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LIMITS OF SPIKED RANDOM MATRICES II

BY ALEX BLOEMENDAL1 AND BÁLINT VIRÁG2

Harvard University and University of Toronto

The top eigenvalues of rank r spiked real Wishart matrices and additively
perturbed Gaussian orthogonal ensembles are known to exhibit a phase tran-
sition in the large size limit. We show that they have limiting distributions
for near-critical perturbations, fully resolving the conjecture of Baik, Ben
Arous and Péché [Duke Math. J. (2006) 133 205–235]. The starting point is
a new (2r + 1)-diagonal form that is algebraically natural to the problem;
for both models it converges to a certain random Schrödinger operator on the
half-line with r × r matrix-valued potential. The perturbation determines the
boundary condition and the low-lying eigenvalues describe the limit, jointly
as the perturbation varies in a fixed subspace. We treat the real, complex
and quaternion (β = 1,2,4) cases simultaneously. We further characterize
the limit laws in terms of a diffusion related to Dyson’s Brownian motion, or
alternatively a linear parabolic PDE; here β appears simply as a parameter.
At β = 2, the PDE appears to reconcile with known Painlevé formulas for
these r-parameter deformations of the GUE Tracy–Widom law.

1. Introduction. Johnstone (2001) proposed the spiked population model for
simple trends in high dimensional data. One takes a data matrix X whose columns
are i.i.d. vectors with (population) covariance a fixed rank perturbation of the iden-
tity, and studies the behaviour of the largest eigenvalues of the sample covariance
matrix XX∗ when both the dimension and the size of the sample are large. Baik,
Ben Arous and Péché (2005) (hereafter BBP) discovered a very interesting phase
transition phenomenon in the complex Gaussian setting. Small spikes do not affect
the asymptotic behaviour of the top eigenvalues, which display the usual Tracy–
Widom fluctuations around the upper edge of the Marchenko–Pastur law; large
spikes, however, lead to outliers with Gaussian fluctuations. New structure emerges
near the transition point with near-critical spikes deforming the soft edge limit. Un-
derstanding this transition regime in the real case remained open for some time.
There is a parallel development for fixed rank additive perturbations of Wigner
matrices.

In Bloemendal and Virág (2013) (hereafter Part I), we considered rank one
spiked real/complex/quaternion Wishart matrices and additive rank one perturba-
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tions of the Gaussian orthogonal, unitary and symplectic ensembles. Our approach
is based on the continuum operator limit at the general beta soft edge developed
in Ramírez, Rider and Virág (2011) (hereafter RRV). We introduced general β

analogues of the rank one spiked models, modifying the tridiagonal ensembles of
Dumitriu and Edelman (2002) and extended the RRV technology to describe the
soft-edge scaling limit in terms of the stochastic Airy operator

− d2

dx2 +
2√
β

b′x + x

on L2(R+) with a boundary condition depending on the spike. The boundary con-
dition changes from Dirichlet f (0)= 0 to Neumann/Robin f ′(0)= wf (0) at the
onset of the BBP phase transition, with w ∈ R representing a scaling parame-
ter for perturbations in a “critical window”. The resulting largest eigenvalue laws
form a one-parameter family of deformations of Tracy–Widom(β), naturally gen-
eralizing the characterization of RRV in terms of the ground state of this random
Schrödinger operator.

We went on to characterize the limit laws in terms of the diffusion from RRV
and in terms of an associated second-order linear parabolic PDE. We further
showed that at β = 2,4 the PDE is related to known Painlevé II representations
originating in Baik and Rains (2000) and gave new proofs of these, finally recov-
ering those of the undeformed Tracy–Widom laws.

Even the existence of limiting distributions in the critical regime was in gen-
eral new for β �= 2, though see the prior work of Wang (2008) on the rank one
β = 4 case at w = 0, as well as the subsequent work of Mo (2012) offering a more
standard treatment of the rank one β = 1 case. Forrester (2013) comments on all
three works and gives an alternative interpretation and construction of our general
β rank one spiked model.

Here, we deal with r “spikes”, or general bounded-rank perturbations of Gaus-
sian and Wishart matrices. To do so, we introduce a new “canonical form for per-
turbations in a fixed subspace”, a (2r + 1)-diagonal band form that has a purely
algebraic interpretation. It generalizes the Dumitriu–Edelman forms and is able to
handle rank r perturbations. We then develop a generalization of the methods of
RRV and Part I to a matrix-valued setting: block tridiagonal matrices converge to a
half-line Schrödinger operator with matrix-valued potential, the spikes once again
appearing in the boundary condition. We treat the real, complex and quaternion
(β = 1,2,4) cases simultaneously. Once again, even the existence of a near-critical
soft-edge limit is new off β = 2. Unlike in Part I, however, we do not define a gen-
eral β version of either matrix model, nor of the limiting operator; in Section 2,
we will see that the higher rank versions of these objects do not readily admit a
β-generalization.

Dyson’s Brownian motion makes a surprise appearance, providing nice SDE
and PDE characterizations of the limit laws—new r parameter deformations of
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Tracy–Widom(β)—in which β reappears as a simple parameter. The derivation
makes use of the matrix-valued version of classical Sturm oscillation theory and
the Riccati transformation. In a short final section, we report on preliminary evi-
dence that at β = 2 the PDE can be connected with a Painlevé II representation of
Baik (2006) for these distributions (which appeared originally in BBP in the form
of Fredholm determinants).

We highlight two more features of our approach beyond the novelty of bypass-
ing formulas for joint eigenvalue densities and handling β = 1,2,4 together. First,
we treat the perturbation as a parameter. By this, we mean that all perturbations in
a fixed subspace are considered jointly (on the same probability space); this pic-
ture is carried through to the limit, which is therefore a family of point processes
parameterized by an r × r matrix. Second, we allow more general scalings than
those considered in BBP. Most importantly, in the Wishart case we do not require
the two dimensional parameters n,p to have a positive limiting ratio but rather
allow them to tend to infinity together arbitrarily.

To state our results, we introduce some objects and notation that will be used
throughout the paper.

Let F = R, C, or H and β = 1,2 or 4, respectively. A standard F Gaussian
Z ∼ FN(0,1) is an F-valued random variable described in terms of independent
real Gaussians g1, . . . , gβ ∼ N(0,1) as g1 for F = R, (g1 + g2i)/

√
2 for F = C,

and (g1 + g2i + g3j + g4k)/2 for F = H. Note that in each case E|Z|2 = 1 and
uZ ∼ FN(0,1) for u ∈ F with |u|2 = u∗u= 1.

The space of column vectors F
n is endowed with the standard inner prod-

uct u†v and associated norm |u|2 = u†u (we reserve double bars for function
spaces). Write FNn(0, I ) for a vector of independent standard F Gaussians. With
� ∈ Mn(F) positive definite, we write Z ∼ FNn(0,�) for Z = �1/2Z0 with
Z0 ∼ FNn(0, I ).

Define the unitary group Un(F)= {U ∈ F
n×n : U†U = I }, better known as the

orthogonal, unitary or symplectic group for F = R,C,H, respectively. It acts on
F

n by left multiplication, on which the distribution FNn(0, I ) is invariant. Write
Mn(F) = {A ∈ F

n×n : A† = A} for the self-adjoint matrices, also known as real
symmetric, complex Hermitian or quaternion self-dual. Un(F) acts on Mn(F) by
conjugation.

The Gaussian orthogonal/unitary/symplectic ensemble (GO/U/SE) is the prob-
ability measure on Mn(F) described by A = (X +X†)/

√
2 where X is an n× n

matrix of independent FN(0,1) entries. The distribution is invariant under the uni-
tary action. Furthermore, the algebraically independent entries Aij , i ≥ j are sta-
tistically independent. (Together, this invariance and independence characterizes
the distribution up to a scale factorr.) For an entry-wise description, the diagonal
entries are distributed as N(0,2/β) while the off-diagonal entries are FN(0,1).

Fixing a positive integer r , we study rank r additive perturbations A=A0 +P

of a GO/U/SE matrix A0, where P = P̃ ⊕ 0n−r with P̃ ∈Mr(F) nonrandom. We
will be interested in the eigenvalues λ1 ≥ · · · ≥ λn of A. Of course for a single
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P their distribution depends only on the eigenvalues of P , but we consider them
jointly over all P̃ .

We also consider real/complex/quaternion Wishart matrices. These are random
nonnegative matrices in Mp(F) given by XX† where the data matrix X is p × n

with n independent FNp(0,�) columns. We speak of a p-variate Wishart with
n degrees of freedom and p × p covariance � > 0. Since we are interested in
the nonzero eigenvalues λ1 ≥ · · · ≥ λn∧p , we can equally well consider X†X. The
distribution of X†X may also be described as X

†
0�X0 where X0 is a p× n matrix

of independent FN(0,1) entries. The case � = I is referred to as the null case. We
study the rank r spiked case where � = �̃ ⊕ Ip−r with �̃ ∈Mr(F) nonrandom.
Once again the eigenvalue distribution depends only on the eigenvalues of �, but
we consider the spectrum jointly as �̃ varies.

Our starting point is a new banded or multi-diagonal form introduced in Sec-
tion 2, ideally suited to the types of perturbations we consider. It is defined for
almost every matrix A ∈Mn(F); given vectors v1, . . . , vr ∈ F

n, the new basis may
be obtained by applying the Gram–Schmidt process to the first n vectors of the
sequence

v1, . . . , vr ,Av1, . . . ,Avr,A
2v1, . . . ,A

2vr, . . . .

The result is a (2r+1)-diagonal matrix with positive outer diagonals. For Gaussian
and null Wishart ensembles, the change of basis interacts well with the Gaussian
structure; this observation goes back to Trotter (1984) in the r = 1 case. In the
GO/U/SE case, we take v1, . . . , vr to be the initial coordinate basis vectors, while
in the Wishart case we use the initial rows of the data matrix X. As in Part I, the
key observation is then that the perturbations commute with the change of basis.

For the (unperturbed) Gaussian ensembles, the band form looks like⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g̃ g∗ · · · g∗ χ

g g̃ g∗ · · · g∗ χ
... g g̃ g∗ · · · g∗ χ

g
... g

. . .
. . .

. . .
. . .

χ g
...

. . .

χ g

χ
. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the entries are independent random variables up to the †-symmetry with g̃ ∼
N(0,2/β), g ∼ FN(0,1), and χ ∼ 1√

β
Chi((n − r − k)β), k = 0,1,2, . . . going

down the matrix. [Recall that if Z ∼ RNm(0, I ) then |Z| ∼ Chi(m).] For the null
Wishart ensemble, the form is best described as follows. One first obtains a lower
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(r + 1)-diagonal form for the data matix X whose nonzero singular values are the
same as those of X. It looks like⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ̃

g χ̃
... g χ̃

g
... g

. . .

χ g
...

. . .

χ g

χ
. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where the entries are independent random variables with g ∼ FN(0,1), χ̃ ∼
1√
β

Chi((n − k)β) and χ ∼ 1√
β

Chi((n − r − k)β), k = 0,1,2, . . . going down

the matrix. One then forms its multiplicative symmetrization, a (2r + 1)-diagonal
matrix with the same nonzero eigenvalues as X. In both cases, the perturbations
appear in the upper-left r × r block. Section 2 provides derivations. The obstacle
to β-generalization at this level is the presence of F Gaussians in the intermediate
diagonals.

Proceeding with an analogue of the RRV convergence result hinges on reinter-
preting these forms as block tridiagonal with r×r blocks. In Section 3, we develop
an Mr(F)-valued analogue of the RRV technology, providing general conditions
under which the principal eigenvalues and corresponding eigenvectors of such a
random block tridiagonal matrix converge to a those of a continuum half-line ran-
dom Schrödinger operator with matrix-valued potential. As in Part I, we allow for
a general boundary condition at the origin.

In Section 4, we apply this result to the band forms just described, proving a
process central limit theorem for the potential and verifying the required tightness
assumptions. The limiting operator turns out to be a multidimensional version of
the stochastic Airy operator, which we now describe.

First, a standard F Brownian motion {bt }t≥0 is a continuous F-valued random
process with b0 = 0 and independent increments bt −bs ∼ FN(0, t − s). (It can be
described in terms of β = 1, 2 or 4 independent standard real Brownian motions.)
A standard matrix Brownian motion {Bt }t≥0 has continuous Mn(F)-valued paths
with B0 = 0 and independent increments Bt − Bs distributed as

√
t − s times a

GO/U/SE. The diagonal processes are thus
√

2/β times standard real Brownian
motions while the off-diagonal processes are standard F Brownian motions, mutu-
ally independent up to symmetry.

Finally, we define the multivariate stochastic Airy operator. Operating on the
vector-valued function space L2(R+,Fr ) with inner product 〈f,g〉 = ∫∞

0 f †g and
associated norm ‖f ‖2 = ∫∞

0 |f |2, it is the random Schrödinger operator

Hβ =− d2

dx2 +
√

2B ′
x + rx,(1.1)
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where B ′
x is “standard matrix white noise”, the derivative of a standard matrix

Brownian motion, and rx is scalar. (Here, again β is restricted to the classical
values, as the noise term lacks a straightforward β-generalization.) The potential
is thus the derivative of a continuous matrix-valued function; rigorous definitions
will appear in Section 3 in a more general setting.

For now it is enough to know that, together with a general self-adjoint boundary
condition

f ′(0)=Wf (0),(1.2)

the multivariate stochastic Airy operator is bounded below with purely discrete
specturm given by a variational principle. Here, W ∈ Mr(F); actually, writing
the spectral decomposition W =∑r

i=1 wiuiu
†
i , we formally allow wi ∈ (−∞,∞].

Writing fi = u
†
i f , (1.2) is then to be interpreted as

f ′i (0)=wifi(0) for wi ∈R,

fi(0)= 0 for wi =+∞.

We write W ∈M∗
r (F) for this extended set and Hβ,W for (1.1) together with (1.2).

For concreteness, we record that the eigenvalues �0 ≤ �1 ≤ . . . and corre-
sponding eigenfunctions f0, f1, . . . of Hβ,W are given, respectively, by the mini-
mum and any minimizer in the recursive variational problem

inf
f∈L2(R+)

‖f ‖=1,f⊥f0,...,fk−1

∫ ∞
0

(∣∣f ′∣∣2 + rx|f |2)dx + f (0)†Wf (0)+ 2√
β

∫ ∞
0

f † dBxf.

