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LIMITS OF VERTEX ALGEBRAS AND LARGE N FACTORIZATION

THOMAS GEMÜNDEN AND CHRISTOPH A. KELLER

Abstract. We investigate the limit of sequences of vertex algebras. We discuss under what condition
the vector space direct limit of such a sequence is again a vertex algebra. We then apply this framework
to permutation orbifolds of vertex operator algebras and their large N limit. We establish that for

any nested oligomorphic permutation orbifold such a large N limit exists, and we give a necessary
and sufficient condition for that limit to factorize. This helps clarify the question of what VOAs are
candidates for holographic conformal field theories in physics.

1. Introduction

In this article, we investigate the limit of sequences of Vertex Operator Algebras (VOA) and Vertex
Algebras (VA). We address the question under what circumstances the graded vector space direct limit
of such a sequence is again a VA. We find that this is decided by convergence of the structure constants.
We then use this mathematical framework to address questions about existence and uniqueness of VA
limits, and prove several physics conjectures about limits of permutation orbifold VOAs.

To construct a VA limit, we consider a sequence (V N )N∈N of VAs together with connecting maps
fMN : V M → V N . We construct the vector space of the limit VA as the graded vector space direct limit
of that sequence. However, we do not want to require the connecting maps to be VA homomorphisms.
This means that we cannot simply work in the category of VAs and define the limit VA as the direct VA
limit of the sequence; instead, we will have to construct the state-field map of the limit VA by hand.

The motivation to study limits of VOAs comes partly from physics. Let us therefore briefly explain
their role in physics, and also explain why we are interested in connecting maps that are not VA homo-
morphisms. In physics, VOAs describe Conformal Field Theories (CFT) in two dimensions. They find a
particularly interesting application in the AdS/CFT correspondence [Mal98,AGM+00]. This correspon-
dence conjecturally maps theories of quantum gravity to certain types of CFTs, or, more precisely, to
the limits of families of CFTs. In the original instance of the conjecture, the CFTs are described by the
Lie group SU(N), and the limit N → ∞ is taken, so that the central charge diverges. For this reason
such limits are often called large N limits or large central charge limits. As the central charge of two
VOAs in the sequence is different, it is clear that the fMN are not VOA homomorphisms. Usually, they
are not VA homomorphisms either. For instance, as we discuss in the second part of this article, often
the limit VA has a very special property: it factorizes, even though the members of the family do not
factorize. The limit is thus not homomorphic to the VAs in the sequence, and the connecting maps fMN

are not VA homomorphisms either.
As mentioned above, our main interest is the limit of VOAs. However, it turns out that the limit VA

is often no longer a VOA. For this reason, we find it most appropriate to work with grading-restricted
VAs [Hua14] rather than VOAs.

A (grading-restricted) vertex algebra has two main ingredients: a graded vector space V , and a state-
field map (or vertex operator map) Y [Kac98, LL04]. Constructing the limit VA V ∞ from the family
(V N )N∈N thus involves two steps. The first step is to construct its graded vector space V ∞. This is
relatively straightforward: We choose connecting maps fMN : VM → V N , and then define V ∞ to be the
direct limit of the system (V N , fMN ). The role of the connecting map is to define how the vectors in the
different V N are related. To ensure that V ∞ is still grading-restricted, we need to impose some additional
conditions on the connecting maps and on the vector spaces V N . The most important condition is that
the dimensions dimV N

(n) converge as N → ∞. We call a system that satisfies all these conditions a

grading-restricted direct system. Physicists call the numbers dimV(n) the spectrum, and would therefore

say that for this system “the spectrum of V N converges”.
Having constructed V ∞, the second step is to construct a state-field map Y∞ on it. This is harder

to do than the first step. As stressed above, we do not assume that the connecting maps fMN are VA
homomorphisms. That is, they are in general not compatible with the state field maps Y N . We thus
cannot simply define Y ∞ as coming from a direct limit of a VA-system (V N , Y N , fMN ). Instead, we
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are forced to define the state-field map Y ∞ by hand. No surprisingly, ensuring its existence requires
additional assumptions on the connecting maps.

In our approach, we describe state-field maps Y through their structure constants Cabc,

Y (b, z)c =
∑

a∈Φ

zwt(a)−wt(b)−wt(c)Cabca , (1.0.1)

that is the matrix elements of Y (b, z) with respect to some homogeneous basis Φ. We then define the
structure constants of Y∞ as the limit of the structure constants of the V N ,

C∞
abc := lim

N→∞
CN

abc . (1.0.2)

Crucially, we then need to ensure that the state-field map Y∞ defined in this way satisfies the axioms of
a VA. Our first main result, theorem 2.3, is that Y∞ indeed satisfies the Borcherds identity, as long as
all structure constants converge:

Theorem. The direct limit of a grading-restricted direct system of VAs is a grading-restricted VA,
provided all structure constants converge.

Physicists would phrase this condition as “all three point functions of V N converge”. The proof of
this result uses the fact that we are working with grading-restricted VAs. It is possible to repeat our
approach for VAs that are not grading-restricted, but it is then harder to establish that the state-field
map exists and satisfies the VA axioms. Indeed, we give an example that has a VA-limit that is not
grading-restricted in section 3.

We mentioned above that we are primarily interested in the case where the V N are VOAs. In that
case, the limit we consider is usually a large central charge limit, meaning the central charge of V N

diverges as N → ∞. The limit VA V ∞ therefore does not contain a copy of the Virasoro algebra,
and is thus not a VOA. It is however still a Möbius VA: that is, the Lie algebra sl(2,C) generated by
L(0), L(1), L(−1) survives the limit. Moreover, if the V N are unitary, and the connecting maps are
compatible with that unitary structure, then V ∞ is also unitary. Such large central charge limits of
unitary VOAs are probably the case of most interest in physics.

