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LIMITS OF COMPOUND AND THINNED POINT PROCESSES

Olav Kallenberg

Abstract

Let n = XGT be a point process on some space S and let

J J
8,61,62, ... be identically distributed non-negative random variables
which are mutually independent and independent of n . We can then

form the compound point process £ = ZBJGT which is a random measure

J J
on S . The purpose of this paper is to study the limiting behavior

of & as B g 0 . In the particular case when B takes the values
1 and O with probabilities p and 1-p respectively, £ becomes
a p-thinning of n and our theorems contain some classical results
by Rényi and others on the thinnings of a fixed process, as well as

a characterization by Mecke of the class of subordinated Poisson processes.

COMPOUND AND THINNED POINT PROCESSES; INFINITELY DIVISIBLE RANDOM MEASURES;
SUBORDINATED POISSON PROCESSES; CONVERGENCE IN DISTRIBUTION; REGULARITY AND

DIFFUSENESS

1. Introduction
Let S De a locally compact second countable Hausdorff space and
let B be the ring of hounded Borel sets in S . By a random measure

£ on S we shall mean a mapping of some probability space (9,A,P)
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into the space M = M(S) of Radon measures on (S,B) such that £B
is a random variable for each B e B . When £ is a.s. confined to
the subspace N ¢ M of integer-valued measures, it will also be called
a point process.

Let us write F for the class of measurable functions S -+ R,
and Fc for its subclass of continuous functions with bounded support.
Vague convergence, w Y4y, in M means that wf > uf for each
f e Fc while weak convergence, un ¥ u , defined for bounded measures
on M , means that un Y. and unS + uS . (Here uf = J f(s)u(ds) .)
Convergence in distribution [2] of random elements in topological spaces
is written 3 . For random measures, the underlying topology in M is
taken to be the vague one. It is known [11] that a sequence ‘{En} of
random measures is tight, and hence the sequence ‘{PE;l} of corresponding
distributions relatively compact [2], iff {EnB} is tight for each

B e B . Furthermore [4], £, e £ iff

(gnBl, ee ,gan) 3 (EBl, . ,gBk), B B ¢ B k € N, (1.1)

12 v

where Bg = {Be B: 3B =0a.s.} , and also iff Enf 4 Ef, T € Fc .

In terms of L-transforms (L = Laplace), defined for arbitrary random

Ef

measures £ by LE(f) = Be , £ € F , the latter criterion can be

written (ef. [11])

Lg

(ﬂ+Léﬂ, fenﬁ (1.2)

n

It may be shown that any point process n on S has the representation

v
n = z 5+ (1.3)
=173
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where v is a E;—valued random variable while {T,} is a sequence

J
of random elements in S without any limit point. (Here GS e N is
defined for s € S by § B = lB(s), B € B , where 1 denotes the
indicator of B .) Now suppose that 6,81,62, ... are identically dis-

tributed R+—valued random variables which are mutually independent and

independent of n , and define

Since ¢£B = ZBJlB(TJ) < e, Be B, it is easily seen that £ is a random
3 ;

measure on S . We shall say that & is a compound point process determined

by n and B , and we write £ d C(n,B) for brevity. In the particular

case when B only takes the values 1 and 0 , with probabilities p
and 1-p respectively, & will be called a p-thimning of n .

By the assumed independence of n and {Bj} , the L-transform
of £ may be calculated by means of Fubini's theorem, i.e. we may first

consider n as non-random, and then perform mixing with respect to its

distribution. Writing ¢ = LB » Wwe obtain for f ¢ F and non-random
n:u:ZGt
J J

-Ef

Ee ™" = E exp[-ZBJf(tJ)] E exp[-BJf(tJ)] = ¢ o £(t

)
5 3 3 .

J

and hence in general, by mixing,

€

Lg(f) =g =g exp(n ' log ¢ ° f) = Ln(— log ¢ o £), f e F.