Here, candidates f are only considered if the first integral and boundary term are
finite; the stochastic integral can then be defined pathwise via integration by parts.
The eigenvalues and eigenfunctions are thus jointly defined random processes in-
dexed over W .

REMARK 1.1. We note one important property of the eigenvalue processes,
namely the pathwise monotonicity of �k in W with respect to the usual matrix
partial order. This is immediate from the variational characterization and the fact
that the objective functional is monotone in W . (For the higher eigenvalues, it is
most apparent from the standard min–max formulation of the variational problem.)

We can now state the main convergence results. As outlined, Sections 2–4 fur-
nish the proofs. One last shorthand: when we write that a sequence Wn ∈Mr(F)

tends to W ∈ M∗
r (F), we mean the following. Writing W =∑r

i=1 wiuiu
†
i with

wi ∈ (−∞,∞], one has Wn =∑r
i=1 wn,iuiu

†
i with wn,i ∈R satisfying wn,i →wi

for each i. In other words, the matrices are simultaneously diagonal and the eigen-
values tend to the corresponding limits.
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THEOREM 1.2. Let A= A0 +√nPn where A0 is an n× n GO/U/SE matrix
and Pn = P̃n ⊕ 0n−r with P̃n ∈Mr(F), and let λ1 ≥ · · · ≥ λn be its eigenvalues. If

n1/3(1− P̃n)→W ∈M∗
r (F) as n→∞

then, jointly for k = 1,2, . . . in the sense of finite-dimensional distributions,

n1/6(λk − 2
√

n)⇒−�k−1 as n→∞,

where �0 ≤�1 ≤ . . . are the eigenvalues of Hβ,W . Convergence holds jointly over
{Pn},W satisfying the condition.

THEOREM 1.3. Consider a p-variate real/complex/quaternion Wishart ma-
trix with n degrees of freedom and spiked covariance �n,p = �̃n,p ⊕ Ip−r > 0
with �̃n,p ∈Mr(F), and let λ1 ≥ · · · ≥ λn∧p be its nonzero eigenvalues. Writing
mn,p = (n−1/2 + p−1/2)−2/3, if

mn,p

(
1−√

n/p(�̃n,p − 1)
)→W ∈M∗

r (F) as n→∞
then, jointly for k = 1,2, . . . in the sense of finite-dimensional distributions,

m2
n,p√
np

(
λk − (

√
n+√p)2)⇒−�k−1 as n→∞,

where �0 ≤�1 ≤ . . . are the eigenvalues of Hβ,W . Convergence holds jointly over
{�n,p},W satisfying the condition.

REMARK 1.4. In the band basis described above, we also have joint conver-
gence of the corresponding eigenvectors to the eigenfunctions of Hβ,W . In detail,
the eigenvectors should be embedded in L2(R+) as step functions with step width
n−1/3 in the Gaussian case and m−1

n,p in the Wishart case, and convergence is in
law with respect to the L2 norm topology. To be precise, one should use either sub-
sequences or spectral projections; one could also formulate the joint eigenvalue-
eigenvector convergence in terms of the norm resolvent topology. See Theorem 3.9
and the remark that follows.

We now give the two promised alternative characterizations of the limiting
eigenvalue laws. Fix β = 1,2,4 and W ∈M∗

r (F) with eigenvalues −∞ < w1 ≤
· · · ≤ wr ≤∞. Writing P for the probability measure associated with Hβ,W and
its spectrum {�0 ≤�1 ≤ . . .}, let

Fk
β (x;w1, . . . ,wr)= P(−�k ≤ x)

for k = 0,1, . . . . Write simply Fβ = F 0
β for the ground state distribution (limiting

largest eigenvalue law). Once again, the generalization from Part I is not straight-
forward. The proofs are contained in Section 5.
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THEOREM 1.5. Let Px0,(w1,...,wr ) be the measure on paths (p1, . . . , pr) :
[x0,∞)→ (−∞,∞]r determined by the coupled diffusions

dpi = 2√
β

dbi +
(
rx − p2

i +
∑
j �=i

2

pi − pj

)
dx(1.3)

with initial conditions pi(x0) = wi and entering into {p1 < · · · < pr}, where
b1, . . . , br are independent standard Brownian motions; particles pi may explode
to −∞ in finite time whereupon they are restarted at +∞. Then

Fβ(x;w1, . . . ,wr)= Px/r,(w1,...,wr ) (no explosions).(1.4)

More generally,

Fk
β (x;w1, . . . ,wr)= Px/r,(w1,...,wr ) (at most k explosions).(1.5)

We describe the diffusion more carefully in Section 5, asserting that it deter-
mines a law on paths valued in an appropriate space. Probabilistic arguments lead
to the following reformulation in terms of its generator.

THEOREM 1.6. Fβ(x;w1, . . . ,wr) is the unique bounded function F : R ×
R

r → R symmetric with respect to permutation of w1, . . . ,wr that satisfies
the PDE

r
∂F

∂x
+

r∑
i=1

(
2

β

∂2F

∂w2
i

+ (
x −w2

i

) ∂F

∂wi

)
+∑

i<j

2

wi −wj

(
∂F

∂wi

− ∂F

∂wj

)
= 0(1.6)

and the boundary conditions

F → 1 as x →∞ with w1, . . . ,wr bounded below;(1.7)

F → 0 as any wi →−∞ with x bounded above.(1.8)

Furthermore, Fβ is “continuous to the boundary” as one or several wi →+∞.
For subsequent eigenvalue laws Fk

β (x;w1, . . . ,wr), (1.8) is replaced with the re-
cursive boundary condition

Fk(x;w1, . . . ,wr)→ Fk−1(x∗;w∗
1, . . . ,w∗

r−1,+∞
)

(1.9)
as x → x∗ ∈R,wi →w∗

i ∈R for i = 1, . . . , r − 1, and wr →−∞.

At β = 2, these distributions were obtained in BBP in the form of Fredholm
determinants of finite-rank perturbations of the Airy kernel. Baik (2006) derived
Painlevé II formulas, and by a symbolic computation with a computer algebra
system we were able to verify that the latter satisfy the PDE (1.6) for r = 2,3,4,5;
details are described in Section 6. A pencil-and-paper proof for all r was found
since the initial posting [Bloemendal and Baik (2013)].
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We make two final remarks. From the finite n matrix models it is clear that the
“rank r deformed” limiting distributions Fβ,r(x;w1, . . . ,wr) reduce to those for a
lower rank r0 < r in the following way:

Fβ,r(x;w1, . . . ,wr0,+∞, . . . ,+∞)= Fβ,r0(x;w1, . . . ,wr0).

Unfortunately, this reduction relation is not readily apparent from any of our char-
acterizations (operator, SDE or PDE).

Lastly, the SDE and PDE characterizations seem to make sense for all β > 0
(although one has to be careful for β < 1). It would be interesting to find natural
“general β multi-spiked models” at finite n, interpolating between those studied
here at β = 1,2,4 and generalizing those introduced in Part I for r = 1. At β = 2,
perhaps one could discover a relationship with formulas of Baik and Wang (2013).

2. A canonical form for perturbation in a fixed subspace. In Part I, we
observed that the tridiagonal models of Gaussian and Wishart matrices were
amenable to rank one perturbation. In this section, we introduce a banded (also
block tridiagonal) generalization amenable to higher-rank perturbation. We first
describe it as a natural object of pure linear algebra; we then show how it interacts
with the structure of Gaussian and Wishart random matrices to produce the band
forms displayed in the Introduction.

The basic facts of “linear algebra over F”, where F may be R, C or the skew
field of quaternions H, are summarized in Appendix E of Anderson, Guionnet and
Zeitouni (2010). Everything we need (inner product geometry, self-adjointness,
eigenvalues, and the spectral theorem) simply works over H as expected, keeping
in mind only that nonreal scalars may not commute.

2.1. The band Jacobi form as an algebraic object. We present a natural
“canonical form” for studying perturbations in a fixed subspace of dimension r . It
is a (2r + 1)-diagonal band matrix generalizing the symmetric tridiagonal Jacobi
form, which is the r = 1 case. The outermost diagonals continue to be positive;
however, intermediate diagonals between the main and outermost ones are not in
general real. Once again, the presence of F Gaussians is the obstacle to writing
down a general β analogue.

We begin with a geometric, coordinate-free formulation.

THEOREM 2.1. Let T be a self-adjoint linear transformation on a finite-
dimensional inner product space V of dimension n over F. An orthonormal
sequence {v1, . . . , vr} ⊂ V with 1 ≤ r ≤ n can be extended to an ordered
orthonormal basis {v1, . . . , vn} for V such that 〈vi, T vj 〉 ≥ 0 for |i − j | = r and
〈vi, T vj 〉 = 0 for |i− j |> r . Furthermore, if 〈vi, T vj 〉> 0 for |i− j | = r then the
extension is unique.
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The point is that the same extension works for T ′ = T +P provided P ∈Mn(F)

satisfies P |{v1,...,vr }⊥ = 0. In this case span{v1, . . . , vr} is also an invariant subspace
of P and we speak of perturbing in this subspace.

PROOF OF THEOREM 2.1. We give an explicit inductive construction. Along
the way, we will see that the uniqueness condition holds precisely when the choice
is forced at each step.

It is convenient to restate the properties of the orthonormal basis in the theo-
rem in the following equivalent way: for r + 1 ≤ i ≤ n, we have 〈vi, T vi−r〉 ≥ 0
and T vi−r ∈ span{v1, . . . , vi}. Suppose inductively that v1, . . . , vk−1 have been
obtained for some r + 1 ≤ k ≤ n, satisfying the preceding conditions for r + 1≤
i ≤ k − 1. Let w = T vk−r ; we must choose vk so that 〈vk,w〉 ≥ 0 and w ∈
span{v1, . . . , vk}. There are two cases to consider. If w /∈ span{v1, . . . , vk−1} then
vk must be a multiple of w′ =w−∑k−1

i=1 〈vi,w〉vi ; the positivity condition further
forces vk = w′/|w′|, which gives 〈vk,w〉 = |w′| > 0. If w ∈ span{v1, . . . , vk−1},
then any vk ∈ {v1, . . . , vk−1}⊥ will do, and in this case 〈vk,w〉 = 0. �

REMARK 2.2. When uniqueness holds, as is generically the case, the basis
may also be obtained by applying the Gram–Schmidt process to the first n vectors
of the sequence

v1, . . . , vr , T v1, . . . , T vr , T
2v1, . . . , T

2vr, . . . .

We now state and prove a concrete matrix formulation in which the first r co-
ordinate vectors play the role of v1, . . . , vr . The point of the second proof is that it
emphasizes the resulting band matrix rather than the change of basis; the algorithm
will be used in the next subsection.

THEOREM 2.3. Let A ∈Mn(F) and 1≤ r ≤ n. There exists U ∈Un(F) of the
form U = Ir ⊕ Ũ with Ũ ∈Un−r (F) such that B =UAU† satisfies

Bij ≥ 0 for 1≤ i, j ≤ n with |i − j | = r,(2.1)

Bij = 0 for 1≤ i, j ≤ n with |i − j |> r.(2.2)

Furthermore, if strict positivity holds in (2.1) then U and B as such are unique.

We refer to B as the band Jacobi form of A. The allowed perturbations here
have the form P = P̃ ⊕0n−r for P̃ ∈Mr(F); these are invariant under conjugation
by U , so U(A+ P)U† = B + P .

PROOF OF THEOREM 2.3. We prove existence by giving an explicit algo-
rithm; it generalizes the Lanczos algorithm, which applies in the case r = 1.



2736 A. BLOEMENDAL AND B. VIRÁG

• For the first step, let v = [Ai,1]r+1≤i≤n ∈ F
n−r and take Ũ ∈ Un−r (F) such

that Ũv = |v|ẽ1, where ẽ1 is the first standard basis vector of Fn−r . A concrete
choice is the Househölder reflection Ũ = In−r − 2ww†/w†w with w = v −
|v|ẽ1. Set U1 = Ir ⊕ Ũ and B1 =U1AU

†
1 .

• Continue inductively: having obtained Uk,Bk , let v = [(B1)i,(k+1)]r+k+1≤i≤n ∈
F

n−r−k and take Ũ ∈ Un−r−k(F) such that Ũv = |v|ẽ1. Set Uk+1 = Ir+k ⊕ Ũ

and Bk+1 =Uk+1BkU
†
k+1.

• Stop when k = n− r . Let U =Un−r · · ·U1 and B = Bn−r =UAU†.

It is immediate that U and B have the required properties. The point is that the
kth column of Bk already “looks right”, that is, (Bk)r+k,k ≥ 0 and (Bk)r+l,k = 0
for l > k, and subsequent transformations Uk+1, . . . ,Un−k ∈ {Ir+k} ⊕Un−r−k(F)

“don’t mess it up”.
Toward uniqueness, suppose that U ′,B ′ = U ′AU ′† also have the required

properties and let W = U ′U−1 so that B ′ = WBW †. Assume inductively that
W ∈ {Ir+k} ⊕ Un−r−k(F), which is certainly true in the base case k = 0. Write
W = Ir+k ⊕ W̃ . Let b = [Bi,k+1]r+k+1≤i≤n ∈ F

n−r−k and similarly for b′. Then
b′ = W̃b. But b = aẽ1 and b′ = a′ẽ1 with a, a′ > 0 by assumption. It follows that
a = a′ and W̃ ẽ1 = ẽ1. Hence, W̃ ∈ {I1} ⊕ Un−r−(k+1)(F) and W ∈ {Ir+k+1} ⊕
Un−r−(k+1)(F), completing the induction step. We conclude that W = In. �

2.2. Perturbed Gaussian and spiked Wishart models. The change of basis de-
scribed above interacts very nicely with the Gaussian structure in Gaussian and
Wishart random matrices. The r = 1 case of this observation is due to Trotter
(1984), who described the tridiagonal forms explicitly. His forms fall into the
framework of Theorem 2.1 by taking the initial vector to be fixed in the Gaus-
sian case, and taking it to be the top row of the data matrix in the Wishart case. As
we observed in Part I, the change of basis commutes with rank one additive pertur-
bations for the Gaussian case and with rank one spiking for the Wishart case. We
now extend the story to the r > 1 setting.