In the second part of this article we use our framework to prove certain physics conjectures; for this
we focus on the special cases of permutation orbifold VAs. These conjectures have to do with existence
and uniqueness of the VA limit. For instance, given a sequence of VAs, it is necessary to specify the
connecting maps fMN in order to define its limit. However, there is a belief in physics that the choosing
connecting maps does not a very important role in constructing the limit VA. On the one hand, given a
family V N that has an appropriate limit as a graded vector space, it should be possible to find connecting
maps which give convergent structure constants, leading to a consistent limit VA: in physics language,
if the spectrum converges, then the three point functions almost automatically also converge. On the
other hand, it is also believed that if there are two different choices of connecting maps for which the
limit exists, then the resulting limit VAs should be isomorphic.

Mathematically, it is clear that these beliefs cannot hold in the generality stated above. To turn
them into conjectures, we need to impose some further assumptions beyond the existence of the direct
limit; physicists’ belief is simply that these additional assumptions are relatively minor. For instance
we cannot expect the structure constants CN

abc to converge automatically if the spectrum converges: a
sequence V N that alternates between two VAs of identical spectrum but different structure constants
(such as the E8×E8 and the SO(32) lattice VOAs) will have non-convergent structure constants, giving
an immediate counterexample to the first belief. A better conjecture that actually has a chance of being
true is that instead the structure constants remain bounded as N →∞. This weaker statement is usually
enough for physicists, since then we can pick a convergent subsequence of V N to get a limit VA.

We do indeed prove this weaker form of the conjecture for the case of permutation orbifolds. In
section 4 we introduce permutation orbifold VAs [KS90,DMVV97,BHS98,Ban98]. Here, a permutation
orbifold is what we call the fixed point sub-VA of an N -fold tensor product of a given VA under the action
of a permutation group GN . Based on previous investigations in the physics literature [LM01,BKM15,
HR15,BKM16], we established in [GK21] that the VA limit of permutation orbifolds exists, provided they
satisfy a property we called nested oligomorphic. That previous construction of the limit VA however
was rather ad-hoc. In the language of this article, the nested oligomorphic condition guarantees that the
permutation orbifolds form a grading-restricted system.

Such permutation orbifolds are an important example of large N limits, and we establish several
results. The first main result, theorem 4.6, is that the structure constants of any nested oligomorphic
permutation orbifold are bounded; by choosing suitable subsequences, it is thus always possible to find
a limit VA:
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Theorem. Given a sequence of nested oligomorphic permutation orbifolds of grading-restricted VAs of
CFT type, we can always find a subsequence that converges to a VA.

The second main result, discussed in section 6, has to do with factorization in the large N limit.
We say a VA factorizes if it has a set of generators so that the commutator of the modes of any two
generators only contain the identity operator. Such VAs are well-known in physics, as they allow to
compute any correlation functions using Wick contractions. In particular, VOAs that appear in the
AdS/CFT correspondence are expected to factorize in the large N limit. In theorem 6.4 we establish a
necessary and sufficient criterion for largeN factorization of oligomorphic permutation orbifolds involving
the behavior of orbits:

Theorem. The VA-limit of nested oligomorphic permutation orbifolds of grading-restricted VAs of CFT
type factorizes if and only if the permutation orbifolds have no finite orbits.

Acknowledgments: We thank Klaus Lux for useful discussions. TG thanks the Department of Math-
ematics at University of Arizona for hospitality. The work of TG was supported by the Swiss National
Science Foundation Project Grant 175494. The work of CAK is supported in part by the Simons Foun-
dation Grant No. 629215 and by NSF Grant 2111748.

2. Large N limits of vertex algebras

2.1. Grading-restricted vertex algebras.

There are several different equivalent choices for the axioms of vertex algebras, stressing different
aspects such as locality, associativity or commutativity [LL04]. For our purposes we find the following
definition the most useful, which stresses Borcherds’ identity [Bor86]:

Definition 2.1. A vertex algebra (V, |0〉, Y ) is a vector space V with a distinguished non-zero vector |0〉
(vacuum vector) with a linear map Y (state-field map)

Y : V → End(V )[[z, z−1]] a 7→ Y (a, z) =
∑

n∈Z

anz
−n−1 (2.1.1)

such that for all v ∈ V a(n)v = 0 if n is large enough (meaning Y (a, z) is a field) satisfying

(1) Y (a, z)|0〉 = a+O(z) (creativity)
(2) Y (|0〉, z) = 1V

(3) Borcherds’ identity:

∞∑

j=0

(
m

j

)

(an+jb)m+k−jc =

∞∑

j=0

(−1)j
(
n

j

)

am+n−j(bk+jc)−
∞∑

j=0

(−1)j+n

(
n

j

)

bn+k−j(am+jc) for all k,m, n ∈ Z . (2.1.2)

See e.g. [Kac98] for how this implies other, maybe more commonly used axioms of a VA. In particular
note that when using this set of axioms, the commonly used translation operator T or L(−1) is defined
as Ta := a(−2)|0〉.

Motivated by physics, we are actually most interested in vertex operator algebras (VOAs) and their
large central charge limit. However, for reasons that will become clear, this limit is not a VOA. It is thus
more useful not to work in the framework of VOAs, but rather in the framework of grading-restricted
vertex algebras (see e.g. [Hua14]:

Definition 2.2. A grading-restricted vertex algebra is a vertex algebra (V, |0〉, Y ) whose vector space V
is Z-graded,

V =
⊕

n∈Z

V(n) , (2.1.3)

together with a linear map L(0) : V → V defined as L(0)v = nv for v ∈ V(n), satisfying

(1) V(n) = 0 if n is sufficiently negative, and dimV(n) < ∞ for all n ∈ Z (grading-restriction
condition)

(2)

[L(0), Y (v, z)] =
d

dz
Y (v, z) + Y (L(0)v, z)

for v ∈ V . (L(0)-bracket formula)
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Note that a vertex operator algebra (V, |0〉, Y, ω) is automatically a grading-restricted vertex algebra
with L(0) and L(−1) given by the usual modes of the Virasoro field Y (ω, z). If a ∈ V(n), we say a has
weight wta = n, and then an is homogeneous of weight −n+wta− 1.