This shows in particular that Ps—l does not depend on the representation

exp ] log ¢ o f(tj) = exp(uy log ¢ ° f) ,

(1.4)
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(1.3) (which is not unique, even apart from the order of terms). The
above mixing procedure also provides an alternative way of defining a

£ d c(n,B) , (cf. [T] page 359; use 1.6.2 in [6] to check measurability).
In the particular case when £ 1is a p-thinning of n , (1.4) takes the

form (cf. [8])
L(£) = L (- logll - (1-p)ef]), feF. (1.5)

The main purpose of this paper is to study the limiting behavior
as B Q 0 of compound point processes. We shall be able (in Sectioﬁ
3) to describe the class of possible limits, and under a mild regularity
condition (which is not needed in the thinning case), necessary and
sufficient conditions will be given for convergence in distribution
to a specified member of this class. The results take a particularly
simple form for thinnings. In this case, the class of limits consists
of all subordinated Poisson (SP-) processes (often called doubly stochastic
Poisson, or simply Cox processes). If, moreover, En is a pn—thinning of
n, for each neN andif p_ %0, then £ $ sP(n) (the SP-process
directed by n ) iff Pnnn g n . This proposition contains as particular
cases the classical thinning results by Rényi (1956), Nawrotzki (1962),
Belyaev (1963) and Goldman (1967) (cf. Theorem 6.10.1 in [6]), who all
consider p-thinnings of some fixed point process and change the "time"
scale by the factor p“l . It also contains the following interesting
characterization by Mecke (1968) (cf. Theorem 5.6.12 in [6]) of the

class of SP-processes: A point process in SP iff it is a p-thinning

for each p ¢ (0,1].
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A secondary result of some independent interest is Lemma 4 which
indicates how the classical regularity conditions ensuring a point
process to be simple (see e.g. Satz 1.3.5 in [6] and Theorem 2.5 in
[4]) nave analogues ensuring an arbitrary random measure to be diffuse.
Even the converse proposition (Dobrushin's lemma) carries over to this

context.

2. Preliminaries

In this section we shall introduce the class of limiting random
measures and prove some auxiliary results. Throughout the paper we
use g to denote the function 1-e™* on R, and write R} = R+\{0} .
For any measure A on R+ or RL we deéfine & new measure gl on
R, by (gr)(ax) = g(x)a(ax) .

Our first lemma is essentially contained in Theorem 3.1 of [L]
(which needs correction: condition (i) must also hold with liminf instead

of limsup).

Lemma 1. Let o e R, and X e M(R}) with o+ Ag =1, and define

—tx)

p(t) = at + J R,(l -e A(dx), t eR
o+

L
Further suppose that BysBps ... are R, -valued random variables such

that B, $o0 » and put

¢, =1L o T Eg(B ) =1-¢(1), neXN.

Then - c;llog ¢n + ¢y uniformly on bounded intervals iff

-1 -1
c g(PBn ) ¥ ady + gA .

(2.1)
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Let o and A be such as in the lemma and consider an arbitrary
measure p € M . Then the measures opu e M and A x u € M(Ri x 8)
may serve as the canonical measures 6f an infinitely divisible random
measure &£ on S with (u-homogeneous) independent increments (see

e.g. [4]), the L-transform of which is given for f ¢ F by

1%

- log Ee (1 - e )y (x x ) (axat)

auf + JRLXS

Js{af(t) . JR,(l - )y (ax) bucat) = wly o )
+

Again we may consider u = n as & random measure and mix with respect
to its distribution (check the measurability by means of 1.6.2 in [6]),

to obtain

~Ef _ pen(¥ef)

Lg(f) = Ee = Ln(w o f), fe6F.

The distribution of £ ©being determined by Pn-l, o and A , we shall
write for brevity £ d S(n,a,k), (s for subordination). Note that we

obtain Y =g and § g SP(n) in the particular case vhen o = 0 and

A= Gl . We shall need the following uniqueness result. For C ¢ B,

say that n is non-zero in C if nC g 0 and diffuse there is n

has a.s. no atoms in C .

Lemms 2. If & d S(n,a,A) , where o + Ag =1 while n is known
to be non-zero and diffuse in some region C € B , then Pn"1 , o and
A are uniquely determined by PEL .

