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Abstract—Key challenges in vehicular transportation and com-
munication systems are understanding vehicular mobility and
utilizing mobility prediction, which are vital for both solving the
congestion problem and helping to build efficient vehicular com-
munication networking. Most of the existing works mainly focus
on designing algorithms for mobility prediction and exploring
utilization of these algorithms. However, the crucial questions
of how much the mobility is predictable and how the mobility
predictability can be used to enhance the system performance are
still the open and unsolved problems. In this paper, we consider
the fundamental problem of the predictability limits of vehicular
mobility. By using two large-scale urban city vehicular traces,
we propose an intuitive but effective model of areas transition to
describe the vehicular mobility among the areas divided by the city
intersections. Based on this model, we examine the predictability
limits of large-scale urban vehicular networks and obtain the max-
imal predictability based on the methodology of entropy theory.
Our study finds that about 78%–99% of the location and above
70% of the staying time, respectively, are predicable. Our findings
thus reveal that there is strong regularity in the daily vehicular
mobility, which can be exploited in practical prediction algorithm
design.

Index Terms—Mobility modeling, mobility prediction, pre-
dictability limits, vehicular networks.

I. INTRODUCTION

U
RBAN vehicular traffic congestion is an increasingly se-

rious problem that is significantly affecting many aspects

of the quality of metropolis life around the world [1]. Scientific

traffic engineering, which aims to achieve efficient management
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of the resource of networks of roads and transportation systems,

becomes a hot research topic that attracts broad interests [2].

On the other hand, newly emerged vehicular communication

networks are seen as a key technology to help in relieving the

traffic congestion and improving road safety, by building intel-

ligent transportation systems [3]–[5]. Thus, conscious efforts

in developing intelligent transportation systems to deal with

the transportation problems of urban cities have simultaneously

come from both research fronts on the networks of vehicles

and the vehicular communication networks. Critical issue for

transportation systems, which are networks formed by vehicles,

is how to handle the vehicular dynamics in terms of mobility

within the capacity of the existing road system by predicting

and guiding the vehicular traffics [1], [9]. On the other hand,

the capability of predicting the vehicular mobility can play

a significant role in various communication and networking

functions from bandwidth reservation to service provisioning

[4], [10]–[12].

From the preceding discussion, we have identified that ve-

hicular mobility prediction is vital both to solving the problems

of vehicular transportation systems and to building efficient

vehicular communication networks. After the recent years of

intensive research, a large number of mobility models are

available, which can be classified into three different classes:

synthetic models, which are obtained by mathematical model-

ing; survey models, which are obtained by extracting mobility

patterns from surveys; and trace-based models, which are ob-

tained by generating mobility patterns from real mobility traces

[12]. In addition, many works [13], [14] have exploited the

design of prediction algorithms based on the existing mobility

models. Currently, further works are exploring the applica-

tions of mobility predication to help with the urban traffic

prediction, driving guidance, vehicular communications, etc.

However, the vehicular dynamics in a transportation system

or vehicular communication network are highly complex. For

example, the movement schedules of individual vehicles are

typically unknown to the “network,” and vehicular trajectories

can easily appear random and unpredictable. In particular, how

much the mobility can be predicted is an open and unsolved

problem. Therefore, there are more fundamental questions to be

addressed before designing prediction algorithm and utilizing

prediction, which include what is the role of the randomness

playing in the vehicular mobility, is there any regularity in the

daily vehicular movement, and to what degree is the mobility

predictable.

Against this background, in this paper, we consider the fun-

damental problem of the predictability limit for the vehicular
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mobility in large-scale cities. Specifically, we explore the use

of areas transition to model the vehicular mobility among the

areas divided by the intersections of city roads. In this mobility

model, vehicles stay in an area for some time and then move

to another area by making the next location choice, which

is the most intuitive description of mobility. The questions

we addressed include that are there regularities governing the

vehicular mobility, in terms of location transition between areas

and the staying time in each area, and how can these regularities

influence the predictability of vehicular mobility. Most impor-

tantly, we answer the fundamental question of what are the

limits of predictability existing in the seemingly random vehi-

cular mobility. Our contributions are summarized as follows.

1) We collect a large vehicular trace, i.e., the Beijing trace,

which includes more than 20 000 vehicles for the duration

of one month to study the mobility of vehicles. This is the

largest urban city vehicular data trace available.

2) We propose an intuitive but effective model of areas tran-

sition to describe the vehicular mobility among the areas

divided by the key intersections of city. Based on this

mobility model, we utilize the method for predictability

limits based on entropy theory to quantify how much the

vehicular mobility can be predicted, in terms of location

choice and staying time.

3) We demonstrate our proposed predictability limits of

vehicular mobility by experimentally verifying that about

78%–99% of the location above and 70% of the staying

time, respectively, can be predicted based on the Beijing

trace and another existing large urban vehicular trace, i.e.,

the Shanghai trace [15]. Thus, our real-mobility-trace-

based results reveal that there exists a strong regularity in

the daily vehicular mobility, in terms of both temporal and

spatial dimensions, which can potentially be exploited in

prediction algorithm design.