2.2. The setup. Let us now set up the VA limit of a family of grading-restricted vertex algebras.

Definition 2.3. Let
(
V N
)

N∈N
be a sequence of grading-restricted vertex algebras together with a set

of injective connecting maps fMN : V M → V N for all M ≤ N satisfying

(1) fNK ◦ fMN = fMK for all M ≤ N ≤ K.
(2) fNN = 1V N for all N .
(3) The fMN preserve grading and the vacuum element.
(4) For fixed n ∈ Z, dimV M

(n) = dimV N
(n) for all sufficiently large M and N .

(5) There is an n̄ such that V N
(n) = 0 for n < n̄ for sufficiently large N .

We then call (V N , fMN ) a grading-restricted direct system.

A few remarks are in order:

(1) For such a grading-restricted direct system, define W∞ =
⊕

N∈N
V N , and ιN : V N → W∞

the canonical inclusion map. Let D ⊂ W∞ be the subspace generated by elements of the form
ιM (u)− ιN ◦ fMN (u) for any M ≤ N and u ∈ V M . We then define V ∞ to be the (linear) direct
limit of the system (V N , fMN ) given by

V ∞ = lim−→V N = W∞/D . (2.2.1)

(2) We also define fN to be the linear maps

fN : V N → V ∞ v 7→ [ιN (v)] , (2.2.2)

where [w] denotes the class of w ∈ W∞ in V ∞. The maps fN are injective by injectivity of the
fMN and satisfy fM = fN ◦ fMN for all M ≤ N .

(3) We insist that the connecting maps are injective. This is mainly for convenience, as it will make
it easier to work with bases later on.

(4) We say the homogeneous subspace V M
(n) is saturated if condition (4) holds for all N > M . In

particular, the homogeneous components f
(n)
MN : V M

(n) → V N
(n) are bijective if V M

(n) is saturated.

(5) Note that the connecting maps fMN do not need to be VA-homomorphisms. The system
(V N , fMN ) does therefore not define a direct limit in the category of VAs.

(6) For more on direct limits in the context of VOAs see for example [CMY22].

We mention two immediate lemmas:

Lemma 2.1. Any u ∈ V ∞ can be written as u = fN (v) with v ∈ V N for some N .

Proof. By construction, a general element u ∈W∞ can be written as

u =

I∑

i=1

ιMi (v
i), (2.2.3)

where ui ∈ V Mi for a set of integers {Mi}. This means that [u] ∈ V ∞ can be written as
∑I

i=1 fMi(v
i).

Taking N = max{Mi},

u =

I∑

i=1

fN(fMiN (vi)) = fN

[
I∑

i=1

fMiN (vi)

]

. (2.2.4)

�

We will often write u = fN (uN ) =: uN and suppress the fN , where equality in V ∞ is understood, call
uN the representative of u in V N . It is unique in V N because fN is injective.

Lemma 2.2. V∞ is graded by weights with finite-dimensional homogeneous subspaces.

Proof. V ∞ is graded because W∞ is graded and the fMN preserve the grading, so that quotienting by
D preserves the grading. Let ΦM :=

⋃

n Φ
M
n be a homogeneous basis of V M , that is ΦM

n a basis for V M
(n).

For a fixed n, let M be such that V M
(n) is saturated. By lemma 2.1, any vector u ∈ V ∞

(n) can be written

as fN (uN ) for some vector uN , where we can take N ≥M . Because the homogeneous components f
(n)
MN

are bijective, uN can be expressed as a linear combination of the vectors in f
(n)
MN (ΦM

n ), meaning that u
can be expressed as a linear combination in fM (ΦM

n ). Moreover, since the fM are injective, the vectors
fM (Φj

n) are linearly independent, so that Φn := fM (ΦM
n ) is indeed a finite basis of V ∞

(n). �
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It follows that

Φ :=
⋃

n

Φn (2.2.5)

with the Φn constructed as above is a homogeneous basis of V ∞. We will frequently use this basis in
what follows.

2.3. The restricted dual. It will be useful to work with the dual space of limit VAs. The dual space
(V ∞)∗ of V ∞ itself is given by the inverse limit of the system (V N , fMN ). For completeness, let us give
the standard definition and properties of this construction.

Let
(
V N
)∗

be the dual of V N . Define the surjective, dual connecting maps (bonding maps) f ′
MN :

(
V N
)∗ →

(
V M

)∗
for all M ≤ N by

〈f ′
MN (v′), u〉 = 〈v′, fMN (u)〉, (2.3.1)

for all v′ ∈
(
V N
)∗

and u ∈ V M , where we introduce the evaluation map 〈v′, u〉 := v′(u). Then for all
M ≤ N ≤ K the following relations hold

f ′
MN ◦ f ′

NK = f ′
MK . (2.3.2)

Definition 2.4. The inverse limit of the duals is defined by

lim←−
(
V N
)∗

= {v′ ∈
∞∏

M=1

(
V M

)∗ |v′M = f ′
MN (v′N ) for all M ≤ N}. (2.3.3)

For every M , there exists a canonical surjective map

πM : lim←−
(
V N
)∗ →

(
VM

)∗
, v′ 7→ v′M , (2.3.4)

such that

πM = f ′
MN ◦ πN , (2.3.5)

for all M ≤ N . The entry v′M is therefore the representative of v′ in (V M )∗.

