE BINARY PULSAR SYSTEM IN THE GALAXY

Another limiting factor is the contribution to Py as the pulsar’s Doppler shift changes due
to its motion in the Galaxy. The acceleration due to the gravitational field of the Galaxy
contributes only 2 x 107! yr !, But if the binary pulsar system has a large peculiar velocity
V, there is a changing Doppler effect as it moves (even with constant velocity) transverse to
the line-of-sight. This yields |Pyx/Pk| = (V?*/cD)sin?0 (where D is the distance and 0 the

© Royal Astronomical Society ¢ Provided by the NASA Astrophysics Data System

220z 1snbny /| uo Jasn sonsnp Jo Juswnedsq 'S'N Aq 2296201 /St6/7/S02/2191e/seluw/wod dno olwspese//:sdiy Wolj papeojumod


http://adsabs.harvard.edu/abs/1983MNRAS.203..945B

FT9B3VNRAS. Z03. ~945B!

954 B. Bertotti, B. J. Carr and M. J. Rees

angle between the velocity and the line-of-sight). For D = 5kpc, this contribution is at the
level of 10" yr~! if V has the high value ~ 200kms™! typical of ordinary pulsars. The
proper motion V sing/D may eventually be measurable. If this proves to be anomalously
small, the associated Px may be negligible. However, if the proper motion were (say)
~ S milliarcsec per year (corresponding to ¥ =~ 200kms™!, 6 = 45°), then, even if it were
known exactly, there would still be an uncertainty ~ 107" § D/D yr™! in the contribution to
PK resulting from the changing Doppler effect. It seems most unlikely that the fractional
error § D/D in the distance can be reduced below 0.1, so it may never be possible to discuss
effects at the level below 107!2 yr™! (unless other binary pulsars are discovered).

In summary, the precision with which we know the orbital parameters and masses is
improving so fast that we will, within a few years, be able to calculate Py with a precision
better than 107!? yr~!. Within 10 years the observations could also have achieved this same
precision; we may then (if no discrepancy appears) be able to use (26) to set limits
Qg S 107* to any wave background at wavelengths 10—10* light-years. Improvements
beyond this level may be bedevilled by our ignorance of how the binary pulsar is moving
through the Galaxy.
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Note added in proof

The newly-discovered pulsar in 4C21.53 (D. Backer, S. Kulkarni, C. Heiles, M. Davis &
M. Goss: IAU Circ. 3743) may be much quieter than 1237 +25. If the timing stability of
1.5 us, reported by Backer et al. (Nature, 301, 314) persists for several years, the sensitivity
in terms of {2, may be better by as much as 3000 than that obtainable from 1237 +25
(plotted in Fig. 1). By 1985 pulsar timing may therefore be able to detect a background of
Q, ~ 1077 with periods of order a year.
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