The proof of Lemma 2 is based on the following result which is
obtained in the same way as Satz 5.6.9 in [6] by using 1.3.T7 in place

of 1.3.10.

(2.2)
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Lemma 3. Let n be a diffuse random measure on S . Then Pn_l

»nB

18 uniquely determined by the quantities Ee '™, Be B .

Proof of Lemms 2. By (2.2),

BB = Ee—an(l) = Ee-nB, BeB.

If we replace B here by B n C , it follows by Lemma 3 that Pg-l
determines the distribution of the restriction of n to C , and in

particular P(nC)—l' is unique. From (2.2) we further obtain

— m—tEC _ . -nCy(t) _ o
Lgc(t) = Ee = Ee = an p(t), t e R, .

Since nC ¢ o s an has a unique inverse an on (0,1] and we obtain

=171,
‘p - an LEC )

proving the uniqueness of ¢ , and hence by Lemma 1 of « and A .
Now it may be seen from (2.1) that ¢ has a unique inverse w—l on
[0,||w||) » Where ||.]| denotes the supremum norm. If f ¢ F 1is such

that ||£|] < ||v]] , we thus obtain from (2.2) L (f) = Lg(q)‘1 o f) , so

= pa—tNE _ -1 Pyl
Log(t) = Ee = L(v (t£)), feF, te [osrery

By the uniqueness of analytic continuations it follows that Lnf is

unique, and hence so is Pnnl , 8ince f ¢ F was arbitrary.

To ensure diffuseness, we introduce regularity conditions as follows.
Let us say that 0 is regular in C € B if there exists some array

{ij} c B of finite partitions of C (one for each m ) such that



lim } P{nC_, > €} =0, €e>0.
me mJ

More generally, if n,nl,nz, ... are random measures on 8 , we shall
say that {nn} is n-regular in C € Bn if there exists some array

{ij} c Bn of partitions of C such that

lim limsup ) P{nnCmJ >eg}l=0, €>0.
mre  nde J

Lemma 4. Let UPLIPL PO be random measures on S with n, 4 n o,
and suppose that n 18 regular in C ¢ B or that {nn} is n-regular
in Ce Bn . Then n is diffuse in C . The converses are also true

if EnC < o .,
Proof. The diffuseness of a regular n follows from the relation

P{max n{s} > €} < Plmax nC_, > e} < Yy P{nC , > ¢} .
seC 3 ) § mJ

We further obtain for n-regular {nn} with n 3 n

Z P{nCmJ > g} < Z liminf P{nncmj > ¢} < limsup Z P{nnCm >el, €>0,

j J o me :
so n is regular and hence diffuse. Conversely, suppose that n 1is
diffuse on C and EnC < « , and let us choose {ij} c B such that

maxlCmJI >0, (].] denoting the diameter). Then clearly max nCpy + 0
J J

a.s., SO

nc 2 52 1{ +0 a.s. €e>0,
nC_,>e} !
J mJ
and hence by dominated convergence

) P{nC_

3 > e} = E] tnc_,>e

} »> 0, e >0,
J mJ

J
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proving regularity of n . If we choose the Cm in Bn (which is

J
always possible, cf. the Remark in [4] page 10), we further obtain

limsup ) P{nnij > e} < ] limsup P{n_C > e},

2 €} < ) P{nC
nreo J n-oo m

m) 3

J

and so {nn} is n-regular.

3. Main results
Recall the definitions of C(n,8) and S(n,a,A) , given in Sections
1 and 2 respectively. We shall always assume that 8 Q 0 and that

o+ Ag = 1.

d
Theorem 1. For each n e N , let g = C(nn,Bn) and put c = Eg(Bn) .
Suppose that B, $0. Then & $o iff ¢ Ny $o. Furthermore, the
conditions

- 3
(1) en *n,

. s -1 <1, w
(ii) e, g(PBn ) > a&o + g\

imply that ) $ S(n,a,A) . Conversely, £, 3 £ implies that & d

some S(n,a,A) , and if {cnnn} is E-regular in some C ¢ Bg with

£C 45 , then (1) and (ii) are satisfied for some n , o and X .
No regularity condition is needed in the thinning case:

Theorem 2. For each n e€ N , let P, € (0,11 and let £ be

a pn-thinning of some point process n, . Suppose that p_+ 0 . Then

i =

£ $ gome & iff pn, $ some n , and in this case E = SP(n) .
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Corollary (Mecke). Let & be a point process on S . Then E d

some SP(n) iff £ <s distributed as a p-thinning for each p e (0,1] .