There is a canonical (linear) isomorphism (V ∞)
∗ ∼= lim←−

(
V N
)∗
, with the canonical pairing given by

〈v′, u〉 = 〈v′N , uN〉 . (2.3.6)

Note this definition does not depend on the choice of representative uN of u since

〈v′N , uN 〉 = 〈v′M , fMN (uM )〉 = 〈f ′
MN (v′N ), uM 〉 = 〈v′M , uM 〉. (2.3.7)

When working with VOAs (or grading-restricted VAs), it is better not to work with the full dual space
V ∗, but rather the restricted graded dual V ′ of V , defined as

V ′ :=
⊕

V ∗
(n) ⊂ V ∗ (2.3.8)

For V ∞ it is given by

(V ∞)′ :=
⊕

(V ∞
(n))

∗ . (2.3.9)

We can characterize it by restricting to v′ ∈ (V ∞)∗ such that

v′|V ∞
(n)

= 0 for almost all n . (2.3.10)

2.4. Vertex operators and matrix elements. In section 2.2, we defined V ∞ = lim−→V N as a grading-
restricted direct limit. We now want to define the state-field map Y∞ on V ∞ through its matrix elements:

Definition 2.5. Assuming that the limit exists, we define the matrix elements of Y∞ on V ∞ as

〈v′, Y∞(u, z)w〉 = lim
N→∞

〈v′N , YN (fMN (uM ), z)fKN(wK)〉, (2.4.1)

for all u,w ∈ V ∞ and ~v′ ∈ (V∞)
′
. Here uM ∈ V M and wK ∈ V K are representatives of u and w, and

we assume N ≥M,K.

A few remarks:

(1) This definition is independent of the choice of M,K: Choosing M ′ ≥ M , for example, we find
that

lim
N→∞

〈v′N , YN (fM ′N (uM ′

), z)fKN (wK)〉 = lim
N→∞

〈v′N , YN (fM ′N(fMM ′ (uM )), z)fKN(wK)〉

= lim
N→∞

〈v′N , YN (fMN (uM ), z)fKN(wK)〉.
(2.4.2)



6 THOMAS GEMÜNDEN AND CHRISTOPH A. KELLER

(2) The limit in (2.4.1) is the ordinary limit in C order by order in the formal power series in z.
Equivalently, we can write Y∞(u, z)x as a limit in the restricted weak topology, that is the weak
topology with respect to the restricted dual V ′,

Y∞(u, z)w = lim
N→∞

fN
(
YN (uN , z)wN

)
. (2.4.3)

We now use this to define the structure constants and the state field map on V ∞. Let Φ :=
⋃

n Φn be
a homogeneous basis of V ∞. Because all V ∞

(n) are finite dimensional, we can pick a homogeneous dual

basis Φ′, so that for b ∈ Φ, a ∈ Φ′

〈a, b〉 = δa,b . (2.4.4)

For convenience we will simply identify Φ and Φ′ and their vectors. Since a, b, c are homogeneous,
〈a, Y∞(b, z)c〉 = 〈a, bwt(c)+wt(b)−wt(a)−1c〉zwt(a)−wt(b)−wt(c). This leads to the following definition:

Definition 2.6. Let (V N , fMN ) be a grading-restricted direct system, and Φ a homogeneous basis of
V ∞ as above. For a, b, c ∈ Φ with representatives aN , bN , cN , define the structure constants

CN
abc := 〈aN , bNwt(cN )+wt(bN )−wt(aN )−1c

N〉 , (2.4.5)

and
C∞

abc := lim
N→∞

CN
abc . (2.4.6)

Assuming the limit in definition 2.6 exists for all a, b, c ∈ Φ, we define the map Y∞ : V ∞ → End(V ∞)[[z, z−1]]
as

Y∞(b, z)c :=
∑

a∈Φ

zwt(a)−wt(b)−wt(c)C∞
abca (2.4.7)

Note that this definition is compatible with definition 2.5. Also note that for convenience of notation,
we used the dual basis in the definition of Cabc; instead, we could of course have considered Y (b, z)c and
read off the coefficient of a, as Y (b, z)c =

∑

a∈Φ zwt(a)−wt(b)−wt(c)Cabca.

2.5. The VA-limit. Let us now establish the first main result of our paper:

Theorem 2.3. Let (V N , fMN ) be grading-restricted direct system with limit V ∞, |0〉 := fN (|0〉) for some
N , and assume that the limit of all the structure constants as in definition 2.6 exists. Then (V ∞, |0〉, Y∞)
is a grading-restricted vertex algebra, the (grading-restricted) VA-limit of the system (V N , fMN ).

Proof. First we note that V ∞ satisfies the grading-restriction condition due to (4) and (5) of definition 2.3.
This immediately implies that Y∞(v, z) is a field for any v because V∞ is grading-restricted, i.e. wt(a)
is bounded from below.

Next,
Y∞(u, z)|0〉 = lim

N→∞
fN (YN (uN , z)|0〉) = lim

N→∞
fN (uN +O(z)) = u+ O(z) (2.5.1)

establishes creativity, and limN→∞ fN (YN (|0〉, z)uN) = u establishes Y∞(|0〉, z) = 1V ∞ .
To show the L(0) bracket formula, note that the L(0)-operator commutes with the connecting maps

in the sense that
fMN (LM (0)v) = LN (0)fMN (v), (2.5.2)

and that L(0)v = limN→∞ fN (LN (0)vN ). It then follows

[L(0), Y∞(v, z)]u = lim
N→∞

fN([LN (0), YN (vN , z)]uN)

= lim
N→∞

fN(
d

dz
YN (vN , z)uN + YN (LN (0)vN , z)uN

=
d

dz
Y∞(v, z)u+ Y∞(L(0)v, z)u,

(2.5.3)

where we can exchange limit and the formal derivative term by term in the formal power series.
Finally, let us prove that Y∞ satisfies Borcherds’ identity. Let Φ be a homogeneous basis of V ∞.