The rest of this paper is organized as follows. After introduc-

ing the related work in Section II, we present the two vehicular

data traces in Section III, which are used to illustrate and ex-

perimentally verify our proposed methodology. Section IV pro-

vides our mobility model. With this mobility model, Section V

presents the method for predictability limits based on entropy

theory. In Sections VI and VII, we present our experimental

results for the predictability limits of the location and staying

time, respectively, based on the Beijing and Shanghai traces.

We conclude this paper in Section VIII.

II. RELATED WORK

As previously mentioned, the existing mobility models can

be classified into three different classes: synthetic models, sur-

vey models, and trace-based models [12]. The synthetic models

[16], [17] and the survey-based models [18], [19] are often un-

able to provide realistic modeling of motion patterns, although

they can be very complex. The trace-based approach attempts

to extract mobility models from real mobility traces by ap-

proximating the movements based on the observed movement

patterns [20], [21]. All the aforementioned mobility models are

often too complex to be concisely described by mathematical

equations. In contrast to these existing models, we use an intu-

itive but effective model of areas transition to describe the ve-

hicular mobility for urban city. Furthermore, instead of model-

ing the individual mobility, as most of the existing works do, our

work focuses on the fundamental problem of the predictability

limits for vehicular mobility and experimentally verifies the

obtained predictability limits based on real mobility trace data.

The related work in vehicular mobility prediction comes

from the two main communities, i.e., the transportation system

community [1], [2], [9], [22] and the vehicular networking

community [13], [14]. From the first community, some works

investigate the vehicular behavior prediction in terms of trajec-

tories and routes [1], [6]–[9], [22]. For examples, Wu et al. [9]

applied the support vector regression to predict the travel time

of vehicles, and Stathopoulos and Karlaftis [1] concentrated

on developing the multivariate time-series state-space method

to predict the urban traffic for solving the traffic congestion

problem, whereas Kindzerske and Ni [22] applied the nonpara-

metric regression approach to predict traffic conditions. From

the second community, Zhang et al. [13] proposed an instant

traffic clustering algorithm to partition the road points into

the time-variant clusters by deriving the application-specific

message update rules for affinity propagation to aid vehicular

network design, whereas Namboodiri and Gao [14] explored

the predictability of the location of mobility and use the pre-

diction to aid the routing algorithm design for vehicular ad

hoc networks. All these works focus on predication algorithm

design and apply the prediction for the transportation system

and vehicular network design. In contrast to these studies that

investigate specific prediction algorithms, our work considers

the fundamental problem of what is the limit of predictability

for vehicular mobility in large-scale urban cities.

Rather than studying vehicular mobility prediction, some

interesting studies investigate human mobility and prediction.

For example, [23] examines the predictability limit of human

mobility, whereas [11] explores the temporal predictability of

human mobility and uses the prediction to assist the bandwidth

reservation in advance.

III. DATA TRACES AND PREPROCESSING

Since we use two large-scale urban vehicular traces, i.e., the

Shanghai and Beijing traces, to study the vehicular mobility

predictability and to verify our proposed predictability limits,

we first provide a brief description of these two traces.

A. Data Sets

The Shanghai trace [15] was collected by SG project [24], in

which 2019 operational taxis continuously covered the whole

month of February 2007 in Shanghai city. In this trace, a taxi

sends its position report by general packet radio service (GPRS)

to the central database every 1 min when it has passengers on

board but every 15 s when it is vacant for the reason of real-time

scheduling. However, the different intervals of reporting may

distort the records of the physical movements of the taxis, since

most taxis are not vacant most of the time. Another potential

drawback of this trace is that the number of taxis is limited, as

2000 taxis and 1 min duration may not be sufficient to record
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the statistical features of mobility in a high-speed large urban

environment.

In collecting the Beijing trace, we used the mobility track

logs obtained from 27 000 participating Beijing taxis carrying

GPS receivers during May 2010. The reason for us to also

choose taxis, instead of other vehicular devices, is that taxis are

more sensitive to urban environments in terms of underlying

road topology, traffic control, and urban planning; and they

have broader coverage in space and operation time than buses

and private cars. Specifically, we utilized the GPS devices to

collect the taxis’ locations and time stamps and GPRS modules

to report the records every 15 s for moving taxis. The specific

information contained in such a report includes the following:

the taxi’s ID, the longitude and latitude coordinates of the taxi’s

location, time stamps, instant speed, and heading.