In the Gaussian case, we will be perturbing in a fixed (nonrandom) subspace;
without loss of generality this may be taken as the initial r-dimensional coordi-
nate subspace, and so we take the basis of Theorem 2.1 that begins with the first
r standard basis vectors. We can therefore obtain the band form by a direct appli-
cation of the algorithm from the proof of Theorem 2.3. The Wishart case is a little
more complicated; here we want to perturb in the random subspace spanned by the
first r rows of the data matrix. Our new basis will begin with the Gram–Schmidt
orthogonalization of these initial rows. As in the r = 1 case, it is most transpar-
ent to construct a lower band form of the data matrix first, afterward realizing the
band Jacobi form as its multiplicative symmetrization. In both the Gaussian and
the Wishart cases, we will see that the uniqueness condition of Theorem 2.1 holds
almost surely.
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Let A be an n× n GOE matrix. Applying the algorithm from the proof of The-
orem 2.3 while keeping track of the distribution of the matrix Bk at each step—the
key of course being the unitary invariance of standard Gaussian vectors—yields
the following band Jacobi random matrix G=UAU†:

Gij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

β
g̃i, i = j ,

gij , j < i < j + r ,

1√
β

χ(n−i+1)β, i = j + r ,

0, i > j + r ,

G∗
ji, i < j

(2.3)

for 1≤ i, j ≤ n, where the random variables appearing explicitly are independent,
g̃i ∼N(0,1), gij ∼ FN(0,1), and χk ∼ Chi(k). The latter is the distribution of the
length of a k-dimensional standard Gaussian vector.

We can introduce a rank r additive perturbation A = A0 +√nP , where P =
P̃ ⊕0n−r with P̃ ∈Mr(F); since P commutes with the change of basis U ∈ {Ir}⊕
Un−r (F), we can write

G=UAU† =U(A0 +√nP )U† =UA0U
† +√nP =G0 +√nP.(2.4)

As expected the perturbation shows up undisturbed in the upper-left r × r corner
of G.

Turning to the Wishart case, we first consider the null Wishart random matrix
X†X, where X is p× n with independent FN(0,1) entries. (Remember that X†X

and XX† have the same nonzero eigenvalues λ1, . . . , λn∧p .) The final form can be
described abstractly as given in the basis of Theorem 2.1 that extends the Gram–
Schmidt orthogonalization of the first r rows of X. One cannot readily obtain a
description of the resulting random matrix from here, however, so we give another
way that generalizes Trotter’s original procedure. It is a “singular value analogue”
of the algorithm from the proof of Theorem 2.3, producing matrices U ∈ Un(F)

and V ∈ Up(F) such that L= V XU has a “lower band form” that is zero off the
main and first r sub-diagonals and positive on the outermost of these. The key is
to work alternately on rows and columns.

• Take U1 ∈ Un(F) so that the first row of XU1 lies in the (positive) direction of
the first coordinate basis vector of Fn.

• Take V1 = Ir ⊕Up−r (F) so that [(V1XU1)i,1]r+1≤i≤p ∈ F
p−r lies in the direc-

tion of the first coordinate basis vector of the latter subspace.
• Take U2 ∈ I1⊕Un−1(F) so that [(V1XU1U2)2,j ]2≤j≤n ∈ F

n−1 lies in the direc-
tion of the first coordinate basis vector of the latter subspace.
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• Take V2 ∈ Ir+1 ⊕Up−r−1(F) so that [(V2V1XU1U2)i,2]r+2≤j≤p ∈ F
p−r−1 lies

in the direction of the first coordinate basis vector of the latter subspace.
• Continue in this way until the rows and columns both run out (stop alternating

if one runs out before the other).

The resulting L = Vn∧(p−r) · · ·V1XU1 · · ·Un∧p has n ∧ p nonzero columns and
(n+ r)∧ p nonzero rows, which can be described as follows:

Lij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
β

χ̃(n−i+1)β, i = j ,

gij , j < i < j + r ,

1√
β

χ(p−i+1)β, i = j + r ,

0, i < j or i > j + r ,

(2.5)

where the entries are independent, χ̃k, χk ∼ Chi(k), gij ∼ FN(0,1). Truncating
the remaining zero rows or columns, the matrix S = L†L is (n∧p)× (n∧p) and
has the same nonzero eigenvalues as X†X. It has the band form

Sij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

β
χ̃2

(n−i+1)β +
∑

i<k<i+r

|gk,i |2 + 1

β
χ2

(p−i−r+1)β,

i = j,

1√
β

χ̃(n−i+1)βgij +
∑

i<k<j+r

g∗k,igk,j + 1√
β

g∗j+r,iχ(p−j−r+1)β,

j < i < j + r,

1

β
χ̃(n−i+1)βχ(p−i+1)β, i = j + r,

0, i > j + r,

S∗ji, i < j,

(2.6)

where we have ignored the issue of truncation in the final r rows and columns
(g′s and χ ′s with indices beyond the allowed range should simply be zero). The
change of basis is thus U1 · · ·Un∧p; a little thought shows that, as claimed earlier,
the new basis begins with the orthogonalization of the first r rows of X. Since
the form (2.6) satisfies the uniqueness condition of Theorem 2.1 a.s., the basis is
indeed the one given by the theorem.

Now we consider the spiked Wishart matrix X†X = X
†
0�X0, with � = �̃ ⊕

Ip−r > 0. Here X0 is a null Wishart matrix and X =�1/2X0. Notice that X†X −
X

†
0X0 = X

†
0((�̃ − Ir)⊕ 0)X0 is indeed an additive perturbation in the subspace

spanned by the first r rows of X0. Since �1/2 = �̃1/2⊕ I commutes with the inner
transformation V ∈ {Ir} ⊕Up−r (F), we have

L†L=U†X†XU =U†X
†
0�X0U =U†X

†
0V

†�V X0U = L
†
0�L0,
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where L= V XU and L0 = V X0U . The point is that same change of basis works
in the rank r spiked case, and by the lower band structure of L0, the perturbation
shows up in the upper-left r × r corner:

S − S0 =L†L−L
†
0L0 = L̃

†
0(�̃ − Ir)L̃0 ⊕ 0.(2.7)

Viewed in terms of the algorithm used to produce L, the point is that the first r

rows of X are never “mixed” together or with the lower rows, but only “rotated”
within themselves.

3. Limits of block tridiagonal matrices. The banded forms of Section 2 may
also be considered as block tridiagonal matrices with r × r blocks. In this sec-
tion, we give general conditions under which such random matrices, appropriately
scaled, converge at the soft spectral edge to a random Schrödinger operator on the
half-line with r× r matrix-valued potential and general self-adjoint boundary con-
dition at the origin. In Section 4, we verify these assumptions for the two specific
matrix models we consider.

Proposition 3.7 establishes that the limiting operator is a.s. bounded below with
purely discrete spectrum via a variational principle. The main result is Theo-
rem 3.9, which asserts that the low-lying states of the discrete models converge
to those of the operator limit.

The scalar r = 1 case of Part I, based in turn on RRV, serves as a prototype.
Care is required throughout to adapt the arguments to the matrix-valued setting,
and we give a self-contained treatment.

3.1. Discrete model and embedding. Underlying the convergence is the em-
bedding of the discrete half-line Z+ = {0,1, . . .} into the continuum R+ = [0,∞)

via j �→ j/mn, where the scale factors mn →∞ but with mn = o(n). Define an
associated embedding of vector-valued function spaces by step functions:

�2
n

(
Z+,Fr) ↪→L2(

R+,Fr), (v0, v1, . . .) �→ v(x)= v�mnx�,
which is isometric with �2

n norm ‖v‖2 =m−1
n

∑∞
j=0 |vj |2. (Recall that Fr and L2

have norms |v|2 = v†v and ‖f ‖2 = ∫∞
0 |f |2, respectively.) Fix a standard basis for

�2
n with lexicographic ordering

(e1,0, . . .), (e2,0, . . .), . . . , (er ,0, . . .), (0, e1,0, . . .), . . . ,

where e1, . . . , er is the standard basis for Fr . Identify F
n with the n-dimensional

initial coordinate subspace of �2
n, consisting of Fr -valued step-functions supported

on the interval [0, �n/r�/mn) and with the final step value in the subspace spanned
by e1, . . . , er−(�n/r�r−n). Our n × n matrices will act on F

n with respect to the
above basis; we will generally assume the embedding F

n ⊂ �2
n ↪→ L2 implicitly.

We define some operators on L2, all of which leave �2
n invariant and may also

be considered as infinite block matrices with r × r blocks. The translation oper-
ator (Tnf )(x) = f (x + m−1

n ) extends the left shift on �2
n. Its adjoint T †

n is the



2740 A. BLOEMENDAL AND B. VIRÁG

right shift, where T †
n f = 0 on [0,m−1

n ). The difference quotient Dn =mn(Tn− 1)

extends a discrete derivative. Write diag(A0,A1, . . .) for both an r × r block di-
agonal matrix and its extension to a pointwise matrix multiplication on L2. Thus
En = diag(mnIr,0,0, . . .) is scalar multiplication by mn1[0,m−1

n )
, a “discretized

delta function at the origin”. Orthogonal projection from �2
n onto F

n extends
to a multiplication Rn = diag(Ir , . . . , Ir ,diag(1, . . . ,1,0, . . . ,0),0, . . .), in which
there are �n/r� nonzero blocks and a total of n 1’s.

Let (Yn,i;j )j∈Z+ , i = 1,2 be two discrete-time r × r matrix-valued random
processes with Yn,1;j ∈ Mr(F) for all j . The processes may be embedded into
continuous time as above, by setting Yn,i(x) = Yn,i;�mnx�. Note also that Tn and
�n = mn(1 − T †

n ) = −D†
n may be sensibly applied to such matrix-valued func-

tions. The processes Yn,i are on- and off-diagonal integrated potentials, and we
define a “potential operator” by

Vn = diag(�nYn,1)+ 1
2

(
diag(�nYn,2)Tn + T †

n diag
(�nY

†
n,2

))
.(3.1)

Fix Wn ∈Mr(F), a nonrandom “boundary term”.
Finally, consider

Hn =Rn

(
D†

nDn + Vn +WnEn

)
Rn.(3.2)

This operator leaves the initial coordinate subspace F
n invariant; we shall also use

Hn to denote the matrix of its restriction to F
n. The matrix Hn ∈Mn(F) is self-

adjoint and block tridiagonal up to a truncation in the lower-right corner. Its main-
and super-diagonal processes are

m2
n +mn(Wn + Yn,1;0),2m2

n +mn(Yn,1;1 − Yn,1;0),

2m2
n +mn(Yn,1;2 − Yn,1;1), . . .(3.3)

−m2
n + 1

2mnYn,2;0,−m2
n + 1

2mn(Yn,2;1 − Yn,2;0), . . . ,

respectively; the sub-diagonal process is of course the conjugate transpose of the
super-diagonal process. (We could have absorbed Wn into Yn,1 as an additive con-
stant, but keep it separate for reasons that will soon be clear. Note also that the
upper-left block has m2

n rather than 2m2
n.) We refer to Hn as a rank r block tri-

diagonal ensemble.
As in RRV and Part I, convergence rests on a few key assumptions on the po-

tential and boundary terms just introduced. By choice, no additional scaling will
be required. The role of the convergence in the first and third assumption below
will be clear as soon as we define the continuum limit. The growth and oscilla-
tion bounds of the second assumption (and the lower bound implied by the third)
ensure tightness of the low-lying states; in particular, they guarantee that the spec-
trum remains discrete and bounded below in the limit.
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ASSUMPTION 1 (Tightness and convergence). There exists a continuous
Mr(F)-valued random process {Y(x)}x≥0 with Y(0)= 0 such that{

Yn,i(x)
}
x≥0, i = 1,2 are tight in law,

(3.4)
Yn,1 + 1

2

(
Yn,2 + Y

†
n,2

)⇒ Y in law

with respect to the compact-uniform topology (defined using any matrix norm).

ASSUMPTION 2 (Growth and oscillation bounds). There is a decomposition

Yn,i;j =m−1
n

j∑
k=0

ηn,i;k +ωn,i;j(3.5)

(so�nYn,i = ηn,i+�nωn,i) with ηn,i;j ≥ 0 (as matrices), such that for some deter-
ministic scalar continuous nondecreasing unbounded functions η(x) > 0, ζ(x)≥ 1
not depending on n, and random constants κn ≥ 1 defined on the same probability
spaces, the following hold: the κn are tight in distribution, and for each n we have
almost surely

η(x)/κn − κn ≤ ηn,1(x)+ ηn,2(x)≤ κn

(
1+ η(x)

)
,(3.6)

ηn,2(x)≤ 2m2
n,(3.7) ∣∣ωn,1(ξ)−ωn,1(x)

∣∣2 + ∣∣ωn,2(ξ)−ωn,2(x)
∣∣2 ≤ κn

(
1+ η(x)/ζ(x)

)
(3.8)

for all x, ξ ∈ [0, �n/r�/mn) with |ξ − x| ≤ 1. Here, matrix inequalities have their
usual meaning and single bars denote the spectral [or �2(Fr ) operator] norm.

ASSUMPTION 3 (Critical or subcritical perturbation). For some orthonor-
mal basis u1, . . . , ur of F

r and −∞ < w1 ≤ · · · ≤ wr ≤ ∞ we have Wn =∑r
i=1 wn,iuiu

†
i , where wn,i ∈R satisfy limn→∞wn,i =wi for each i.

We write r0 = #{i : wi < ∞} ∈ {0, . . . , r} for the “critical rank”. Formally,
Wn →W =∑r

i=1 wiuiu
†
i ∈M∗

r (F). It is natural to view W as a parameter: that
is, we will consider the joint behaviour of the model (for given Yn,i, Y ) over all
Wn,W satisfying Assumption 3.