By [GK21], Borcherds’ identity is satisfied if the following condition on the structure constants holds:
Defining

j1 = wt(b)+wt(a)−wt(d)−n−1 , j2 = wt(c)+wt(b)−wt(d)−k−1 , j3 = wt(c)+wt(a)−wt(d)−m−1 ,
(2.5.4)

for all a, b, c, e ∈ Φ

∑

d∈Φ

(
m

j1

)

C∞
edcC

∞
dab =

∑

d∈Φ

(−1)j2
(
n

j2

)

C∞
eadC

∞
dbc −

∑

d∈Φ

(−1)j3+n

(
n

j3

)

C∞
ebdC

∞
dac (2.5.5)
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holds for all k, n,m ∈ Z such that j1, j2, j3 ≥ 0.
Note that due to the condition ji ≥ 0 and the grading-restriction condition of V ∞, for fixed k, n,m only

finitely many weights wt(d) contribute. Since the homogeneous subspaces V ∞
(n) are finite dimensional,

the sum over d ∈ Φ has only finitely many terms.
We can thus find an N that gives representatives aN , bN , cN , eN , dN . If N is large enough, then the dN

form a basis for the relevant homogeneous subspaces V N
(n). The analog of identity (2.5.5) with structure

constants CN
edc is then automatically satisfied for all N , since the YN are vertex operator maps. We can

thus take the limit N →∞ of those identities, and exchange the limit with the finite sum over d ∈ Φ to
establish that (2.5.5) holds for the structure constants C∞

edc.
�

3. A (non-)example: Tensor Power VAs

Let us now construct some examples of such limits. Our first example is in a sense a non-example: the
assumptions of definition 2.3 are not satisfied, and even though the VA limit exists, it turns out to be a
VA that violates the grading restriction axiom, and is hence not a grading-restricted VA. However, the
example will serve as a useful starting point for the permutation orbifolds discussed in the next section.

3.1. Seed VAs and tensor products. Let V be a grading-restricted VA that is of the form

V = C |0〉 ⊕
∞⊕

n=1

V(n) . (3.1.1)

In the context of VOAs, this is usually called a VOA of CFT type. We call V the seed VA. For future
use we note that for such a VA, unless a ∈ C |0〉,

Ca|0〉|0〉 = C|0〉a|0〉 = C|0〉|0〉a = 0 , (3.1.2)

because of the identity and creativity properties.
Now let us consider tensor products of the seed VA V . Let IN := {1, 2, . . . , iN} be the set of the first

iN numbers. Denote by V ⊗|IN | the |IN |-th tensor power of the seed VA, with the grading given by the
sum of the gradings of the individual factors. Clearly this is again a grading-restricted VA of the form
(3.1.1).

For future use, it will be useful to describe a basis of this tensor product VA in the following way:
Let Ψ be a homogenenous basis of V with |0〉 the basis vector for V(0), and a be a function IN → Ψ. We
define the weight of a as

|a| :=
∑

i∈IN

wt(a(i)) , (3.1.3)

and its support as
supp(a) := {i ∈ IN : a(i) 6= |0〉} . (3.1.4)

Such a function a defines a vector in V ⊗|IN | by

a =
⊗

i∈IN

a(i) , (3.1.5)

which by abuse of notation we denote by the same symbol a. Let FN
n be the set of all such functions

a : IN → Ψ of weight n. It is then clear that (by the same abuse of notation) FN =
⋃

n FN
n forms a

homogeneous basis of V ⊗|IN |. Next, for a tensor product state v =
⊗

i∈IN
vi ∈ V ⊗|IN |, we define its

support
Kv = supp(v) := {i ∈ iN : vi /∈ V(0)} . (3.1.6)

For vectors that come from functions as in (3.1.5), the two definitions of support of course agree. Since
V ⊗N is a direct sum of vector spaces of definite support, in the future we will mostly work with states
of definite support, and extend our results by linearity if needed.

3.2. Connecting maps. Now assume that |IN | is monotonically growing in N . For all M ≤ N we
define the connecting maps

gMN :V ⊗|IM | → V ⊗|IN |

v1 ⊗ . . . v|IM | 7→ v1 ⊗ . . . v|IM | ⊗ |0〉 ⊗ . . .⊗ |0〉
︸ ︷︷ ︸

|IN |−|IM |

. (3.2.1)

(V ⊗|IN |, gMN ) is then not quite a grading-restricted direct system: It is clear that conditions (1)–(3) of
definition 2.3 are satisfied, and by virtue of (3.1.1), so is (5). Unless V is trivial however, the dimensions
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of most V
⊗|IN |
(n≥1) will diverge, so that (4) is violated. However, we will now prove that it is still possible

to define a VA structure on V ∞.

3.3. Duals. We can construct the dual spaces in the same way as before: the duals of the components
are

(

V ⊗|IN |
)∗

= (V ∗)⊗|IN |
, (3.3.1)

where the canonical pairing is given by

〈v′1 ⊗ . . .⊗ v′|IN |, v1 ⊗ . . .⊗ v|IN |〉 =
|IN |
∏

i=1

〈v′i, vi〉. (3.3.2)

As before, we construct the dual (V ⊗∞)∗ as the inverse limit, and the restricted dual (V ⊗∞)′ as the
appropriate subset.