B. Data Preprocessing

By collecting the GPS information of longitude and latitude

coordinates, we obtain the taxis’ moving traces that indicate the

taxis’ locations varying with the time. Since these locations are

measured by GPS devices, the collected data are noisy due to

the inaccuracy of the GPS device. Furthermore, the taxis may

not all report their locations at the same time slot with the same

fixed frequency, as in the case of the Shanghai trace. Therefore,

it is necessary to process the data trace to obtain the accurate

locations of all the taxis in the same time slots and with the

same frequency. In order to achieve these goals, we first use the

city maps of Shanghai and Beijing for the respective traces to

correct the taxis’ locations so that they are on the related city

roads. Then, we delete the sequent records of GPS positions

that do not change during time interval of 2 min to cleanse

the long stopping of vehicles due to reasons of waiting for

passengers, parking, etc. Finally, we use the method of linear

interpolation (LI) to insert location points so that all the taxis

have location information at every 15-s interval. To illustrate

how this LI method works, consider the location information

of one taxi in the original trace with the locations l1, l2, . . . , ln
recorded at the time points t1 < t2 < · · · < tn, and we want to

insert the location information lt at the time point t, which is

calculated according to the 15-s frequency. We need to find tm
that satisfies tm ≤ t < tm+1 and then to estimate the location

lt by the following LI:

lt =
tm+1 − t

tm+1 − tm
· lm +

t− tm
tm+1 − tm

· lm+1.

In order to verify that the preceding data preprocessing ap-

proach does not introduce artificial and inaccurate information

into the original data trace, we use the data obtained by this

preprocessing method for the one-day taxi locations to plot

the trajectories of all the taxis, and the results show that the

data sets are sufficiently large, and even using one-day data can

recover the whole city maps. By comparing the recovered maps

of Beijing and Shanghai with the true Beijing and Shanghai

maps, we find that all the taxis’ trajectories determined by the

preprocessing are on the related city roads, and the two city

maps drawn by these one-day trajectories are very similar to

the corresponding true city maps.

IV. MOBILITY PREDICTION MODEL

A. Motivation

Two of the most important properties that characterize the

mobility are the temporal and spatial parameters. The spatial

property deals with the positions of vehicles, such as in which

region and which road that a vehicle is traveling, as well as its

moving direction, etc. When vehicles are traveling on the city

roads, they usually transfer from one road to another at almost

stationary velocity when the roads are free. Therefore, the

transitions from one road to another are important observations

of the vehicular mobility. The temporal property describes

the vehicular staying time in each region, which depends on the

vehicular moving speed and the traffic conditions. An accurate

vehicular mobility model should have the ability to faithfully

describe these basic temporal and spatial properties.

Consider a vehicle moving in the roads of a city. It will travel

along a road and comes across an intersection. It may wait at

the traffic light for some time and choose the direction at the

intersection and then travels to another road to drive on. In the

downtown of a large city, the roads are usually very crowded,

and the intersections are very dense, which lead to very long

waiting time at intersections and relatively short driving time

along roads. Therefore, intersection is an important factor in

modeling the urban vehicular mobility. Imagine viewing from

the sky above the city; we observe a crowd of vehicles waiting

at the area of each intersection and streams of traffic moving

from one area to another area. Thus, in order to describe the

vehicular distribution, we should pay particular attention to the

areas around intersections.

By dividing the whole city into different areas, each in-

cluding at least one intersection, we can model the vehicles

moving from one area to an adjacent area and therefore model

the vehicular traffic transiting from one area to another. Then,

the mobility prediction is about how and when the vehicles

will transit among these areas/locations. The spatial parameter

describes the next area that each vehicle will transit to based

on its historical transition information, whereas the temporal

property characterizes how long each vehicle will stay in the

current area and how long it will stay after it moves into

the next area. Although vehicular mobility can be described

by a variety of different models [12], this simple approach

appropriately characterizes its temporal and spatial parameters,

which enables the analysis of predictability limits for large-

scale urban vehicular mobility.

B. Area Partition

In order to divide the vehicular mobility system into the areas

that vehicles transit between, we need to take the roads and

city structure into consideration. As intersections are the most

important factor in modeling the urban vehicular mobility and

distributions, we divide the system according to the positions

of the key intersections in the city roads. More specifically,

we use the key intersections as the centers of the partitioned

areas and employ the Voronoi diagram, which is a frequently

used method of decomposing a given space [25], to achieve

the actual partitioning. In this approaches, the Voronoi diagram
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facilitates dividing the city by the positions of intersections,

which cannot be achieved by other simple model of grid shape

meshes, for instance.

In a Voronoi diagram, a finite set of sites V = {v1, v2, . . . ,
vN} is given in the Euclidean plane. The Voronoi cell An

corresponding to the site vn consists of all the points whose

distances to vn are not greater than their distances to any other

site vm, m �= n. In using the Voronoi diagram to partition the

system region, the set of all the key intersections is V . Each site

vn ∈ V is a selected intersection that is the center of the site or

area. If we denote all the points in the system region as the set

X, the distance between the point x ∈ X and the site vn ∈ V is

defined as dx,vn
= ‖x− vn‖. The area An for site vn can be

then formally expressed as

An = {x ∈ X|dx,vn
≤ dx,vm

, ∀vm ∈ V \ {vn}} . (1)

Based on this Voronoi diagram, we obtain all the boundaries

that partition the system region into the N different areas. After

the region has been divided into the different areas, we can

then decide which area a vehicle belongs to according to its

longitude and latitude information. Consequently, the vehicular

mobility is described by the transitions of vehicles from one

area to another.