Remark. As was pointed out in [5], the last result is essentially
contained in Theorems 5.1 and 5.2 of that paper. It may be of some
interest to observe that even Theorem 2 above (in particular cases,
such as when S = R+) can be obtained from results in [5], (viz. Theorems

2.3 and 4.2 there). We leave details to the reader

4. Proofs

Proof of Theorem 1. To prove that En Q 0 iff e Ny Q 0 , note

that by (1.h4)

" -tE B
Ee © =E exp[n B log ¢ (t)], teR,BeB, nel, (4.1)

where ¢n§;LB . Using the elementary inequalities
n

l-x<-logx<2(1-x), xce€ [%31] R (k.2)

and the fact that ¢n + 1 since Bn Q 0 , we get for sufficiently large n € N

c, =1- ¢n(1) < - log ¢n(1) <2(1 - ¢n(1)) 2c »

so by (4.1) with t =1

-£ B
n
Ee < E exp(~ cnnnB), BeB.

A

E exp(~ 2cnnnB)

Letting n > « , it is seen that { B 3 0 iff cnnnB 3 0,BeB,
and the assertion follows.

Let us next suppose that (i) and (ii) are satisfied. To show

that in this cese £ $ £ = S(n,a,A) , it suffices to verify (1.2),
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i.e. by (1.4) and (2.2) to show that, for any fixed f e Fc R
E exp(nnlog ¢, ° f) + Ee-n(wof) R

where ¢ is defined by (2.1). Since the function e X 1is bounded

and continuous on R, , it is enough by Theorem 5.2 in [2] to show that
-n log ¢_° £ $n(y o 1),

and by Theorem 5.5 in [2] it suffices to prove this for non-random
n,nl,ne, ... satisfying (i) , or more generally, to show that for any

. v
Wl slys +-- € M with WY

- c;lunlog ¢, ° f+u(yof).

Since f has compact support and ¢(0) =0 , ¢l(0) = ¢2(0) = ...=1,
we may assume that even H ¥ v , and after normalization (which is
possible except in the trivial case uS = 0) , that HslysHys 0. aTe

probability measures. In this case, (4.3) may be written in the form
- ¢k log ¢ o £(T_ ) > By o £(T)
n n n i

where T’Tl’Tz’ ... are random elements in S with distributions
M5 slys .-+ » hence satisfying Tn g7, By (ii) and Lemma 1, the

sequence {cgllog ¢n} is uniformly bounded on finite intervals, and

f being bounded, it follows that {c;llog ¢n o £} is uniformly bounded.

Hence, by Theorem 5.2 in [2], (4.4) is implied by

- c;llog ¢, ° f(Tn) $ v o £(T) .

(4.3)

(h.b)

(4.5)
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Applying Theorem 5.5 in [2] once more, it is seen that (L.5) needs verifi-
cation only for non-random T’Tl’Tz’ ... with Tn +>T , and so, f Ybeing

continuous, it remains to prove that
- c"llog o (x ) » v(x)
n n''n

whenever XyXq3Xps e € R+ with X, + x . But by Lemma 1 this follows
from (ii) , and so the convergence En Q £ 1is established.
Suppose conversely that gn Q some & , and let B € BE be arbitrary.