For what follows however it is useful to construct an appropriate decomposition of (V ⊗∞). Let
|0〉′ ∈ V ′

0 be the unique functional satisfying 〈|0〉′, |0〉〉 = 1 and define connecting maps on the dual
spaces for all M ≤ N by

g̃MN :
(

V ⊗|IM |
)′
→
(

V ⊗|IN |
)′

v′1 ⊗ . . .⊗ v′|IM | 7→ v′1 ⊗ . . .⊗ v′|IM | ⊗ |0〉′ . . . |0〉′
︸ ︷︷ ︸

|IN |−|IM |

. (3.3.3)

These are again connecting maps, so that we can take the direct limit of the system (
(
V ⊗|IN |)∗ , g̃MN ).

Note that lim−→
(
V ⊗i

)∗ ⊂ (V ⊗∞)
∗
= lim←−

(
V ⊗i

)∗
. This gives injective maps

g̃N :
(

V ⊗|IN |
)′
→ lim−→

(

V ⊗|IN |
)∗

v′1 ⊗ . . .⊗ v′|IN | 7→ [v′1 ⊗ . . .⊗ v′|IN |].
(3.3.4)

We can use this to find an orthogonal decomposition of (V ⊗∞)
′
:

Lemma 3.1. For all N ∈ N,
(
V ⊗∞)′ = Im(g̃N )

⊕

Im(gN )⊥ , (3.3.5)

where Im(gN )⊥ is the annihilator of Im(gN ).

Proof. Consider (V ⊗∞
(n) )∗. We know that for all N , Im(g̃N )(n) ⊂ (V ⊗∞

(n) )∗ is finite dimensional, and

satisfies

Im(gN )(n) ∼= Im(g̃N )(n) . (3.3.6)

Pick a basis {e′i} of Im(g̃N )(n) and a dual basis {ej} of Im(gN )(n). Then define P (v) :=
∑

i〈v, ei〉e′i. In
the usual way, v = P (v) + (v − P (v)) then gives the decomposition (V ⊗∞

(n) )∗ = Im(g̃N )(n)
⊕

Im(gN )⊥(n),

from which (3.3.5) follows. �

3.4. The Vertex Algebra V ⊗∞.

Theorem 3.2. The limit (V ⊗∞, |0〉, Y∞) of the system (V N , gMN ) exists and is a vertex algebra.

Proof. Note that we cannot directly apply theorem 2.3 because, as pointed out above, the grading
restriction condition is not satisfied, and in general dimV ∞

(n) = ∞. First, we show that Y∞ is well-

defined. Let M be such that u,w ∈ Im(gM ) and v′ ∈ (V ⊗∞)
′
. The vertex operators are defined

as

〈v′, Y∞(u, z)w〉 = lim
N→∞

〈v′N , YN (uN , z)wN 〉 (3.4.1)

We first note that for u, v ∈ V ⊗|IM |,

YN (gMN (u), z)gMN(v) = Y (u1, z)v1 ⊗ . . .⊗ Y (u|IM |, z)v|IM | ⊗ (|0〉)⊗(|IN |−|IM |)〉
= gMN (YM (u, z)v)〉 (3.4.2)

Now we use the decomposition (3.3.5): For v′ ∈ Im(gM )⊥,

〈v′, Y∞(u, z)x〉 = lim
N→∞

〈v′N , YN (gMN (uM ), z)gMN (wM )〉 = lim
N→∞

〈v′N , YN (uN , z)wN 〉 = 0, (3.4.3)
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while for v′ ∈ Im(g̃M ), we find that

〈v′, Y∞(u, z)w〉 = lim
N→∞

〈v′N , YN (uN , z)wN 〉

= lim
N→∞

〈v′1 ⊗ . . .⊗ v′|IM | ⊗ (|0〉′)⊗(|IN |−|IM |), Y (u1, z)w1 ⊗ . . .⊗ Y (u|IM |, z)w|IM | ⊗ (|0〉)⊗(|IN |−|IM |)〉

= 〈v′M , Y (uM , z)wM 〉.
(3.4.4)

Hence the structure constants Cabc converge and Y∞ exists. Moreover, Y∞ is a state-field map since
wt(a) ≥ 0 for all vectors a. Creativity, identity and the L(0) bracket formula follow by the same argument
as in theorem 2.3.

Finally, Borcherds’ identity follows by a similar argument as in theorem 2.3. The complication here
is that the homogeneous components V ∞

(n) are no longer finite dimensional, so that we can no longer find

a N such that the dN are representatives of a basis of V ∞
(n). However, note that by construction of the

tensor product that if a, b have representatives aN , bN , then b(n)a ∈ Im(gN ), which has finite dimensional

homogeneous components. We can thus pick a finite basis dN of Im(gN ) and insert it in the same way
as in theorem 2.3 to establish Borcherds’ identity. �

We note that in this specific example, the connecting maps gMN actually are VA homomorphisms.
Therefore, we could have constructed V ∞ as the direct limit of (not grading-restricted) VAs, without
worrying about convergence of the structure constants. If the seed VAs are VOAs, then the gMN are
still not VOA homomorphisms, since the conformal vector does not get mapped to the conformal vector.

3.5. An action by S∞. We established that tensor product VAs have a large N limit. This limit
however is not a grading-restricted VA. For this reason, we want to investigate limits of permutation
orbifolds instead.