Let us consider the 2-D vehicular mobility defined by a

sequence of steps that a vehicle travels in the city, which

is described or partitioned as the areas around the intersec-

tions, as previously discussed. Step n is defined by the tuple

(tn, An, t
d
n), which records that the vehicle enters area An at

time tn, and it stays in An for the duration of tdn. Every vehicle

moves in step by step by transiting from one area to another

area, which depicts each vehicle’s mobility. Thus, the traffic

flows of the whole system can be described by combining all

the vehicles’ mobility patterns and all the intersections together

as a system.

From the historical information, we can obtain the sequence

of the areas/locations that each vehicle has traveled, which

is denoted by An−1 = {A1, A2, . . . , An−1}. Then, the task of

location prediction becomes finding the most possible next area

An that the vehicle will travel to according to the historical

transitions An−1. Furthermore, with the continuous record of

the areas traveled by the vehicles, we can calculate the degree of

location predictability by analyzing the location sequences. For

the staying time in each area, we can also obtain the history dis-

tribution of Sn−1 = {td1, t
d
2, . . . , t

d
n−1}. Then, the staying-time

prediction problem becomes deciding tdn given Sn−1. Similarly,

the degree of staying-time predictability can be calculated by

analyzing all the staying-time sequences. From the preceding

analysis, we can see that the proposed mobility prediction

model is capable of analyzing the predictability based on the

vehicular historical mobility information.

C. Basic Statistic Properties of Mobility

The area partition results or the number of areas and the

sizes of the areas divided depend on the intersection selection.

Therefore, we need to be able to select different numbers of

intersections to partition the areas for different applications. For

Fig. 1. Distributions of the aggregated number of traveled areas over all the
vehicles.

this purpose, we count all the intersections for the two cities,

which are 845 intersections in Beijing and 622 intersections

in Shanghai. We then sort all the intersections of a city by the

traffic volumes from the largest to the smallest. This allows us

to select some desired percentage of the intersections for city

area partitioning and mobility studying.

When we select 90% of the intersections (760 for Beijing and

559 for Shanghai) for our model, we obtain the statistics of the

aggregated number of traveled areas over all the vehicles and

depict its cumulative distribution function (cdf) in Fig. 1. From

the results, we observe that 80% of the Shanghai vehicles travel

about 500–560 areas, whereas 80% of the Beijing vehicles

travel about 500–760 areas. This difference in the number of

areas traveled reflects the underlying different scales of the two

cities. In addition, the percentage of the Beijing taxis, which

travel less than 500 areas, is larger than that of the Shanghai

taxis, which travel less than 500 areas. This indicates that

relatively more Beijing vehicles stay in small local areas. The

area distributions thus demonstrate that most of the vehicles in

both Beijing and Shanghai cover the areas of the whole city,

and only a small number of taxis travel in some local areas.

To get a visual view of our area partition method, we select

50% of the intersections with largest traffic through sorting

all the intersections by the traffic volumes from the largest

to the smallest and plot the area partition results for Beijing

and Shanghai traces in Figs. 2 and 3, respectively, where we

divide the whole city, shown in the figures’ left part, into the

given number of areas, shown in the figures’ right part. In these

two area partitions, we mark the selected intersections as the

red points and plot the boundaries of each area by the blue

curves. From these results, we can see that the main underlying

city structures of both Shanghai and Beijing are captured by

selecting only 50% of the intersections.

To illustrate diverse behaviors of individual vehicles, we

choose 10% of the intersections, which are 84 and 62 intersec-

tions for Beijing and Shanghai, respectively, to partition the two

cities, and select two representative vehicles with very different

mobility patterns from each trace for observation. Specifically,

we plot the areas visited by the vehicle as nodes and use the

size of a node to indicate the percentage of the time that the
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Fig. 2. Illustration of area partition for Beijing city by selecting 50% of the intersections.

Fig. 3. Illustration of area partition for Shanghai city by selecting 50% of the intersections.

vehicle spends in the area, whereas we use the links between

the nodes to represent the observed movements between these

areas. The results obtained for Beijing and Shanghai traces are

shown in Figs. 4 and 5, respectively. For the Beijing trace,

the first selected vehicle moves in the vicinity of ten areas,

whereas the second visits as many as 72 areas. For the Shanghai

trace, one taxi selected travels in about 12 areas, and the other

covers all the areas. These results clearly indicate the very

diverse vehicular mobility patterns. The results also show that

individual taxis tend to spend most of their staying times in a

few particular areas.

V. METHODOLOGY FOR PREDICTABILITY

We use the entropy that quantifies the uncertainty to obtain

the fundamental limits of vehicular predictability.