3.2. Reduction to deterministic setting. In the next subsection, we will define
a limiting object in terms of Y(x) and W ; we want to prove that the discrete models
converge to this continuum limit in law. We reduce the problem to a deterministic
convergence statement as follows. First, select any subsequence. It will be con-
venient to extract a further subsequence so that certain additional tight sequences
converge jointly in law; Skorokhod’s representation theorem [see Ethier and Kurtz
(1986)] says this convergence can be realized almost surely on a single probability
space. We may then proceed pathwise.
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In detail, consider (3.4)–(3.8). Note in particular that nonnegativity of the ηn,i

and the upper bound of (3.6) give that for i = 1,2 the piecewise linear process
{∫ x

0 ηn,i}x≥0 is tight in distribution, pointwise with respect to the spectral norm and
in fact compact-uniformly. Given a subsequence, we pass to a further subsequence
so that the following distributional limits exist jointly:

Yn,i ⇒ Yi,∫
0
ηn,i ⇒ η̃i ,(3.9)

κn ⇒ κ,

for i = 1,2, where convergence in the first two lines is in the compact-uniform
topology. We realize (3.9) pathwise a.s. on some probability space and continue in
this deterministic setting.

We can take (3.6)–(3.8) to hold with κn replaced with a single κ . Observe
that (3.6) gives a local Lipschitz bound on the

∫
ηn,i , which is inherited by their

limits η̃i (the spectral norm controls the matrix entries). Thus, ηi = η̃i
′ is de-

fined almost everywhere on R+, satisfies (3.6), and may be defined to satisfy this
inequality everywhere. Furthermore, one easily checks that m−1

n

∑
ηn,i → ∫

ηi

compact-uniformly as well (use continuity of the limit). Therefore, ωn,i = yn,i −
m−1

n

∑
ηn,i must have a continuous limit ωi for i = 1,2; moreover, the bound (3.8)

is inherited by the limits. Lastly, put η = η1 + η2, ω = ω1 + 1
2(ω2 + ω

†
2) and note

that Yi = ∫
ηi + ωi and Y = ∫

η + ω. For convenience, we record the bounds in-
herited by η,ω:

η(x)/κ − κ ≤ η(x)≤ κ
(
1+ η(x)

)
,(3.10) ∣∣ω(ξ)−ω(x)

∣∣2 ≤ κ
(
1+ η(x)/ζ(x)

)
(3.11)

for x, ξ ∈R+ with |ξ − x| ≤ 1 (and note that κ ≥ 1).
We will assume this subsequential pathwise coupling for the remainder of the

section.

3.3. Limiting object and variational characterization. Formally, the limiting
object is the eigenvalue problem

Hf =�f on L2(
R+,Fr),

(3.12)
f ′(0)=Wf (0),

where

H=− d2

dx2 + Y ′(x).
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Writing the spectral decomposition W =∑r
i=1 wiuiu

†
i , recall (Assumption 3) that

we actually allow wi ∈R for 1≤ i ≤ r0 and, symbolically, wi =+∞ for r0 + 1≤
i ≤ r . Writing fi = u

†
i f , the boundary condition is then to be interpreted as

f ′i (0)=wifi(0) for i ≤ r0,

fi(0)= 0 for i > r0.
(3.13)

We thus have a completely general homogeneous linear self-adjoint boundary con-
dition. We refer to span{ui : i > r0} as the Dirichlet subspace and the correspond-
ing fi as Dirichlet components; they will require special treatment in what follows.

We will actually work with a symmetric bilinear form (properly, sesquilinear if
F=C or H) associated with the eigenvalue problem (3.12). Define a space of test
functions C∞

0 consisting of smooth F
r -valued functions ϕ on R+ with compact

support; we additionally require the Dirichlet components to be supported away
from the origin. Introduce a symmetric bilinear form on C∞

0 ×C∞
0 by

H(ϕ,ψ)= 〈
ϕ′,ψ ′〉− 〈

ϕ′, Yψ
〉− 〈

ϕ,Yψ ′〉+ ϕ(0)†Wψ(0),(3.14)

where the Dirichlet part of the last term is interpreted as zero. Formally, the form
H(·, ·) is just the usual one 〈·,H·〉 associated with the operator H; the potential
term has been integrated by parts and the boundary condition “built in”. See also
Remark 3.5 below.

The regularity and decay conditions naturally associated with this form are
given by the following weighted Sobolev norm:

‖f ‖2∗ =
∫ ∞

0

(∣∣f ′∣∣2 + (1+ η)|f |2)+ f (0)†W+f (0),(3.15)

where the positive part of W is defined as W+ =∑r
i=1 w+

i uiu
†
i with w+ =w∨ 0.

[Define the negative part similarly with w−
i =−(w∧0), so that W =W+−W−.]

We refer to ‖ · ‖∗ as the L∗ norm and define an associated Hilbert space L∗ as the
closure of C∞

0 under this norm. (The formal Dirichlet terms are again interpreted
to be zero, but they can also be thought of as imposing the Dirichlet condition.)
We record some basic facts about L∗.

FACT 3.1. Any f ∈ L∗ is uniformly Hölder(1/2)-continuous and satisfies
|f (x)|2 ≤ 2‖f ′‖‖f ‖ ≤ ‖f ‖2∗ for all x; furthermore, fi(0)= 0 for i > r0.

PROOF. We have |f (y)− f (x)| = | ∫ y
x f ′| ≤ ‖f ′‖|y − x|1/2. For f ∈C∞

0 we
have |f (x)|2 = − ∫∞

x 2 Ref †f ′ ≤ 2‖f ‖‖f ′‖ ≤ ‖f ‖2∗; an L∗-bounded sequence
in C∞

0 , therefore, has a compact-uniformly convergent subsequence, so we can
extend this bound to f ∈ L∗ and also conclude the behaviour in the Dirichlet com-
ponents. �
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FACT 3.2. Every L∗-bounded sequence has a subsequence converging in the
following modes: (i) weakly in L∗, (ii) derivatives weakly in L2, (iii) uniformly on
compacts and (iv) in L2.

PROOF. (i) and (ii) are just Banach–Alaoglu; (iii) is the previous fact and
Arzelà–Ascoli again; (iii) implies L2 convergence locally, while the uniform
bound on

∫
η|fn|2 produces the uniform integrability required for (iv). Note that

the weak limit in (ii) really is the derivative of the limit function, as one can see by
integrating against functions 1[0,x] and using pointwise convergence. �

By the bound in Fact 3.1 with x = 0, the boundary term in (3.15) could be
done away with. It is natural to include the term, however, when considering all W

simultaneously and viewing the Dirichlet case as a limiting case. More importantly,
it clarifies the role of the boundary terms in the following key bound.

LEMMA 3.3. For every 0 < c < 1/κ there is a C > 0 such that, for each b > 0,
the following holds for all W ≥−b and all f ∈C∞

0 :

c‖f ‖2∗ −
(
1+ b2)C‖f ‖2 ≤H(f, f )≤ C‖f ‖2∗.(3.16)

In particular, H(·, ·) extends uniquely to a continuous symmetric bilinear form on
L∗ ×L∗.

PROOF. For the first three terms of (3.14), we use the decomposition Y =∫
η + ω from the previous subsection. Integrating the

∫
η term by parts, (3.10)

easily yields

1

κ
‖f ‖2∗ − κ‖f ‖2 ≤ ∥∥f ′∥∥2 + 〈f,ηf 〉 ≤ κ‖f ‖2∗.

Break up the ω term as follows. The moving average ωx = ∫ x+1
x ω is differentiable

with ω′x = ωx+1 −ωx ; writing ω= ω+ (ω−ω), we have

−2 Re
〈
f ′,ωf

〉= 〈
f,ω′f

〉+ 2 Re
〈
f ′, (ω−ω)f

〉
.

By (3.11), max(|ωξ −ωx |, |ωξ −ωx |2)≤Cε + εη(x) for |ξ − x| ≤ 1, where ε can
be made small. In particular, the first term above is bounded absolutely by ε‖f ‖2∗+
Cε‖f ‖2. Averaging, we also get |ωx − ωx | ≤ (Cε + εη(x))1/2; Cauchy–Schwarz
then bounds the second term absolutely by

√
ε
∫∞

0 |f ′|2 + 1√
ε

∫∞
0 (Cε + εη)|f |2

and thus by
√

ε‖f ‖2∗ + C′
ε‖f ‖2. Now combine all the terms and set ε small to

obtain a version of (3.16) with the boundary terms omitted (from both the form
and the norm).

We break the boundary term in (3.14) into its positive and negative parts. For
the negative part, Fact 3.2 gives |f (0)|2 ≤ (ε/b)‖f ′‖2+ (b/ε)‖f ‖2; W− ≤ b then
implies that

0≤ f (0)†W−f (0)≤ ε‖f ‖2∗ +C′′
ε b2‖f ‖2,
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which may be subtracted from the inequality already obtained. For the positive
part f (0)†W+f (0), use the fact that c ≤ 1≤ C to simply add it in. We thus arrive
at (3.16).

For the L∗ bilinear form bound, begin with the quadratic form bound
|H(f, f )| ≤ Cc,b‖f ‖2∗; it is a standard Hilbert space fact that it may be polarized
to a bilinear form bound [see, e.g., Section 18 of Halmos (1951)]. �

DEFINITION 3.4. We say f ∈ L∗ is an eigenfunction with eigenvalue � if
f �= 0 and for all ϕ ∈ C∞

0 we have

H(ϕ, f )=�〈ϕ,f 〉.(3.17)

Note that (3.17) then automatically holds for all ϕ ∈ L∗, by L∗-continuity of both
sides.

REMARK 3.5. This definition represents a weak or distributional version of
the problem (3.12). As further justification, integrate by parts to write the definition〈

ϕ′, f ′
〉− 〈

ϕ′, Yf
〉− 〈

ϕ,Yf ′
〉+ ϕ(0)†Wf (0)=�〈ϕ,f 〉

in the form〈
ϕ′, f ′

〉− 〈
ϕ′, Yf

〉+ 〈
ϕ′,

∫
0
Yf ′

〉
− 〈

ϕ′,Wf (0)
〉=−�

〈
ϕ′,

∫
0
f

〉
,

which is equivalent to

f ′(x)=Wf (0)+ Y(x)f (x)−
∫ x

0
Yf ′ −�

∫ x

0
f a.e. x.(3.18)

(For a Dirichlet component fi the restriction on test functions implies that
〈ϕ′i ,1〉 = 0, so the first boundary term on the right-hand side is replaced with an
arbitrary constant.) Now (3.18) shows that f ′ has a continuous version, and the
equation may be taken to hold everywhere. In particular, f satisfies the boundary
condition of (3.12) classically. [For a Dirichlet component, we just find that the ar-
bitrary constant is f ′i (0).] One can also view (3.18) as a straightforward integrated
version of the eigenvalue equation in which the potential term has been interpreted
via integration by parts. This equation will be useful in Lemma 3.6 below and is
the starting point for the development in Section 5.

We now characterize the eigenvalues and eigenfunctions variationally. As usual,
it follows from the symmetry of the form that eigenvalues are real (and eigen-
functions with distinct eigenvalues are L2-orthogonal). The L2 part of the lower
bound in (3.16) says the spectrum is bounded below. The rest of (3.16) implies
that there are only finitely many eigenvalues below any given level: a sequence of
normalized eigenfunctions with bounded eigenvalues must have an L2-convergent
subsequence by Fact 3.2. At a given level, more is true.
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LEMMA 3.6. For each � ∈ R, the corresponding eigenspace is at most r-
dimensional.

PROOF. By linearity, it suffices to show a solution of (3.18) with f ′(0) =
f (0)= 0 must vanish identically. Integrate by parts to write

f ′(x)= Y(x)

∫ x

0
f ′ −

∫ x

0
Yf ′ −�x

∫ x

0
f ′ +�

∫ x

0
tf ′(t) dt,

which implies that |f ′(x)| ≤ C(x)
∫ x

0 |f ′| with some C(x) <∞ increasing in x.
Gronwall’s lemma then gives |f ′(x)| = 0 for all x ≥ 0. �

PROPOSITION 3.7. There is a well-defined (k + 1)st lowest eigenvalue �k ,
counting with multiplicity. The eigenvalues �0 ≤ �1 ≤ . . . together with an or-
thonormal sequence of corresponding eigenvectors f0, f1, . . . are given recursively
by the variational problem

�k = inf
f∈L∗,‖f ‖=1,

f⊥f0,...,fk−1

H(f, f )

in which the minimum is attained and we set fk to be any minimizer.

REMARK 3.8. Since we must have �k →∞, {�0,�1, . . .} exhausts the spec-
trum and the resolvent operator is compact. We do not make this statement precise.

PROOF. First taking k = 0, the infimum �̃ is finite by (3.16). Let fn be a
minimizing sequence; it is L∗-bounded, again by (3.16). Pass to a subsequence
converging to f ∈ L∗ in all the modes of Fact 3.2. In particular, 1= ‖fn‖→ ‖f ‖,
so H(f, f )≥ �̃ by definition. But also

H(f, f )= ∥∥f ′∥∥2 + 〈f,ηf 〉 + 〈
f,ω′f

〉+ 2 Re
〈
f ′, (ω−ω)f

〉+ f (0)†Wf (0)

≤ lim inf
n→∞ H(fn, fn)

by a term-by-term comparison. Indeed, the inequality holds for the first term by
weak convergence, and for the second term by pointwise convergence and Fatou’s
lemma; the remaining terms are just equal to the corresponding limits, because
the second members of the inner products converge in L2 by the bounds from the
proof of Lemma 3.3 together with L∗-boundedness and L2-convergence. There-
fore, H(f, f )= �̃.

A standard argument now shows (�̃, f ) is an eigenvalue–eigenfunction pair:
taking ϕ ∈ C∞

0 and ε small, put f ε = (f + εϕ)/‖f + εϕ‖; since f is a minimizer,
d
dε
|ε=0H(f ε, f ε) must vanish; the latter says precisely (3.17) with �̃. Finally, sup-

pose (�,g) is any eigenvalue–eigenfunction pair; then H(g, g) = �, and hence
�̃≤�. We are thus justified in setting �0 = �̃ and f0 = f .
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Proceed inductively, minimizing now over the orthocomplement {f ∈ L∗ :
‖f ‖ = 1, f ⊥ f0, . . . , fk−1}. Again, L2-convergence of a minimizing sequence
guarantees that the limit remains admissible; as before, the limit is in fact a min-
imizer; conclude by applying the arguments of the previous paragraph with ϕ,g

also restricted to the orthocomplement. �

3.4. Statement. We are finally ready to state the main result of this section.
Recall that we consider eigenvectors of a matrix Hn ∈Mn(F) in the embedding
F

n ⊂ �2
n(Z+,Fr ) ↪→L2(R+,Fr ) above.