For ease of notation, let us take IN = {1, 2, . . .N} for the moment. Any permutation σ ∈ SN acts
naturally as an VA automorphism on V ⊗N by

σ · v1 ⊗ . . .⊗ vN = vσ−1(1) ⊗ . . .⊗ vσ−1(N) (3.5.1)

The symmetric group SN is thus a group of automorphisms of V ⊗N .
For all M ≤ N , define connecting maps φMN : SM → SN by mapping a permutation σ ∈ SM to the

corresponding permutation σN ∈ SN , that acts trivially on the last N −M objects. Clearly, the φMN

satisfy

φNK ◦ φMN = φMK for all M ≤ N ≤ K (3.5.2)

φNN = 1 for all N. (3.5.3)

Furthermore, they are compatible with the connecting maps gMN in the sense that

gMN (σ · v) = φMN (σ) · gMN (v), (3.5.4)

for all v ∈ V ⊗M and σ ∈ SM .
In view of the above, it is tempting to try to define limits of symmetric orbifold VAs in the following

way: Define S∞ as the direct group limit of SN under the connecting maps φMN , S∞ =
∐

N SN/ ∼φMN .
Then S∞ acts on V ⊗∞ by

σ · u = gN(σN · uN). (3.5.5)

This definition is independent of the choice of representatives. Then S∞ is indeed a group of automor-
phisms of V ∞:

σ · (Y∞(u, z)v) = lim
N→∞

σ · gN
(
YN (uN , z)vN

)

= lim
N→∞

gN
(
σN · (YN (uN , z)vN )

)

= lim
N→∞

gN
(
YN (σN · uN , z)σN · vN

)

= lim
N→∞

gN
(
YN ((σ · u)N , z)(σN · vN )N

)

= Y∞(σ · u, z)σ · v .

(3.5.6)

Since S∞ is an automorphism of V ∞, we can now in principle consider the fixed-point VA (V ⊗∞)
S∞ .

However, this does not lead to an interesting result, since (V ⊗∞)
S∞ is trivial: By lemma 2.1, any vector

v in V ∞ will be in Im(gN ) for some N . To be invariant under all transpositions (M,N + 1) with
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1 ≤ M ≤ N , v has to be the vacuum vector. For this reason we need to take a different approach to
limits of permutation orbifolds.

4. An example: Permutation orbifolds

4.1. Connecting maps for the permutation orbifolds. In subsection 3.5, we constructed an action
of the permutation group S|IN | on the vertex algebra V ⊗|IN |. Let us now consider the action of a

permutation group GN ≤ S|IN |. Define the projector from V ⊗|IN | onto V N :=
(
V ⊗|IN |)GN

as

πN =
1

|GN |
∑

σ∈GN

σ. (4.1.1)

To construct a basis of V N , we start with the basis FN of V ⊗|IN | defined in section 3.1. Note that GN

acts on a ∈ FN by σ ◦ a(i) = a(σ−1i). Clearly, a homogeneous basis for V N
(n) is then given by

ΦN =
⋃

n∈N

ΦN
n , ΦN

n = πN (FN
n ) . (4.1.2)

The number of elements in this basis is given by the number of orbits of functions of weight n under
GN , which we denote by bn(GN ),

|ΦN
n | = bn(GN ) . (4.1.3)

Next, we want to define connecting maps. For this, we introduce some notation, following [GK21]:

Definition 4.1. Let K ⊂ IN .

(1) Denote by GK
N := {σ ∈ GN |kσ ∈ K, ∀k ∈ K} the setwise stabilizer of K.

(2) Denote by ĜK
N := {σ ∈ GN |kσ = k, ∀k ∈ K} the pointwise stabilizer of K.

(3) Let G(K)N be the permutation group defined by the action of GK
N/ĜK

N on K. Note that G(K)N
is the restriction of GN to K in the natural sense.

Note that ĜK
N is a normal subgroup of GK

N , so that definition (3) makes sense.
We now construct the connecting maps fMN recursively:

Definition 4.2. Define the linear maps f̄MN : V ⊗|IM | → V N in the following way:

f̄NN = πN (4.1.4)

For v ∈ V ⊗|IN | with definite support supp(v) =: Kv,

f̄N,N+1(v) =

√
√
√
√

|GN ||ĜKv

N |
|GN+1||Ĝ

KgN,N+1(v)

N+1 |
πN+1 ◦ gN,N+1(v) (4.1.5)

and fMN = fN−1,N ◦ · · · ◦ fM+1,M+2 ◦ fM,M+1 for N > M . We then define the connecting maps
fMN : V M → V N as

fMN := f̄MN |V M . (4.1.6)

As we will see, the unwieldy prefactor in (4.1.5) is necessary for the structure constants to converge.

Below we will give a much nicer expression for the homogeneous components f
(n)
NM in the case when V N

(n)

is saturated. But first, we need to impose some additional conditions on the family GN to ensure that
the system (V N , fMN ) is indeed a grading-restricted direct system as in definition 2.3.

4.2. Nested oligomorphic permutation orbifolds. Following [GK21], we make the following defini-
tion:

Definition 4.3. Assume |IN | < |IN+1|. Let the family of permutation groups (GN )N∈N satisfy the
conditions:

(1) The numbers bn(GN ) converge for all n.
(2) For every finite set K ⊂ N, there is a group G(K) such that G(K)N = G(K) for N large enough.
(3) G(IN−1)

N < GN−1 for all N .

We then call GN nested oligomorphic.

Proposition 4.1. Let V be a seed VA as in (3.1.1), GN a nested oligomorphic family of permutation

groups, V N =
(
V ⊗|IN |)GN

and fMN as in definition 4.2. Then (V N , fMN ) is a grading-restricted direct
system.
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Proof. (1)–(3) of definition 2.3 follow immediately by construction of the fMN , and (5) from the form of
V N . The nesting condition (3) in definition 4.3 implies that if two elements of V ⊗|IN−1| are in different
orbits under GN−1, then they are also in different orbits as elements of V ⊗|IN | under GN ; hence fN−1,N

is injective. Finally, (4) follows from (1) in definition 4.3. �

Lemma 4.2. Fix n. If V M
(n) is saturated at M and N ≥M , then

πN ◦ g(n)MN ◦ πM = πN ◦ g(n)MN . (4.2.1)

Proof. Saturated means that bn(GM ) = bn(GN ). As in the proof of proposition 4.1, the (iterated) nesting
condition (3) implies that different GM orbits are in different GN orbits, which together with saturation
implies that the GM orbits are in one-to-one correspondence to GN orbits. This means that if we pick a
representative v of a GM orbit, then for any σ ∈ GM , we can find τσ ∈ GN such that τσ acts on gMN (v)
as φMN (σ) ∈ SN ,