A. Entropy Theory for Predictability

The basic concept of entropy is originally defined in the con-

text of thermodynamics. It measures the degree of randomness

in a set of configurations [26]. For a discrete random variable X
that takes the value from the set {x1, x2, . . . , xN}, the entropy

is defined as

H(X) = −

N∑

i=1

p(xi) log2 (p(xi))

where p(xi) denotes the probability of X = xi. Entropy is

measured in bits, and it indicates how predictable a variable is.

Low entropy implies high degree of predictability.

Under the mobility model introduced in Section IV, both

the prediction problems for location and staying time can be
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Fig. 4. Travel locations and staying times of the two selected representative vehicles from the Beijing trace. (a) Vehicle traveling a small number of locations.
(b) Vehicle traveling a large number of locations.

Fig. 5. Travel locations and staying times of the two selected representative vehicles from the Shanghai trace. (a) Vehicle traveling a small number of locations.
(b) Vehicle traveling a large number of locations.

abstracted as the following unified problem. The prediction

problem is underpinned by the stochastic process X = {X1,
X2, . . . , Xn, . . .}, and the task at the nth step of prediction is

to predict the next symbol Xn given the historical information

Xn−1 = {Xo
1 , X

o
2 , . . . , X

o
n−1}, where Xn−1 denotes the past

observation of the sequence Xn−1 = {X1, X2, . . . , Xn−1}.

More specifically, for location prediction, Xn−1 = An−1, and

each Xi is a discrete random variable that takes the value from

the set of N values. Similarly, for staying time prediction,

Xn−1 = Sn−1, but each Xi is a continuous-valued random vari-

able. For the purpose of a unified treatment of both the location

and staying time predictions, we assume that the continuous-

valued staying time has been quantized into the set of N values.

Therefore, each Xi in the case of staying time prediction is

turned into a discrete N -valued random variable. Here, N is

used for notational purpose, and it does not imply that the

size of the area set is equal to the size of the discrete staying

time set.

For the process X = {X1, X2, . . . , Xn, . . .}, where each

Xi is a discrete N -valued random variable, the entropy rate

measures the uncertainty that remains in the next information

symbol produced by the process given the complete knowledge

of the past. It is a natural measure of the predictability in

predicting the evolution of the process [27]. For a stationary

process X , its entropy rate can be written as

H ≡ lim
n→∞

1

n
H(Xn) = lim

n→∞

1

n

n∑

i=1

H(Xn|Xn−1) (2)

where H(Xn|Xn−1) is the conditional entropy at the nth pre-

diction step, and it can be obtained by the chain rule for entropy.

The entropy rate (2) is defined under the generic condition that

the process has memory or the series {X1, X2, . . . , Xn, . . .}
has temporal correlation, so that the probability of the next

symbol depends on the current and past ones. Otherwise, the

entropy rate of an uncorrelated series is simply defined as

Hu = H(Xn) = −
N∑

i=1

pi log2(pi) (3)

where pi denotes the probability of Xn taking the ith value in

the set of N values.
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To calculate the entropy rate from the vehicular histori-

cal information series Xn, we use an estimation based on

Lempel–Ziv data compression [28], which is proved to rapidly

converge to the true entropy of the series. For the series Xn

with size n, the entropy rate is estimated as

He =

(
1

n

n∑

i=1

Λi

)−1

ln(n) (4)

where Λi is the length of the shortest substring starting at

position Xi that does not appear as a contiguous substring of

the previous i− 1 symbols X1, . . . , Xi−1. It has been proven

that He converges to the true entropy of X when n approaches

infinity [28].

Thus, we have the following three cases of entropy [23].

1) The random entropy Hr = log2(N) for the purely ran-

dom sequence X , whose element Xn takes the ith value

with equal probability of pi = 1/N for 1 ≤ i ≤ N . It

measures how random the vehicles are traveling when

the location visiting probability and temporally correlated

series are not considered, which directly indicates how

many locations the vehicle has traveled in the modeled

areas.

2) The uncorrelated entropy Hu = −
∑N

i=1
pi log2(pi) for

the temporally uncorrelated series X .

3) The entropy H for the generic temporally correlated

series X , whose estimate is He given in (4).

B. Fundamental Limits of Predictability

If the sequence X of one vehicle has the entropy rate of

H = 0, then the vehicular mobility location or staying time is

completely regular and its trajectory is fully predictable. On the

other hand, if it has the entropy rate of H = Hr = log2(N),
which is the maximum value of entropy, then its mobility

follows a purely random pattern and we cannot predict its

next move with the accuracy exceeding 1/N . However, for

most of the vehicles, their mobility patterns are governed by

a certain amount of randomness and some degree of regularity

in their movements or staying times, which can be exploited

for prediction. In other words, their entropy rate values H lie

between 0 and Hr.