Then &_B 2 8 (cf. (1.1)), so by (4.1)

-tEB
E exp[nnB log ¢n(t)] -+ Ee 2 » teR, ,

and since this limit tends to one as t > 0 , there exists for each

e >0 some t e (0,1) satisfying
E exp[n B log ¢ (t)] 21 -¢/2, nel. (4.6)

Now it follows by (4.2) and the elementary inequality

tx

1 - e X s (1 - 7%

, tel0,1], =xeR_,

that

~t8, -
- log ¢n(t) 21 - ¢n(t) =E(1 -e ) 2 tE(L -e )= te, mel,
and so by (4.6) and eby¥ev's inequality

-1 _ :
P{cnnnB >t “log 2} = P{tcnnnB > log 2} < P{—nnB log ¢n(t) > log 2}

= P{1 - exp[nnB log ¢n(t)] > %ﬂ < 2E{1 - exp[nnB log ¢n(t)]} <€,
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proving tightness of {cnnnB} . Since B ¢ Bg was arbitrary, if follows

that {cnnn} is tight.

Let us now assume that En Q £ Q 0 and prove that then

1lim limsup c—l(l - ¢ (t))=0.
t>0 nreo B n
Suppose on the contrary that the limit in (4.7) is greater than some

€ > 0 . Then there exist arbitratily small t > 0 such that, for some

sequence N' c N ,
c'l(l - ¢ (%)) > ¢ neN'
n n 2 ?

and since {cnnn} is tight, we may choose some subsequence N" c N'

for which cnnn i some n . According to the first assertion, & Q 0

implies n ¢ 0 , so we may further choose some B ¢ Bg n Bn with
nBEo. By (4.1), (4.2) and (4.8),
—tEnB
Ee = E exp[n B log ¢ (t)] < E exp[-n B(1 - ¢ (£))] < E exp(-ec n B) ,

and since gnB gvgB and cnnnB $ nB on N" , it follows that
Ee-.t"EB < Ee-enB . But since t could be chosen arbitrarily small,
this yields the contradiction 1 < Ee "B <3 , proving that (4.7) is

indeed true.

By aebygev's inequality we further obtein for any r,t > 0
c-lE(l -e

-a t
Y n By et - e ()
¢ " P{B >r} = = s
n n -rt -rt
l-e 1l -e

and letting in order n > o, r > ® and t + 0 , we get by (L.T)

(4.7)

(4.8)
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. . -1
lim limsup c_ P{Bn >r} =0,
T n-reo

which shows that the sequence {c;lg(PB;l)} of probability measures

on R, is tight. In particular there exist some sequence N' ¢ N

end some n,a end A such that (i) end (ii) hold on N' , and

we may conclude from the sufficiency part of the theorem that £ has
the asserted form. (In the case & d 0 , we may take n = 0 and choose
arbitrary o and X .)

Let us finally assume that En g £ , and that '{cnnn} is E-regular
in some region C € Bg with £&C ¢ 0. Since the sequences {cnnn} and
{c;lg(PB;l)} are both tight, any sequence N' ¢ N must contain some
subsequence N" such that (i) and (ii) hold on X" for some n,o
and A . By the direct part of the theorem we have £ g S(n,a,A) ,
and in particular BE = Bn by (2.2), proving that nC $ 0 and that
{cnnn} is n-regular on C . Using Lemma 4, it follows that n 1is
diffuse in C , and therefore Pn—l, o and A are unique by Lemms
2. This proves (i) and (ii) for the original sequence (cf. Theorem

2.3 in [2]), and the proof is complete.

Proof of Theorem 2. The preceding proof applies with c, =P, »

oa=0 and A= Gl , (and it may even be simplified in the present case,
since (ii) is automatically satisfied). No regularity assumption is
needed, since if & g sp(n) , then PnL is uniquely determined by

PE-l , (cf. [6] page 316 or the proof of Lemma 2 above).

Proof of the Corollary. Let ¢§ d some SP(n) end let p e (0,1]

be arbitrary. If s d SP(p-ln) and if Ep is a p-thinning of np
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we get by (1.5) and (2.2) for any f e F

L, (£) =1, (- logll - p1-e)]) =1, (1 - [ -201 - e"H1)
P P p M
=1, (p(1-e™)) = 1 (1-e7")
P N

= Lg(f) >

and so § d Ep . This proves that £ is a p-thinning for each p € (0,1].
Conversely, suppose that £ has this property. Applying Theorem 2 with

n_l and En =f ,neN, it is seen that £ mast be an SP-process.

Pn
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