THEOREM 3.9. Let Hn be a rank r block tr-diagonal ensemble as in (3.2)
satisfying Assumptions 1–3, and let λn,k be its (k + 1)st lowest eigenvalue. Define
the associated form H as in (3.14) and let �k be its a.s. defined (k + 1)st lowest
eigenvalue. In the deterministic setting of subsequential pathwise coupling, λn,k →
�k for each k = 0,1, . . . . Furthermore, a sequence of normalized eigenvectors
corresponding to λn,k is precompact in L2 norm, and every subsequential limit
is an eigenfunction corresponding to �k . Finally, convergence holds uniformly
over possible Wn,W ≥−b >−∞. One recovers the corresponding distributional
tightness and convergence statements for the full sequence, jointly for k = 0,1, . . .

in the sense of finite-dimensional distributions and jointly over Wn,W .

REMARK 3.10. The eigenvector convergence statement requires subse-
quences for two reasons: possible multiplicity of the limiting eigenvalues, and
the sign or phase ambiguity of the eigenvectors. It is possible to formulate the
conclusion of the theorem very simply using spectral projections. [If H has purely
discrete spectrum, the spectral projection 1A(H) is simply orthogonal projection
of L2 onto the span of those eigenvectors of H whose eigenvalues lie in A⊂ R.]
The joint eigenvalue-eigenvector convergence may be restated in the determin-
istic setting as follows: For all a ∈ R \ {�0,�1, . . .}, the spectral projections
1(−∞,a)(Hn) → 1(−∞,a)(H) in L2 operator norm. The corresponding distribu-
tional statement holds jointly over all a that are a.s. off the limiting spectrum (or
simply all a if the distributions of the �k are nonatomic).

REMARK 3.11. An operator-theoretic formulation of the theorem (which we
do not develop here) would state a norm resolvent convergence: the resolvent ma-
trices, precomposed with the finite-rank projections L2 → F

n associated with the
embedding, converge to the continuum resolvent in L2 operator norm. This mode
of convergence is the strongest one can hope for in the unbounded setting [see,
e.g., Section VIII.7 of Reed and Simon (1980), Weidmann (1997)].

The proof will be given over the course of the next two subsections.
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3.5. Tightness. We will need a discrete analogue of the L∗ norm and a coun-
terpart of Lemma 3.3 with constants uniform in n. For v ∈ F

n ↪→ L2(R+,Fr ) as
above, define the L∗n norm by

‖v‖2∗n =
〈
v,
(
D†

nDn + 1+ η+EnW
+
n

)
v
〉

(3.19)
=
∫ ∞

0

(|Dnv|2 + (1+ η)|v|2)+ v(0)†W+
n v(0)

with the nonnegative part W+
n defined as before.

REMARK 3.12. When considering just a single Wn,W , the boundary term
in (3.19) is really only required when the limit includes Dirichlet terms; it is sim-
pler, however, not to distinguish the two cases here. More importantly, including
this term clarifies the role of the boundary term in the following key bound. Note
that the original case considered in RRV has Wn = mn in our notation. (The Hn

form and L∗n norm there contained a term mn|v0|2, though it is hidden in the fact
that, in our notation, they use �n in place of Dn.)

LEMMA 3.13. For every 0 < c < 1/4κ there is a C > 0 such that, for each
b > 0, the following holds for all n, Wn ≥−b and v ∈ F

n:

c‖v‖2∗n −
(
1+ b2)C‖v‖2 ≤ 〈v,Hnv〉 ≤ C‖v‖2∗n.(3.20)

PROOF. We drop the subscript n. The form associated with (3.2) is

〈v,Hv〉 = ‖Dv‖2 + 〈v,V v〉 + v(0)†Wv(0).(3.21)

The potential term 〈v,V v〉 = ∫∞
0 v†V v, defined in (3.1), is analyzed according

to (3.5):

v†V v = v†(�Y1)v +Rev†(�Y2)T v

= (
v†η1v +Rev†η2T v

)+ (
v†(�ω1)v +Rev†(�ω2)T v

)
.

Together with |Dnv|2, the η-terms provide the structure of the bound as we now
show. Afterward we will control the ω-terms and lastly deal with the boundary
term.

Recall (3.6) and that ηi ≥ 0. For an upper bound, rearrange (v − T v)†η2(v −
T v)≥ 0 to

Rev†η2T v ≤ 1
2v†η2v+ 1

2(T v)†η2T v

≤ 1
2κ(η+ 1)

(|v|2 + |T v|2).
Now

∫
η|T v|2 = ∫

(T †η)|v|2 ≤ ∫
η|v|2 since η is nondecreasing, and we obtain

‖Dv‖2 + 〈v, η1v〉 +Re〈v, η2T v〉 ≤ 2κ‖v‖2∗.(3.22)
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Toward a lower bound, we use the slightly tricky rearrangement 0 ≤ (1
2v +

T v)†η2(
1
2v + T v)= 3 Rev†η2T v + (T v − v)†η2(T v − v)− 3

4v†η2v. With (3.7),
we get

Rev†η2T v ≥−1
3(T v − v)†η2(T v − v)+ 1

4v†η2v

≥−2
3 |Dv|2 + 1

4v†η2v,

so by (3.6),

|Dv|2 + v†η1v+Rev†η2T v ≥ 1
3 |Dv|2 + 1

4(η/κ − κ)|v|2
and thus

‖Dv‖2 + 〈v, η1v〉 +Re〈v, η2T v〉 ≥ (1/4κ)‖v‖2∗ − (κ/4)‖v‖2.(3.23)

We handle the ω-terms with a discrete analogue of the decomposition used in
the continuum proof. Consider the moving average

ωi = �m�−1
�m�∑
j=1

T jωi

which has �ωi = (m/�m�)(T �m� − 1)ωi ; it is convenient to extend ωi(x) =
ωi(�n/r�/mn) for x > �n/r�/mn. Decompose ωi = ωi + (ωi − ωi). For the ω1-
term,

v†�ω1v = (
m/�m�)v†(T �m�ω1 −ω1

)
v + v†�(ω1 −ω1)v.

By (3.8) and Cauchy–Schwarz, the first term is bounded absolutely by (Cε +
εη)|v|2 and its integral by ε‖v‖2∗+Cε‖v‖2. The second term calls for a summation
by parts: 〈

v,�(ω1 −ω1)v
〉=mn

(〈
v, (ω1 −ω1)v

〉− 〈
T v, (ω1 −ω1)T v

〉)
=mn Re

〈
v − T v, (ω1 −ω1)(v + T v)

〉
= Re

〈
Dv, (ω1 −ω1)(v + T v)

〉
.

The averaged bound |ω1 − ω1| ≤ (Cε + εη)1/2 and Cauchy–Schwarz bound the
integrand∣∣(Dv)†(ω1 −ω1)(v + T v)

∣∣≤√ε|Dv|2 + (1/4
√

ε)(Cε + εη)
(|v|2 + |T v|2),

and its integral by
√

ε‖v‖2∗ + C′
ε‖v‖2. One thus obtains a similar bound on

|〈v, (�ω1)v〉|.
There are corresponding bounds for the ω2-terms. For the ω2-term, use

2|v||T v| ≤ |v|2 + |T v|2. For the (ω2 −ω2)-term, modify the summation by parts:

Re
〈
(v,�(ω2 −ω2)T v

〉
=mn Re

(〈
(v − T v), (ω2 −ω2)T v

〉+ 〈
T v, (ω2 −ω2)

(
T v − T 2v

)〉)
= Re

〈
Dv+ T Dv, (ω2 −ω2)T v

〉
.
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Incorporating all the ω-terms into (3.22), (3.23) and setting ε small, we ob-
tain (3.20) but with the boundary terms omitted (from both the form and the norm).

We break the boundary term in (3.21) into its positive and negative parts. A dis-
crete analogue of a bound from Fact 3.1 will be useful:∣∣v(0)

∣∣2 = ∫ ∞
0
−D|v|2 =

∫ ∞
0

Rem(v − T v)†(v + T v)≤ 2‖Dv‖‖v‖.

It gives |v(0)|2 ≤ (ε/b)‖Dv‖2 + (b/ε)‖v‖2, and then W− ≤ b implies that

0≤ v(0)†W−v(0)≤ ε‖v‖2∗ +C′′
ε b2‖v‖2

which may be subtracted from the inequality already obtained. The positive part
may simply be added in using that c ≤ 1≤ C. We thus arrive at (3.20). �

REMARK 3.14. If the Wn are not bounded below then the lower bound
in (3.20) breaks down: in fact, the bottom eigenvalue of Hn really goes to −∞
like minus the square of the bottom eigenvalue of Wn. This is the supercritical
regime.

3.6. Convergence. We begin with a simple lemma, a discrete-to-continuous
version of Fact 3.2.

LEMMA 3.15. Let fn ∈ F
n with ‖fn‖∗n uniformly bounded. Then there ex-

ist f ∈ L∗ and a subsequence along which (i) fn → f uniformly on compacts,
(ii) fn →L2 f , and (iii) Dnfn → f ′ weakly in L2.

PROOF. Consider gn(x) = fn(0) + ∫ x
0 Dnfn, a piecewise-linear version of

fn; they coincide at points x = i/mn, i ∈ Z+. One easily checks that ‖gn‖2∗ ≤
2‖fn‖2∗n, so some subsequence gn → f ∈ L∗ in all the modes of Fact 3.2; for
a Dirichlet component, the boundary term in the L∗n norm guarantees that the
limit vanishes at 0. But then also fn → f compact-uniformly by a simple ar-
gument using the uniform continuity of f , fn →L2 f because ‖fn − gn‖2 ≤
(1/3n2)‖Dnfn‖2, and Dnfn → f ′ weakly in L2 because Dnfn = g′n a.e. �

Next, we establish a kind of weak convergence of the forms 〈·,Hn·〉 to H(·, ·).
Let Pn be orthogonal projection from L2 onto F

n embedded as above. The fol-
lowing facts will be useful and are easy to check. For f ∈ L2, Pnf →L2 f (the
Lebesgue differentiation theorem gives pointwise convergence and we have uni-
form L2-integrability); further, if f ′ ∈ L2 then Dnf →L2 f ′ (Dnf is a convolution
of f ′ with an approximate delta); for smooth ϕ, Pnϕ → ϕ uniformly on compacts.
It is also useful to note that Pn commutes with Rn and with DnRn. Finally, if
fn →L2 f , gn is L2-bounded and gn → g weakly in L2, then 〈fn, gn〉→ 〈f,g〉.
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LEMMA 3.16. Let fn → f be as in the hypothesis and conclusion of
Lemma 3.15. Then for all ϕ ∈ C∞

0 we have 〈ϕ,Hnfn〉 →H(ϕ, f ). In particular,
Pnϕ → ϕ in this way and so

〈Pnϕ,HnPnϕ〉 = 〈ϕ,HnPnϕ〉→H(ϕ,ϕ).(3.24)

PROOF. Since ϕ is compactly supported, we have Rnϕ = ϕ for n large and the
Rns may be dropped. By assumption Dnfn is L2 bounded and Dnfn → f ′ weakly
in L2, so by the preceding observations Dnϕ→L2 ϕ′ and〈

ϕ,D†
nDnfn

〉= 〈Dnϕ,Dnfn〉→ 〈
ϕ′, f ′

〉
.

For the potential term, we must verify that

〈ϕ,Vnfn〉 = 〈
ϕ,
(�nYn,1 + 1

2

(
(�nYn,2)Tn + T †

n

(�nY
†
n,2

)))
fn

〉
converges to −〈ϕ′, Yf 〉 − 〈ϕ,Yf ′〉. Recall by Assumption 1 (3.4) and (3.9) that
Yn,i → Yi compact-uniformly (i = 1,2) and Y = Y1 + 1

2(Y2 + Y
†
2 ). Writing Yn =

Yn,1 + 1
2(Yn,2 + Y

†
n,2)→ Y (and disregarding the notational collision with Yi ), we

first approximate Vn by �Yn:〈
ϕ, (�nYn)fn

〉=mn

(〈ϕ,Ynfn〉 − 〈Tnϕ,YnTnfn〉)
=mn

(〈ϕ,Ynfn〉 − 〈Tnϕ,Ynfn〉 + 〈Tnϕ,Ynfn〉 − 〈Tnϕ,YnTnfn〉)
=−〈Dnϕ,Ynfn〉 − 〈Tnϕ,YnDnfn〉,

which converges to the desired limit by the observations preceding the lemma
together with the assumptions on fn and the fact that Tnϕ →L2 ϕ in L2 since
mn‖Tnϕ − ϕ‖ = ‖Dnϕ‖ is bounded. The error in the above approximation comes
as a sum of Tn and T †

n terms. Consider twice the Tn term:∣∣〈ϕ, (�nYn,2)(Tn − 1)fn

〉∣∣= ∣∣〈ϕ,
(
m−1

n �nYn,2
)
Dnfn

〉∣∣
≤ ‖ϕ‖ sup

I

∣∣Yn,2 − T †
n Yn,2

∣∣‖Dnfn‖,
where I is a compact interval supporting ϕ. (The single bars in the supremum
denote the spectral or �2-operator norm, which is of course equivalent to the max
norm on the entries.) Note that Dnfn is L2-bounded because it converges weakly
in L2. Now Yn,2 and T †

n Yn,2 both converge to Y2 uniformly on I , in the latter case
by the uniform continuity of Y2 on I ; it follows that the supremum, and hence
the whole term, vanish in the limit. The T †

n term is handled similarly, the only
difference being that the Dn in the estimate lands on ϕ instead.