Related to the limit of predictability for the location or

staying time given the historical series, we obtain from [23] that

the upper bound of the predictability limit, i.e., Ψmax, for the

series X can be calculated from

H = − (Ψmax log2(Ψ
max) + (1 −Ψmax) log 2(1 −Ψmax))

+ (1 −Ψmax) log2(N − 1) (5)

where H is the entropy rate of X .

VI. LOCATION PREDICTION LIMITS

To analyze the predictability of travelling locations across

the vehicles based on the vehicular mobility, we combine the

entropy and maximal predictability limit. Specifically, we first

determine the entropy H and the predictability limit Ψ of each

Fig. 6. Location prediction properties of the Beijing trace. (a) Distribution of
entropy. (b) Distribution of maximal predictability limit.

vehicle according to its travelling area records during the whole

trace collection time, as well as its maximal predictability limit

Ψmax according to (5). Then, we obtain the distributions p(H)
and p(Ψmax) over all the vehicles. We are also interested to

know what would be the statistics if the individual vehicular

sequence of the area record were to be a temporal uncorrelated

sequence or a purely random equiprobable sequence. Thus, we

also calculate Hu and Hr and the corresponding maximum

predictability limits Ψu,max and Ψr,max under these two as-

sumptions, respectively. This allow us to obtain the distribu-

tions of p(Hu) and p(Hr) and p(Ψu,max) and p(Ψr,max) for

comparison purpose.

A. Results of Predictability Limits

The distributions of the entropy and the maximal predictabil-

ity limit so obtained for Beijing and Shanghai traces are shown

in Figs. 6 and 7, respectively, where Figs. 6(a) and 7(a) depict

the entropy distributions p(Hr), p(Hu) and p(H); whereas

Figs. 6(b) and 7(b) show the distributions of maximal pre-

dictability limits p(Ψr,max), p(Ψu,max), and p(Ψmax).
We observe that the distributions p(Hr) peak at Hr = 9.5

and Hr = 9.1 for Beijing and Shanghai traces, respectively.

This implies that each update of the vehicles’ distribution

would represent 9.5 and 9.1 bits of the new information on
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Fig. 7. Location prediction properties of the Shanghai trace. (a) Distribution
of entropy. (b) Distribution of maximal predictability limit.

average for the two cities, respectively. In other words, a vehicle

would choose its next area randomly from the N̂ = 29.5 ≈
724 and N̂ = 29.1 ≈ 549 next locations on average in the two

cities, respectively. Recall that the numbers of the total areas

partitioned for Beijing and Shanghai are N ≈ 760 and N ≈
559, respectively, which agree with the values provided by the

two distributions of random entropy Hr. In contrast, the true

entropy distributions p(H) for both Shanghai and Beijing traces

peak at two much smaller entropy values. Specifically, for the

Beijing trace, p(H) peaks at H = 0.2 and 3.1, whereas for the

Shanghai trace, p(H) peaks at H = 0.2 and 1.9. It is seen that

the vehicles in both cities can roughly be divided into the two

groups according to entropy distribution: one group’s entropy

is approximately around the high peak, and the other group’s

entropy is approximately around the low peak. The vehicles in

the first group have low uncertainty of H = 0.2 in their loca-

tion trajectories, that is, these vehicles will choose their next

locations from the 20.2 = 1.15 ≈ 1 alternative areas on average,

which is an almost certain decision. The vehicles in the high

peak group will choose their next locations from the alternative

21.9 ≈ 4 and 23.1 ≈ 9 locations on average for Shanghai and

Beijing, respectively. Note that these are much smaller than N̂
suggested by the distributions of random entropy. Similarly,

using the distribution of p(Hu) also gives the misleadingly

higher uncertainty level in the vehicular location patterns.

The limit in the probability that any algorithm can correctly

predict the vehicle’s next location is the predictability limit

Ψ, and the upper bound of Ψ is given by Ψmax. From the

distributions of Ψmax shown in Figs. 6(b) and 7(b) for Beijing

and Shanghai traces, respectively, we can see that p(Ψmax) is

narrowly distributed with the two peaks for both Shanghai and

Beijing. Specifically, for the Beijing trace, the two peaks occur

at Ψmax = 0.76 and Ψmax = 0.99, whereas for the Shanghai

trace, they are at Ψmax = 0.85 and Ψmax = 0.99. Obviously,

these two peaks of p(Ψmax) correspond to the two peaks of

p(H). The high peak of p(Ψmax) indicates that the mobility of

this group of vehicles can potentially be correctly predicated

with probability almost equal to 1, whereas the low peak of

p(Ψmax) indicates that the mobility of this group of vehicles

can be correctly predicated with probability approximately

equal to 0.76 and 0.85 for Beijing and Shanghai, respectively.

It is seen that the predictability of the Shanghai trace is slightly

higher than that of the Beijing trace. These results confirm that,

despite the apparent randomness of the individuals’ trajectories,

the historical record of the daily vehicular mobility patterns

contains a surprisingly high degree of potential predictability.

This is a far cry from the almost complete unpredictability

suggested by the distributions of p(Ψr,max), which peak at

Ψr,max ≈ 0 for both Shanghai and Beijing traces. The distribu-

tion p(Ψr,max) simply shows that the future location becomes

almost completely unpredictable if only the number of the

areas visited is used to predict the next location. Observe the

distributions p(Ψu,max); they are much more widely distributed

with the inconspicuous peak at Ψu,max ≈ 0.5 for both Beijing

and Shanghai traces. Thus, if an algorithm only relies on the

different visiting probabilities for individual areas in predicting

and does not exploit the inherent temporal correlation in the

mobility patterns, it cannot achieve the full potential prediction

power.

To further analyze the results of maximal predictability limit

shown in Figs. 6 and 7, we choose two typical vehicles that rep-

resent the low peak and high peak groups of p(Ψmax), respec-

tively, for the Beijing trace. We vary the number of the areas

for partitioning Beijing city by changing the percentage of the

selected intersections from 5% to 100% and obtain the maximal

predictability limits Ψmax of these two vehicles as the function

of the percentage of the selected intersections. The results are

given in Fig. 8(a) and (b) for the high-predictability group

and low-predictability group representatives, respectively. We

observe that the predictability limit increases with the increase

in the intersections or areas used. The larger the number of areas

used for partitioning, the smaller the individual areas become,

and more details related to the mobility regularity appear, which

increases the predictability. With more than 40% of the total

intersections, the predictability limit of the high-predictability

group is higher than 99% and becomes almost constant.

For the low-predictability group, when using more than 60%

of the intersections, the predictability probability is above

80% to 82%.

Next, we divide all the vehicles into the two groups of

high predictability and low predictability, respectively, for both

Shanghai and Beijing traces, and analyze the average location

predictability limit of each group. The results of the average
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Fig. 8. Maximal predictability limits of the low- and high-predictability vehicle groups in the Beijing trace. (a) High-predictability group representative.
(b) Low-predictability group representative.

Fig. 9. Limits of average location predictability for Beijing and Shanghai
traces.

maximal predictability limit of each group as the function of the

percentage of the selected intersections are depicted in Fig. 9.

We observe that the average location predictability limits of the

high-predictability groups for Beijing and Shanghai are almost

the same: they both reach around 99% when selecting more

than 20% of the intersections for partition, and the limits remain

very stable. For the two low-predictability groups, the average

maximal predictability limit of Beijing is around 78%, which is

lower than that of Shanghai. In addition, the average location

predictability limit for Shanghai’s low-predictability group is

more stable than that for Beijing’s low-predictability group. In

summary, the location predictability results obtained reveal that

the taxis in both Shanghai and Beijing can be divided into the

two groups with the predictability limits of about 99% and 80%,

respectively.

B. Predictability Validation

The results of location predictability reveal that there is a

high degree of regularity embedded in vehicular daily travelling

mobility. In order to analyze the variations of predictability

limits in the high- and low-predictability groups of Beijing and

Shanghai traces, the cdfs of the numbers of areas traveled are

Fig. 10. (a) cdf of the number of areas traveled and (b) pdf of the number of
possible next locations, for the low- and high-predictability groups in Beijing
and Shanghai traces.

plotted in Fig. 10(a), whereas the probability density functions

(pdfs) of the numbers of next possible locations are depicted in

Fig. 10(b), for both groups of the two cities. The reason to use

the cdf, instead of the pdf, in Fig. 10(a) is for better visualiza-

tion. In terms of the number of traveled locations, as expected,

the vehicles in the high-predictability group of a city travel
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less locations than those of the corresponding low-predictability

group. From the distributions in Fig. 10(a), we observe that,

generally, Shanghai’s taxis travel less locations than Beijing’s

taxis. In terms of the number of next possible locations, as

expected, the pdf’s peak of the high-predictability group of a

city is in the left of the pdf’s peak of the corresponding low-

predictability group. From the pdfs shown in Fig. 10(b), we

can see that, in general, Shanghai’s taxis are more predictable

than Beijing’s taxis in choosing next locations. The pdf width

of Beijing’s low-predictability group is narrower than the pdf

width of the high-predictability group, indicating that the varia-

tion in the individual vehicles’ predictability limits of the high-

predictability group is larger. In contrast, the pdf widths of

the two Shanghai groups are approximately the same, which

suggest that the variations in the individual vehicles’ predicta-

bility limits of the two groups are approximately the same.

VII. STAYING TIME PREDICTION LIMITS

Different from the location prediction that mainly depends

on the regularity of individual vehicle, the staying time of a

vehicle in one area depends on the traffic status of the area.

Therefore, to predict the possible staying time for a particular

vehicle that enters the area, the historical information of all the

other vehicles’ staying times in this area plays a much more

important role than the historical information of this vehicle’s

staying time in this area. In other words, the sequence of an

individual vehicle’s staying time in one area can be regarded as

an uncorrelated sequence. In addition, as previously mentioned,

the staying time is a continuous value, and we need first to

quantize it with certain quantization precision (QP).