Finally, for the boundary terms Assumption 3 gives

(Pnϕ)∗i (0)wn,ifn,i(0)→ ϕ∗i (0)wifi(0),

where in the Dirichlet case i > r0 the left-hand side vanishes for n large because
ϕi is supported away from 0.
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Turning to the second statement, we must verify that Pnϕ → ϕ as in Lem-
ma 3.15. The uniform L∗n bound on Pnϕ follows from the following observations:
‖(Pnϕ)

√
1+ η‖ = ‖Pnϕ

√
1+ η‖ ≤ ‖ϕ√1+ η‖; for n large enough that Rnϕ = ϕ

we have ‖DnPnϕ‖ = ‖PnDnϕ‖ ≤ ‖Dnϕ‖ ≤ ‖ϕ′‖ (Young’s inequality); for the
boundary term note that (Pnϕ)i(0) is bounded if i ≤ r0 and in fact vanishes for n

large if i > r0. The convergence is easy: Pnϕ → ϕ compact-uniformly and in L2,
and for g ∈ L2 we have 〈g,DnPnϕ〉 = 〈Png,Dnϕ〉→ 〈g,ϕ′〉. �

We finish by recalling the argument to put all the pieces together. A technical
point: unlike in previous treatments we do not assume that the eigenvalues are
simple.

PROOF OF THEOREM 3.9. We first show that for all k we have λk =
lim infλn,k ≥ �k . Assume that λk < ∞. The eigenvalues of Hn are uniformly
bounded below by Lemma 3.13, so there is a subsequence along which (λn,1, . . . ,

λn,k)→ (ξ1, . . . , ξk = λk). By the same lemma, corresponding orthonormal eigen-
vector sequences have L∗n-norm uniformly bounded. Pass to a further subsequence
so that they all converge as in Lemma 3.15. The limit functions are orthonormal;
by Lemma 3.16 they are eigenfunctions with eigenvalues ξj ≤ λk and we are done.

We proceed by induction, assuming the conclusion of the theorem up to k − 1.
For j = 0, . . . , k − 1 let vn,j be orthonormal eigenvectors corresponding to λn,j ;
for any subsequence we can pass to a further subsequence such that vn,j →L2 fj ,
eigenfunctions corresponding to �j . Take an orthogonal eigenfunction fk corre-
sponding to �k and find f ε

k ∈ C∞
0 with ‖f ε

k − fk‖∗ < ε. Consider the vector

fn,k =Pnf
ε
k −

k−1∑
j=0

〈
vn,j ,Pnf

ε
k

〉
vn,j .

The L∗n-norm of the sum term is uniformly bounded by Cε: indeed, the ‖vn,j‖∗n
are uniformly bounded by Lemma 3.13, while the coefficients satisfy |〈vn,j , f

ε
k 〉| ≤‖f ε

k − fk‖ + ‖vn,j − fj‖ < 2ε for large n. By the variational characterization in
finite dimensions and the uniform L∗n form bound on 〈·,Hn·〉 (by Lemma 3.13)
together with the uniform bound on ‖Pnf

ε
k ‖∗n (by Lemma 3.16), we then have

lim supλn,k ≤ lim sup
〈fn,k,Hnfn,k〉
〈fn,k, fn,k〉

(3.25)

= lim sup
〈Pnf

ε
k ,HnPnf

ε
k 〉

〈Pnf
ε
k ,Pnf

ε
k 〉

+ oε(1),

where oε(1) → 0 as ε → 0. But (3.24) of Lemma 3.16 provides lim〈Pnf
ε
k ,

HnPnf
ε
k 〉 =H(f ε

k , f ε
k ), so the right-hand side of (3.25) is

H(f ε
k , f ε

k )

〈f ε
k , f ε

k 〉
+ oε(1)= H(fk, fk)

〈fk, fk〉 + oε(1)=�k + oε(1).
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Now letting ε→ 0, we conclude lim supλn,k ≤�k .
Thus, λn,k → �k ; Lemmas 3.13 and 3.15 imply that any subsequence of the

vn,k has a further subsequence converging in L2 to some f ∈ L∗; Lemma 3.16
then implies that f is an eigenfunction corresponding to �k . Finally, convergence
is uniform over Wn,W ≥−b since the bound 3.13 is. �

4. CLT and tightness for Gaussian and Wishart models. We now verify
Assumptions 1–3 of Section 3 for the band Jacobi forms of Section 2, and thus
prove Theorems 1.2 and 1.3 via Theorem 3.9.

We must consider the band forms as (r × r)-block tridiagonal matrices. This
amounts to reindexing the entries by (k + rj, l + rj), where j ∈ Z+ indexes the
blocks and 1 ≤ k, l ≤ r give the index within each block. The scalar processes
obtained by fixing k, l can then be analyzed jointly; finally, they can be assembled
into a matrix-valued process.

The technical tool we use to establish (3.4) is a functional central limit theorem
for convergence of discrete time processes with independent increments of given
mean and variance (and controlled fourth moments) to Brownian motion plus a
nice drift. Appearing as Corollary 6.1 in RRV, it is just a tailored version of a
much more general result given as Theorem 7.4.1 in Ethier and Kurtz (1986). We
record it here.

PROPOSITION 4.1. Let a ∈ R and h ∈ C1(R+), and let yn be a sequence
of discrete time real-valued processes with yn,0 = 0 and independent increments
δyn,j = yn,j − yn,j−1 =m−1

n �nyn,j . Assume that mn →∞ and

mnEδyn,j = h′(j/mn)+ o(1), mnE(δyn,j )
2 = a2 + o(1),

mnE(δyn,j )
4 = o(1)

uniformly for j/mn on compact sets as n→∞. Then yn(x)= yn,�mnx� converges
in law, with respect to the compact-uniform topology, to the process h(x) + abx

where bx is a standard Brownian motion.

REMARK 4.2. Since the limit is a.s. continuous, Skorokhod convergence (the
topology used in the references) implies uniform convergence on compact intervals
[see Theorem 3.10.2 in Ethier and Kurtz (1986)] and we may as well speak in terms
of the latter.

4.1. The Gaussian case. Take Gn = Gn;0 + √nPn as in (2.4) with Gn;0 as
in (2.3) and Pn = P̃n ⊕ 0n−r . We denote upper-left r × r blocks with a tilde
throughout. Set

mn = n1/3, Hn = m2
n√
n
(2
√

n−Gn).
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As usual, this soft-edge scaling can be predicted as follows. Centering Gn by 2
√

n

gives, to first order,
√

n times the discrete Laplacian on blocks of size r . With
space scaled down by mn, the Laplacian must be scaled up by m2

n to converge to
the second derivative. Finally, the scaling mn = n1/3 is determined by convergence
of the next order terms to the noise and drift parts of the limiting potential.

Decompose Hn as in (3.2), (3.3). The upper-left block is

H̃n =m2
n +mn(Wn + Yn,1;0)=m2

n

(
2− n−1/2G̃n,0 − P̃n

);
we want the boundary term Wn to absorb the “extra” m2

n (the 2 in the right-hand
side “should be” a 1) and the perturbation in order to make Yn,1;0 small just like
the subsequent increments of Yn,i . We therefore set

Wn =mn(1− P̃n).

With this choice Assumption 3 is an immediate consequence of the hypotheses
of Theorem 1.2. The processes Yn,1, Yn,2 are determined and it remains to verify
Assumptions 1 and 2.

We begin with Assumption 1, identifying the limiting integrated potential Y :
R+→Mr(F) as that of the multivariate stochastic Airy operator

Y(x)=√2Bx + 1
2rx2,(4.1)

where Bx is a standard Mr(F) Brownian motion and second term is a scalar matrix.

PROOF OF (3.4), GAUSSIAN CASE. Define scalar processes yk,l for 1≤ l ≤ r

and l ≤ k ≤ l + r by

yk,l =
{

(Yn,1)k,l, l ≤ k ≤ r ,(1
2Y

†
n,2

)
k−r,l, r + 1≤ k ≤ l + r .

(4.2)

(We have dropped the subscript n.) Equivalently, for 1≤ k, l ≤ r ,

(Yn,1)kl =
{

y∗l,k, k ≤ l,
yk,l, k ≥ l,

(1
2Y

†
n,2

)
kl =

{
yk+r,l, k ≤ l,
0, k > l.

(4.3)

Then we have

δyk,l;j = n−1/6

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

− 2

β
g̃k+rj , k = l,

−gk+rj,l+rj , l < k < l + r ,(√
n− 1√

β
χ(n−k−rj+1)β

)
, k = l + r .

(4.4)

Note that the yk,l are independent increment processes that are mutually inde-
pendent of one another. With the usual embedding j = �n1/3x�, Proposition 4.1
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together with standard moment computations for Gaussian and Gamma random
variables—in particular

Eχα =√α+O(1/
√

α), E(χα −√α)2 = 1/2+O(1/α),

E(χα −√α)4 =O(1),

for α large [valid since we consider j =O(n1/3) here]—leads to the convergence
of processes

yk,l(x)⇒

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

√
2

β
b̃k(x), k = l,

bk,l(x), l < k < l + r ,
1√
2β

bk(x)+ 1

4
rx2, k = l + r ,

where bk, b̃k are standard real Brownian motions and bk,l are standard F Brow-
nian motions. By independence, the convergence occurs jointly over k, l and the
limiting Brownian motions are all independent. (For the F Brownian motions ap-
ply Proposition 4.1 to each of the β real components, which are independent of
one another.) Therefore, Yn,i are both tight, and using (4.3) we have, jointly for
1≤ k, l ≤ r ,

(
Yn,1 + 1

2

(
Y

†
n,2 + Yn,2

))
k,l =

⎧⎨⎩
yk,k + 2yk+r,k,

yk,l + y∗l+r,k,

y∗l,k + yk+r,l

⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
2

β
(b̃k + bk)+ 1

2
rx2, k = l,

bk,l + b∗l+r,k, k > l,

b∗l,k + bk+r,l, k < l.

Noting that the two Brownian motions in each entry are independent and that the
entries on and below the diagonal are independent of each other, we conclude that
this limiting matrix process is distributed as Y(x) in (4.1). �

We turn to Assumption 2. Here, we need bounds over the full range 0 ≤ j ≤
�n/r�− 1. Recall that we can extend the Yn,i processes beyond the end of the ma-
trix arbitrarily (Rn takes care of the truncation), and it is convenient to “continue
the pattern” for an extra block or two by setting χα = 0 for α < 0. For the decom-
position (3.5), we simply take ηn,i to be the expectation of �Yn,i and �ωn,i to be
its centered version; the components of ηn,i are then easily estimated and those of
ωn,i become independent increment martingales. We further set η(x)= rx.

PROOF OF (3.6)–(3.8), GAUSSIAN CASE. From (4.4), we have ηn,1;j = 0 and

(ηn,2;j )k,l = E2mnδyk+r,l;j = 2n1/6(√n− β−1/2Eχ(n−k−r(j+1)+1)β

)
1k=l .
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The estimate √
(α − 1)+ ≤ Eχα =

√
2
�((α+ 1)/2)

�(α/2)
≤√α(4.5)

is useful. We obtain

2n1/6 rj − c

2
√

n
≤ (ηn,2;j )k,k ≤ 2n1/6 rj + c√

n

for some fixed c, which yields the matrix inequalities

rx − cn−1/3 ≤ ηn,2(x)≤ 2rx + cn−1/3

and verifies (3.6) with η(x)= rx. Separately, we have the upper bound (3.7):

ηn,2(x)≤ 2n2/3 = 2m2
n.

The bound (3.8) may be done entry by entry, so we consider the process
{(ωi,n;j )k,l}j∈Z+ for fixed i = 1,2 and 1≤ k, l ≤ r and further omit these indices;
for the F-valued processes we restrict attention further to one of the β real-valued
components, and denote the latter simply by ωn;j . Consider (4.4); the key points
are that the increments δωn;j are independent and centered, and that scaled up by

n1/6 = m
1/2
n they have uniformly bounded fourth moments. To prove (3.8), it is

enough to consider x at integer points and show that the random variables

sup
x=0,1,...,n/rmn

xε−1 sup
j=1,...,mn

|ωn;mnx+j −ωn;mnx |2

are tight over n. Squaring, bounding the outer supremum by the corresponding
sum, and then taking expectations gives

n/rmn∑
x=0

E supj=1,...,mn
|ωn;mnx+j −ωn;mnx |4
x2−2ε

≤
n/rmn∑
x=0

16E|ωn;mn(x+1) −ωn;mnx |4
x2−2ε

,

where we have used the Lp maximum inequality for martingales [see, e.g., Propo-
sition 2.2.16 of Ethier and Kurtz (1986)]. To bound the latter expectation, expand
the fourth power to obtain O(m2

n) nonzero terms that are O(m−2
n ) with constants

independent of x and n. It follows that the entire sum is uniformly bounded over n,
as required. �

4.2. The Wishart case. Take Ln,p = �
1/2
n,pLn,p,0 with Ln,p,0 as in (2.5) and,

denoting the upper-left r × r block with a tilde, �n,p = �̃n,p ⊕ In∧p . Recall that
Ln,p is ((n + r) ∧ p) × (n ∧ p). Put Sn,p = L†

n,pLn,p and similarly for Sn,p,0;
these matrices are (n∧ p)× (n∧ p) and the latter is given explicitly in (2.6). We
sometimes drop the subscripts n,p. Recall (2.7) that S − S0 = L̃

†
0(�̃ − 1)L̃0 ⊕ 0.

We set

mn,p =
( √

np√
n+√p

)2/3

, Hn,p =
m2

n,p√
np

(
(
√

n+√p)2 − Sn,p

)
.(4.6)
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See Part I for detailed heuristics behind the scaling; written in this way, it allows
that p,n→∞ together arbitrarily, that is, only n ∧ p →∞. It is useful to note
that

2−2/3(n∧ p)1/3 ≤mn,p ≤ (n∧ p)1/3.

Decompose Hn,p as in (3.2), (3.3). The upper-left block is

H̃ =m2 +m(W + Y1;0)= 2m2 − m2

√
np

(
S̃0 − n− p+ L̃

†
0(�̃ − 1)L̃0

)
.

As before we want W to absorb the extra m2 and the perturbation in order to make
Y1;0 small. Now the perturbation term is random, but it does not have to be fully
absorbed; it is enough that Y1;0 → 0 in probability. The reason is that the process
Y1 can absorb an overall additive random constant that tends to zero in probability,
as is clear in Assumption 1 while in Assumption 2 the constant may be put into
ω1. Since L̃0 ≈√n, we set

Wn,p =mn,p

(
1−√

n/p(�̃n,p − 1)
)
.(4.7)

Once again, Assumption 3 follows immediately from the hypotheses of Theo-
rem 1.3.

We must still deal with the perturbed term in Y1;0 and show that

m√
np

(
n�̃ − L̃

†
0�̃L̃0

)→ 0(4.8)

in probability. We defer this to the end of the proof of Assumption 1, to which we
now turn. As in the Gaussian case, Y is given by (4.1).

PROOF OF (3.4), WISHART CASE. By the preceding paragraph it suffices to
treat the null case � = I and afterward check (4.8). Define processes yk,l for 1≤
l ≤ r and l ≤ k ≤ l + r by (4.2) as in the Gaussian case. From (2.6) with the
centering and scaling of (4.6) and (3.3), we obtain

δyk,l;j = m√
np

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+ p− 1

β

(
χ̃2

(n−k−rj+1)β + χ2
(p−k−r(j+1)+1)β

)+O(1),

k = l,

− 1√
β

(
χ̃(n−k−rj+1)βgk+rj,l+rj

+ χ(p−l−r(j+1)+1)βg∗l+r(j+1),k+rj

)+O(1),

l < k < l + r,
√

np− 1

β
χ̃(n−k−rj+1)βχ(p−k−rj+1)β, k = l + r,

where the O(1) terms stand in for the interior Gaussian sums of (2.6), all of whose
moments are bounded uniformly in n,p. Since m1+k/(np)k/2 ≤m1−2k = o(1) for
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k ≥ 1, these terms are negligible in the scaling of Proposition 4.1 in the sense that
the associated processes converge to the zero process. Next, use that expressions of
type χn −√n are O(1) in the same sense, and that

√
n−√n− j =O(j/

√
n)=

O(m/
√

n) = o(1) since we consider j/m bounded here (and similarly for p), to
write

δyk,l;j = m√
np

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2√
β

(√
n(
√

βn− χ̃(n−k−rj+1)β)

+√p(
√

βp− χ(p−k−r(j+1)+1)β)
)+O(1),

k = l,

−√ngk+rj,l+rj −√pg∗l+r(j+1),k+rj +O(1),

l < k < l + r,
1√
β

(√
p(
√

βn− χ̃(n−k−rj+1)β)

+√n(
√

βp− χ(p−k−rj+1)β)
)+O(1),

k = l + r.

(4.9)

It suffices to prove tightness and convergence in distribution along a subse-
quence of any given subsequence, and we may therefore assume that p/n→ γ 2 ∈
[0,∞]. Each case of (4.9) contains two terms, and each one of these terms forms
an independent increment process to which Proposition 4.1 may be applied. (Break
the F-valued terms up further into their real-valued parts.) Standard moment com-
putations as in the Gaussian case, together with independence, then lead to the
joint convergence of processes

yk,l(x)⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

√
2

β

(
1

1+ γ
b̃k(x)+ γ

1+ γ
bk(x)

)
+ γ

(1+ γ )2 rx2,

k = l,
1

1+ γ
bk,l(x)+ γ

1+ γ
b∗l+r,k(x), l < k < l + r,

1√
2β

(
γ

1+ γ
b̃k(x)+ 1

1+ γ
bk(x)

)
+ 1+ γ 2

4(1+ γ )2 rx2,

k = l + r,

where bk, b̃k are standard real Brownian motions and bk,l are standard F Brownian
motions, all independent except that bk+r,l+r and bk,l are identified. Therefore,
Yn,i are both tight. Furthermore, using (4.3) we have

(
Yn,1 + 1

2

(
Y

†
n,2 + Yn,2

))
k,l =

⎧⎨⎩
yk,k + 2yk+r,k,

yk,l + y∗l+r,k,

y∗l,k + yk+r,l

⇒

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
2

β
(b̃k + bk)+ 1

2
rx2, k = l,

bk,l + b∗l+r,k, k > l,

b∗l,k + bk+r,l, k < l
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jointly for 1 ≤ k, l ≤ r . After the dust clears, we thus arrive at exactly the same
limiting process as in the Gaussian case, namely (4.1).

We now address (4.8). Here, we can replace L̃0 with
√

nIr at the cost of an
error that has uniformly bounded second and fourth moments. Now (4.7) and the
assumed lower bound on Wn,p give that �̃ ≤ 1+2

√
p/n for n,p large; this matrix

inequality holds entrywise in the diagonal basis for �̃ (which was fixed over n,p).
One therefore obtains error terms with mean square O(m2/n+m2/p)=O(m−1)

which is o(1) as required. �

Turning to Assumption 2, we may continue the processes Yn,i past the end of the
matrix for convenience just as in the Gaussian case. The Wishart case presents an
additional issue at the “end” of the matrix: recall that the final r rows and columns
of S in (2.6) may have some apparently nonzero terms set to zero. However, these
changes are easily absorbed into the bounds that follow. For (3.5), we once again
take ηn,i to be the expectation of �Yn,i and �ωn,i to be its centered version. We
also set η(x)= rx as before.

PROOF OF (3.6)–(3.8), WISHART CASE. This time we have

(ηn,1;j )k,l = Emδyk,l;j =m2(np)−1/2(2rj − r + 1)1k=l ,

(ηn,2;j )k,l = E2mδyk+r,l;j
= 2m2(1− β−1(np)−1/2Eχ̃(n−k−rj+1)βχ(p−k−rj+1)β

)
1k=l .

Using (4.5) one finds, for some constant c, that

m−1(rj + c)≤ (ηn,1;j + ηn,2;j )k,k ≤m−1(2rj + c)

which yields (3.6) with η(x) = rx. Separately, we have the upper bound (3.7).
The oscillation bound (3.8) may be proved exactly as in the Gaussian case: we
have once again that {√mn(ωn,i;j )k,l}j∈Z+ are martingales with independent in-
crements whose fourth moments are uniformly bounded. �

5. Alternative characterizations of the laws. In this section, we derive the
SDE and PDE characterizations, proving Theorems 1.5 and 1.6.

5.1. First-order linear ODE. For each noise path Bx , the eigenvalue equation
Hβ,Wf = λf can be rewritten as a first-order linear ODE with continuous coeffi-
cients. We begin with the formal second-order linear differential equation

f ′′(x)= (
x − λ+√2B ′

x

)
f (x),(5.1)

where f :R+→ F
r , with initial condition

f ′(0)=Wf (0).(5.2)
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As usual, we allow W ∈M∗
r (F) and interpret (5.2) via (3.13). Rewrite (5.1) in the

form (
f ′ −√2Bf

)′ = (x − λ)f −√2Bf ′.

Now let g = f ′ −√2Bf . The equation becomes

g′ = (x − λ)f −√2Bf ′

= (
x − λ− 2B2)f −√2Bg.

In other words, the pair (f (x), g(x)) formally satisfies the first-order linear system[
f ′
g′
]
=
[ √

2B 1
x − λ− 2B2 −√2B

][
f

g

]
.(5.3)

Since B0 = 0, g simply replaces f ′ in the initial condition (5.2). If one prefers, this
condition can be written in the standard form

−W̃f (0)+ Ĩ g(0)= 0,(5.4)

where W̃ =∑
i≤r0

wiuiu
†
i +

∑
i>r0

uiu
†
i and Ĩ =∑

i≤r0
uiu

†
i .

One could allow general measurable coefficients and define a solution to be a
pair of absolutely continuous functions (f, g) satisfying (5.3) Lebesgue a.e. This
definition, equivalent to writing (5.3) in an integrated form, is easily seen to co-
incide with (3.18). As in Remark 3.5, however, we note the coefficients are con-
tinuous; solutions may therefore be taken to satisfy (5.3) everywhere and are in
fact continuously differentiable. It is classical that the initial value problem has a
unique solution which exists for all x ∈ R+ (and further depends continuously on
the parameter λ and the initial condition W ).

5.2. Matrix oscillation theory. The matrix generalization of Sturm oscillation
theory goes back to the classic work of Morse Morse (1932) [see also Morse
(1973)]. Textbook treatments of self-adjoint differential systems include that of
Reid (1971). Our reference will be the paper of Baur and Kratz (1989), which
allows sufficiently general boundary conditions.

We first consider the eigenvalue problem on a finite interval [0,L] with Dirich-
let boundary condition f (L)= 0 at the right endpoint. In the scalar-valued setting,
the number of eigenvalues below λ is found to coincide with the number of zeros
of f (the solution of the initial value problem) that lie in (0,L). The correct gen-
eralization to the matrix-valued setting involves tracking a matrix whose columns
form a basis of solutions, and counting the so-called “focal points”.

We need a little terminology and a few facts from Baur and Kratz (1989), espe-
cially Definition 1 on page 338 there and the points that follow. A matrix solution
of (5.3) is a pair F,G : R+ → F

r×r such that each column of
[ F
G

]
is a solution.

A conjoined basis for (5.3) is a matrix solution (F,G) with the additional prop-
erties that F †G = G†F and rank

[ F
G

] = r . The latter properties hold identically
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on R+ as soon as they do at a single point; in particular, we may set F(0) = Ĩ

and G(0) = W̃ to obtain a conjoined basis for the initial condition (5.4). A point
x ∈R+ is called a focal point if F(x) is singular, of multiplicity nullityF(x). The
following proposition summarizes what we need from the more general results of
Baur and Kratz (1989).

PROPOSITION 5.1. Consider the differential system[
f ′
g′
]
=
[

A B

C −C0λ −A†

][
f

g

]
with real parameter λ, where A(x),B(x),C(x),C0(x) are n × n matrices de-
pending continuously on x ∈R with B,C,C0 Hermitian and B,C0 > 0. For each
λ ∈R, let (F,G) be a conjoined basis with some fixed initial condition at 0. Con-
sider also the associated eigenvalue problem on [0,L] with the same boundary
condition at 0 and Dirichlet condition f = 0 at L. Then, for all λ ∈ R, the num-
ber of focal points of (F,G) in (0,L) equals the number of eigenvalues below λ.
Furthermore, the spectrum is purely discrete and bounded below with eigenvalues
tending to infinity.

PROOF. The idea is that focal points are isolated and move continuously to the
left as λ increases. For sufficiently negative λ, there are no focal points on (0,L];
each time λ passes an eigenvalue, a new focal point is introduced at L.

We indicate how the proposition follows from the results of Baur and Kratz
(1989). Note that Conditions (A1), (A2) on page 337 are satisfied by our coeffi-
cients, and that (A3) on page 340 is satisfied by our boundary conditions. Theo-
rem 1 on page 345 thus applies. See (3.5) on page 341 for the definition of �(λ);
the Dirichlet condition at L gives the particularly simple result that the right-hand
side of (4.1) vanishes, so the quantity n2(λ) is constant. Theorem 2 applies as well,
and we obtain n1(λ) − n1 = n3(λ). Here, n1(λ) is the number of focal points in
[0,L), n1 = limλ→−∞ n1(λ) and n3(λ) is the number of eigenvalues below λ. To
finish, we consult Theorem 3 on page 353; noting that (A4′) is satisfied by Sec-
tion 7.2, page 365, to find that n1 is simply the multiplicity of the focal point at 0.
The oscillation result follows. For the assertion about the spectrum, we apply The-
orem 4, noting that (A5), page 358 holds by (i) there, and (A6), page 359 also
holds. �

We conclude the following for our matrix system.

LEMMA 5.2. Consider the eigenvalue problem (5.3) on [0,L] with boundary
conditions (5.4) and f (L)= 0. For each λ ∈ R, let (F,G) be the conjoined basis
initialized by F(0) = Ĩ and G(0) = W̃ ; then the number of focal points in the
interval (0,L), counting multiplicity, equals the number of eigenvalues below λ.
Furthermore, the spectrum is purely discrete and bounded below with eigenvalues
tending to infinity.
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A soft argument now recovers an oscillation theorem for the original half-line
problem.

THEOREM 5.3. Consider the eigenvalue problem (5.3), (5.4) on L2(R+). For
each λ ∈ R, let (F,G) be the conjoined basis as above; then the number of focal
points in (0,∞) equals the number of eigenvalues strictly below λ.

PROOF. Let �L,k,�k , k = 0,1, . . . denote the lowest eigenvalues of the
truncated and half-line operators HL,H, respectively; it suffices to show that
limL→∞�L,k =�k for each k. Indeed, taking L→∞ in Lemma 5.2 then yields
the conclusion for each λ ∈R\{�0,�1, . . .}. Letting λ↘�k , the right-most focal
point must tend to ∞ by monotonicity and continuity, so the claim actually holds
for all λ ∈R.

The variational problem for HL simply minimizes over the subset of L∗ func-
tions that vanish on [L,∞); the Dirichlet condition is important here. It fol-
lows immediately that �L,k ≥ �k , using the min–max formulation of the vari-
ational characterization. Proceed by induction, assuming that �L,j → �L for
j = 0, . . . , k− 1.

Let fL,j be orthonormal eigenvectors corresponding to �L,j . By the induction
hypothesis, the variational characterization for H and the finite-dimensionality of
its eigenspaces, every subsequence has a further subsequence such that fL,j →L2

fj , eigenvectors corresponding to �j . Let fk be an orthogonal eigenvector corre-
sponding to �k and take f ε

k compactly supported with ‖f ε
k − fk‖∗ < ε. Let

gL = f ε
k −

k−1∑
j=0

〈
f ε

k , fL,j

〉
fL,j .

For large L, the inner products are at most 2ε, so ‖gL− fk‖∗ ≤ cε. Noting that gL

is eventually supported on [0,L], the variational characterization gives

lim sup
L→∞

�L,k ≤ lim sup
L→∞

H(gL, gL)

〈gL,gL〉
and the right-hand side tends to H(fk, fk)/〈fk, fk〉 =�k as ε→ 0. �

5.3. Riccati SDE: Stochastic airy meets dyson. Let (F,G) be a conjoined ba-
sis for (5.3) as defined in the previous subsection. Then, on any interval with no
focal points, the matrix Q=GF−1 is self-adjoint and satisfies the matrix Riccati
equation

Q′ = rx − λ− (Q+√2B)2(5.5)

[see page 338 of Baur and Kratz (1989)].
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As x passes through a focal point x0, an eigenvalue q of Q “explodes to −∞
and restarts at +∞”. The precise evolution of Q near x0 can be seen by choosing
a ∈R so that Q̃= (Q− a)−1 = F(G− aF)−1 is defined; then Q̃ satisfies

Q̃′ = (
1+ Q̃(

√
2B + a)

)(
1+ (

√
2B + a)Q̃

)− (x − λ)Q̃2.(5.6)

Writing q̃ = 1/(q − a) and v for the corresponding eigenvector, notice how

q̃ ′(x0)= v(x0)
†Q̃′(x0)v(x0)= 1.