A. Initial Investigation of Prediction Limits

For each area, we want to obtain the distribution of the

staying times of all the vehicles that pass through the area. We

first need to select a QP to quantize the continuous staying time

into a discrete-valued set. Since each series of single vehicle’s

staying time is uncorrelated, we can use the uncorrelated en-

tropy Hu to measure the uncertainty of individual series, which

is denoted by Hu
t here for emphasizing that we are dealing with

the staying time. The corresponding maximal predictability

limit for staying time obtained using the method described in

Section V is denoted by Ψu,max

t . For the Beijing trace, with the

QP of 10, 30, and 50 s, respectively, we obtain the distributions

p(Hu
t ) and p(Ψu,max

t ) of each area and depict the average

distributions of p(Hu
t ) and p(Ψu,max

t ) over all the areas in

Fig. 11(a) and (b), respectively. From the results in Fig. 11,

we observe that, given the QP of 10 s, the entropy Hu
t of the

staying time is in the range of [6, 9], and the predictability limit

is distributed in the range of [0.1, 0.2]. In addition, the chosen

QP influences the distributions of entropy and predictability

limit. The higher the quantization accuracy (the smaller the

QP value), the higher the entropy and, hence, the lower the

predictability limit. However, even with QP = 50 s, the entropy

distribution peaks at Hu
t = 6.8, and the maximal predictability

limit peaks at Ψu,max

t = 0.16, which means that, if we want to

predict how many 50 s the vehicle will stay in the area, we have

Fig. 11. Staying time prediction properties of the Beijing trace. (a) Distribu-
tion of entropy. (b) Distribution of maximal predictability limit.

at most 16% of the probability to get it right. This indicates that

it is difficult to forecast the individual vehicle’s staying time by

its historical information in spatial dimension alone. A practical

prediction algorithm must exploit other vehicular properties for

a better prediction of the individual vehicle’s staying time.

B. Limits of Predictability Exploiting Temporal Regularity

Based on the preceding investigation and analysis, it is clear

that relying on the spatial historical distribution to predict the

future staying time in an area will result in poor predictability.

It is also obvious that the historical distribution of stay time

in an area significantly varies in the different time of a day. In

order to utilize the regularity existed in the temporal dimension,

we slot the whole day by every 2 h and obtain the staying time

distribution for every 2 h of the whole day. In the prediction,

we then utilize the corresponding distribution that locates in the

same time slot when the vehicle enters into the area. Again,

in order to quantify the predictability of the staying time with

the aid of temporal regularity, we investigate the limits of

predictability of these distributions.
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Fig. 12. Limit of staying-time predictability as a function of QP.

In order to obtain the limit of predictability for staying time

as a function of QP, we vary the value of QP from 5 to 60 s, and

for each QP value, we plot the peak point of the maximum pre-

dictability limit distribution. The results are shown in Fig. 12.

We observe that when QP varies from 5 to 30 s, the predictabil-

ity limit rapidly increases. With QP = 30 s, the predictability

limits are around 59% and 65% for Beijing and Shanghai traces,

respectively. However, when QP increases to 60 s, the max-

imum predictability limit Ψu,max

t only increases to 77% and

70% for Shanghai and Beijing traces, respectively. The results

obtained clearly confirm that, by exploiting the regularity in the

temporal dimension, the prediction accuracy associated with

the QP of 30 s is sufficient for most practical applications of

predicting the vehicular staying time. With the QP of 50–60 s,

about 70% of the predictability limit can be achieved.

VIII. CONCLUSION

In this paper, we have extensively investigated the pre-

dictability limits of vehicular mobility based on the two real-

istic large-scale urban city vehicular mobility traces. The main

results obtained show that there exists some stronger regularity

in the daily vehicular mobility in both the temporal and spatial

dimensions, which can be exploited to predict the vehicular

mobility with a high degree of prediction accuracy. Specifically,

for both Shanghai and Beijing traces, the location predictability

limit of 80%–99% can be achieved, whereas above 70% of the

staying-time predictability limit can be reached with appropri-

ate QP by exploiting the temporal regularity.

The most important finding in this study is that the de-

velopment of accurate predictive models and algorithms is

possible and has solid scientific foundation, and this provides

the fundamental guiding principle for solving large-scale prob-

lems and benefiting many potential applications, from urban

transportation system planning, transportation safe and traffic

control, to the vehicular network algorithm design and system

deployment. Although using specific prediction algorithm to

make explicit predication based on vehicular historical mobility

trajectory is beyond the scope of this paper, appropriate data-

mining- or Kalman-filter-based algorithms could turn the pre-

dictability limit identified in this study into the actual mobility

prediction reality. Therefore, our future work will investigate

whether the existing or any new prediction algorithms can

indeed achieve the predictability limit founded in this study.
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