Thus, q̃ is “pushed up through zero”, corresponding to the explosion/restart in
q = 1/q̃ + a. In this way, we may consider Q(x) ∈M∗

r (F) to be defined for all x.
The initial condition is then simply Q(0)=W .

Now let P = F ′F−1. While P = Q + √2B is not differentiable, by (5.5) it
certainly satisfies the integral equation

Px2 − Px1 =
√

2(Bx2 −Bx1)+
∫ x2

x1

(
ry − λ− P 2

y

)
dy

if [x1, x2] is free of focal points. In other words, P is a strong solution of the Itô
equation

dPx =
√

2dBx + (
rx − λ− P 2

x

)
dx(5.7)

off the focal points. The evolution of P through a focal point can be described in
the coordinate P̃ = (P −a)−1 = F(F ′ −aF)−1. Using (5.6) and Itô’s lemma, one
could write down an SDE for P̃ = Q̃(1+√2BQ̃)−1. The initial condition here is
also P(0)=W .

Consider the eigenvalues p1, . . . , pr of P . The main point is that the drift
term in (5.7) is unitarily equivariant and passes through the usual derivation of
Dyson’s Brownian motion [Dyson (1962)]. The eigenvalues therefore evolve as an
autonomous Markov process.

To describe the law on paths we need a space, and there are two issues: it will
be necessary to keep the eigenvalues ordered but also allow for explosions/restarts.
We therefore define a sequence of Weyl chambers Ck ⊂ (−∞,∞]r by

C0 = {p1 < · · ·< pr},
C1 = {p2 < · · ·< pr < p1},
C2 = {p3 < · · ·< pr < p1 < p2}

and so on, permuting cyclically. We glue successive adjacent chambers together
at infinity in the natural way to make the disjoint union C = C0 ∪ C1 ∪ . . . into a
connected smooth manifold. That is, taking p1 →−∞ in C0 puts you at p1 =+∞
in C1; the smooth structure is defined by the coordinate p̃1 = 1/p1, which vanishes
along the seam. Glue Ck−1 to Ck similarly along {pk mod r =∞}. We also define
Ck , C in which some coordinates may be equal, and ∂Ck = Ck \Ck , ∂C = C \ C in
which some coordinates are equal.
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THEOREM 5.4. Represent the eigenvalues of W ∈ M∗
r (F) as w = (w1 . . . ,

wr) ∈ C0. The eigenvalues p = (p1, . . . , pr) of P evolve as an autonomous
Markov process whose law on paths R+ → C is the unique weak solution of the
SDE system

dpi = 2√
β

dbi +
(
rx − λ− p2

i +
∑
j �=i

2

pi − pj

)
dx(5.8)

with initial condition p(0) = w, where b1, . . . , br are independent standard real
Brownian motions. An eigenvalue pi can explode to−∞ and restart at+∞, mean-
ing p crosses from Ck to Ck+1; the evolution through an explosion is described in
the coordinate p̃i = 1/pi , which satisfies

dp̃i =− 2√
β

p̃2
i dbi +

(
1+

(
λ− rx +∑

j �=i

2p̃i p̃j

p̃i − p̃j

)
p̃2

i +
4

β
p̃3

i

)
dx.(5.9)

PROOF. Deriving (5.8) from (5.7) is simply a matter of applying Itô’s lemma,
at least in C where the eigenvalues are distinct. One needs to differentiate an eigen-
value with respect to a matrix, and this information is given by Hadamard’s vari-
ation formulas. In detail, let A ∈Mr(F) vary smoothly in time and suppose A(0)

has distinct spectrum. Then eigenvalues λ1, . . . , λr of A and corresponding eigen-
vectors v1, . . . , vr vary smoothly near 0 by the implicit function theorem. Differ-
entiating Avi = λivi and v

†
i vi = 1 lead to the formulas

λ̇i = v
†
i Ȧvi, λ̈i = v

†
i Ävi + 2

∑
j �=i

|v†
i Ȧvj |2

λi − λj

.

Writing X = Ȧ(0) and ∇X for the directional derivative, and taking v1(0), . . . ,

vr(0) to be the standard basis, we find

∇Xλi =Xii, ∇2
Xλi = 2

∑
j �=i

|Xij |2
λi − λj

.

Returning to (5.7), at each fixed time x we can change to the diagonal basis for Px

because the noise term is invariant in distribution and the drift term is equivariant.
Itô’s lemma amounts to formally writing dpi = ∇dP pi + 1

2∇2
dP pi and using that

dBii are jointly distributed as
√

2/β dbi for i = 1, . . . , r while |dBij |2 = dt for
j �= i. We thus arrive at (5.8).

Recall that the evolution of P through a focal point is still described by an SDE,
after changing coordinates. The same is therefore true of p through an explosion;
the form (5.9) is obtained from (5.8) by an application of Itô’s lemma.

Just as with the usual Dyson’s Brownian motion, the pi are almost surely dis-
tinct at all positive times: p(x) ∈ C for all x > 0. One can show this “no colli-
sion property” holds for any solution of (5.8), (5.9), even with an initial condition
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p(0) ∈ ∂C0. (Technically, one defines an entrance law from ∂C by a limiting proce-
dure.) Since the coefficients are regular inside C, this suffices to prove uniqueness
of the law. See Anderson, Guionnet and Zeitouni (2010), Section 4.3.1 for a de-
tailed proof in the driftless case. �

PROOF OF THEOREM 1.5. Explosions of p as in Theorem 5.4 correspond to
focal points of F for each λ. By Theorem 5.3, the total number of explosions K is
equal to the number of eigenvalues strictly below λ. (Notice that p ends up in CK .)
For a fixed λ, translation invariance of the driving Brownian motions bi allows one
to shift time x �→ x − λ/r and use (1.3) started at x0 =−λ/r . Putting a =−λ we
have P(−�k ≤ a)= P(�k ≥ λ)= Pa/r,w(K ≤ k) as required. �

5.4. PDE and boundary value problem. We now prove the PDE characteriza-
tion, Theorem 1.6. We will need two properties of the eigenvalue diffusion.

LEMMA 5.5. Let p : [x0,∞)→ C have law Px0,w as in (1.3) and let K be the
number of explosions. Then the following hold:

(i) Given x0, k, Px0,w(K ≤ k) is increasing in w with respect to the partial order
w≤w′ given by wi ≤w′

i , i = 1, . . . , r .
(ii) Px0,w-almost surely, p1, . . . , pr remain bounded below in CK (after the last

explosion), or equivalently in C0 on the event {K = 0}.

PROOF. Part (i) is a consequence Theorem 1.5 and Remark 1.1, the pathwise
monotonicity of the eigenvalues �k as a function of the boundary parameter W

with respect to the usual matrix partial order. It can also be seen from the related
fact that the matrix partial order is preserved pathwise by the matrix Riccati equa-
tion (5.7), which implies that a solution started from W explodes no later than one
started from W ′ ≥ W . This fact holds for the P evolution if it holds for the Q

evolution (5.5), and for the latter it is Theorem IV.4.1 of Reid (1972).
Part (ii) follows from the stronger assertion that pi ∼ √rx as x →∞. In the

r = 1 case, this is Proposition 3.7 of RRV. Heuristically, the single particle drift
linearizes at the stable equilibrium

√
rx to 2

√
rx(
√

rx −pi); even with the repul-
sion terms one expects fluctuations of variance only C/

√
x. We omit the proof.

�

PROOF OF THEOREM 1.6. Assume the diffusion representation of Theo-
rem 1.5 for Fβ(x;w) = P(−�0 ≤ x) on R× C0. We first show F = Fβ has the
asserted properties and afterward argue uniqueness. Writing L for the space-time
generator of (1.3), the PDE (1.6) is simply the equation LF = 0 after replacing x

with x/r . In other words, it is the Kolmogorov backward equation for the hitting
probability (1.4) (more precisely, the probability of never hitting {w1 = −∞}),
which is L-harmonic. This extends to wr = +∞ by using the local coordinate
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there; from (5.9) one sees that the coefficients remain regular. Although the diffu-
sivity vanishes at wr =+∞, the drift does not, and it follows that F is continuous
up to wr = +∞. The PDE holds even at points w ∈ ∂C0 with appropriate one-
sided derivatives; notice that the apparent singularity in the “Dyson term” of the
PDE is in fact removable for F regular and symmetric in the wi . [For a toy ver-
sion, consider a function f : R→ R that is twice differentiable and even; then f ′
is odd and f ′(w)/w is continuous with value f ′′(0) at w = 0. These functions
form the domain of the generator of the Bessel process on the half-line {w ≥ 0}
in the same way that symmetric functions form the domain of the generator of
Dyson’s Brownian motion on a Weyl chamber.] Finally, the picture can be copied
to w ∈ (−∞,∞]r by symmetry, permuting the wi .

The boundary condition (1.7) follows from the monotonicity property of
Lemma 5.5(i). For fixed w, F(x;w)→ 1 as x →∞ because it is a distribution
function in x; by monotonicity in w, the convergence is uniform over a set of
w bounded below. To understand the boundary condition (1.8) (using w1 in C0),
change to the coordinate w̃1 = 1/w1 and close the domain to include the “bot-
tom boundary” {w1 =−∞}. Then (1.8) becomes an ordinary Dirichlet condition.
While the diffusivity vanishes on this boundary, the drift is nonzero into the bound-
ary. The hitting probability is therefore continuous up to the boundary.

For Fk , there is the following more general picture. Consider the PDE in C0 ∪
· · · ∪ Ck , defined across the seams by changing coordinates as in (5.9). Put the
boundary condition (1.7) on all the chambers and (1.8) on the bottom of Ck . Then
the solution is Fk in C0; the reason is the same as for F = F 0, but now using (1.5)
and the hitting event “at most k explosions”. Similarly, the solution is Fk−1 in C1
and so on down to F 0 in Ck . Continuity holds across the seams and (1.9) follows
after permuting coordinates.

Toward uniqueness, suppose F̃ is another bounded solution of the boundary
value problem (1.6)–(1.8) on R×C0. With the notation of Theorem 1.5, F̃ (rx;px)

is a local martingale under Px0,w by the PDE (1.6). It is therefore a bounded
martingale. Let ζ ∈ (x0,∞] be the time of the first explosion; optional stopping
gives F̃ (rx0;w) = Ex0,wF̃ (r(ζ ∧ x);pζ∧x) for all x ≥ x0. Taking x →∞, we
conclude by bounded convergence, the boundary behaviour (1.7), (1.8) of F̃ and
Lemma 5.5(ii) that F̃ (rx0,w)= Px0,w(ζ =∞). By Theorem 1.5, this probability
is Fβ(rx0,w). One argues similarly for the higher eigenvalues. �

6. Connection with Painlevé II. In Part I, we used the PDE characterization
to give new proofs of certain Painlevé II formulas for the single-parameter (rank
one deformed) distribution functions Fβ(x;w) in the cases β = 2,4, in particu-
lar recovering the Painlevé II representations for the corresponding undeformed
Tracy–Widom distributions by taking w →∞. The Painlevé formulas appeared
originally in Baik and Rains (2000, 2001) in a different context; in the random
matrix theory setting, Baik (2006) derived them from the BBP result in the case
β = 2 but they are new for β = 4 when w �= 0 [see Wang (2008)].
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Baik (2006) also derives a Painlevé II formula for the multi-parameter distribu-
tion function F2(x;w1, . . . ,wr). While we do not have a full independent proof at
present, we used the computer algebra system Maple to verify symbolically that
it does indeed satisfy our PDE (1.6) at β = 2 for r = 2,3,4,5. Since this article
was first posted, a pencil-and-paper proof for all r was found [Bloemendal and
Baik (2013)]. We first state Baik’s formula and then briefly describe the symbolic
computation.

Let u(x) be the Hastings–McLeod solution of the homogeneous Painlevé II
equation

u′′ = 2u3 + xu,(6.1)

characterized by

u(x)∼Ai(x) as x →+∞,

where Ai(x) is the Airy function. Put

v(x)=
∫ ∞
x

u2,(6.2)

E(x)= exp
(
−
∫ ∞
x

u

)
, F (x)= exp

(
−
∫ ∞
x

v

)
.(6.3)

Next, define two functions f (x,w), g(x,w) on R
2, analytic in w for each fixed x,

by the first- order linear ODEs

∂

∂w

(
f

g

)
=
(

u2 −wu− u′
−wu+ u′ w2 − x − u2

)(
f

g

)
(6.4)

and the initial conditions

f (x,0)=E(x)= g(x,0).

Equation (6.4) is one member of the Lax pair for the Painlevé II equation. The
other member of the pair is

∂

∂x

(
f

g

)
=
(

0 u(x)

u(x) −w

)(
f

g

)
,(6.5)

which holds for each fixed w ∈ R. The consistency condition for the over-
determined system (6.4), (6.5) (i.e., that the partials commute) is the Painlevé II
equation (6.1). The functions f,g can also be defined in terms of an associated
Riemann–Hilbert problem [see, e.g., Baik (2006)].

Baik’s formula is

F2(x;w1, . . . ,wr)= F(x)
det((wi + ∂/(∂x))j−1f (x,wi))1≤i,j≤r∏

1≤i<j≤r (wj −wi)
.(6.6)

Our symbolic verification for small values of r consisted of the following steps.
The differential relations given by (6.1)–(6.5) were encoded as formal substitu-
tion rules. The determinant in (6.6) was expanded (this step becomes problematic
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for larger r . . . !) and the result plugged into our PDE (1.6). The substitution rules
were then applied repeatedly. Finally, the result was factored using Maple’s built-in
command. Each time, the output contained the factor

v+ u4 − (
u′
)2 + xu2,

which vanishes identically: differentiate and apply (6.1) to see it is constant, and
take x →∞ to see the constant is zero.
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