τσ ◦ gMN (v) = φMN (σ) ◦ gMN (v) . (4.2.2)

Using this, we can write

πN ◦ g(n)MN ◦ πM (v) =
1

|GM |
∑

σ∈GM

πN ◦ g(n)MN ◦ σ(v) (4.2.3)

=
1

|GM |
∑

σ∈GM

πN ◦ φMN (σ) ◦ g(n)MN (v) (4.2.4)

=
1

|GM |
∑

σ∈GM

πN ◦ τσ ◦ g(n)MN (v) (4.2.5)

= πN ◦ g(n)MN (v) . (4.2.6)

�

The lemma immediately implies

Corollary 4.3. Fix n. If V N
(n) is saturated at N and M ≥ N , then

f
(n)
NM =

√
√
√
√

|GN ||ĜKv

N |
|GM ||Ĝ

KgNM (v)

M |
πM ◦ g(n)NM . (4.2.7)

Proof. Use lemma 4.2 and induction in M . �

4.3. Structure constants. Now let us investigate convergence of the structure constants for nested
oligomorphic permutation orbifolds. Let aN , bN , cN ∈ FN be basis vectors of V ⊗|IN |. By the remarks
above, FN forms a basis of V ⊗|IN |. The structure constants of the tensor VA V ⊗|IN | are given by

cN(aN , bN , cN ) :=

|IN |
∏

i=1

c(aN (i), bN (i), cN (i)) (4.3.1)

where for all i ∈ IN , aN (i), bN(i), cN (i) ∈ Ψ are basis elements of the seed VA V , and

c(aN (i), bN (i), cN (i)) (4.3.2)

are the structure constants of the seed VA V . By the remarks above, ΦN
n = πN (FN

n ) is a basis for V N
(n).

We choose a basis Φn of V ∞
(n) by picking M large enough so that V M

(n) is saturated, and then taking

Φn := fM (ΦN
n ) , (4.3.3)

from which we obtain a homogeneous basis Φ of V∞, Φ =
⋃

n Φn. Now let a, b, c ∈ Φ. We want to
compute the structure constant

C∞
abc = lim

N→∞
CN

aNbN cN . (4.3.4)

To do this, first write aN = fNM (aM ). By lemma 4.2, for simplicity we can actually choose aM ∈ FM ,
that is as a representative of the orbit πMaM . We then have

CN
aN bNcN = CN

fMN (aM )fMN (bM )fMN (cM )

=

(

|GM |3|ĜKa

M ||ĜKb

M ||ĜKc

M |
|GN |3|ĜKa

N ||ĜKb

N ||ĜKc

N |

)1/2
∑

~σ∈G×3
N

cN (σ1gMN (aM ), σ2gMN (bM ), σ3gMN (cM )) , (4.3.5)
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where ~σ = (σ1, σ2, σ3). To investigate the limit of CN
aNbN cN , we use theorem 2.5 in [GK21] to rewrite it

in a form that makes the N dependence manifest. We can do to this because (4.3.5) is essentially their
equation (28), the only difference being a prefactor that depends on M , but not on N , and therefore
does not affect convergence as N →∞.

To do this, let us first introduce some notation. We will write K1,K2,K3 for Ka,Kb,Kc. We write
Kij = Ki ∪Kj and K123 = K1 ∪K2 ∪K3. Finally we define the triple overlap set Kt = K1 ∩K2 ∩K3 and
the one-point set Ko = K123 − ((K1 ∩ K2) ∪ (K1 ∩ K3) ∪ (K2 ∩ K3)). Next we observe that

cN (aN , bN , cN ) = 0 unless Ko = ∅ . (4.3.6)

This follows from the fact that c(a, b, c) = 0 if exactly two of the arguments are in C |0〉, as discussed
around (3.1.2).

Theorem 2.5 of [GK21] then gives the following expression for the structure constants:

CN
aN bNcN =

(

|GM |3|ĜK1

M ||ĜK2

M ||ĜK3

M |
)1/2

×
∑

[κ]∈S
M(κK, N)

∑

[σ]∈×iG(Ki)

cN(κ1σ1gMN (aM ), κ2σ2gMN (bM ), κ3σ3gMN (cM )) , (4.3.7)

where σ = (σ1, σ2, σ3) ∈ G×3
N , κ = (κ1, κ2, κ3) ∈ G×3

N and

S = Gdiag
N \GN ×GN ×GN/GK1

N ×GK2

N ×GK3

N (4.3.8)

as a set, where Gdiag
N is the diagonal subgroup of GN ×GN ×GN . Finally, κK = (κ1Ka, κ2Kb, κ3Kc) and

M(K, N) =







(

|ĜK1
N ||ĜK2

N ||ĜK3
N |

|GN ||ĜK1∪K2∪K3
N |2

)1/2

Ko = ∅
0 else

(4.3.9)

The crucial observation here is that in (4.3.7), only M(κK, N) depends on N : For N large enough, we
can find an N -independent representative for [κ] and [σ]. With this choice, the arguments of cN have
N -independent support, so that the structure constant cN of the tensor product VAs does actually not
depend on N . For a more detailed explanation of this, see [GK21].

4.4. The VA limit of permutation orbifolds. From proposition 4.1 and the results in section 4.3, we
conclude that the existence of the VA-limit of nested oligomorphic permutation orbifolds only depends
on the behavior of M(κK, N):

Corollary 4.4. Let V be a grading-restricted VA as in (3.1.1), and GN be a nested oligomorphic family.
Then the grading-restricted direct system (V N , fMN ) defined as in proposition 4.1 has a VA-limit if the
M(K, N) converge as N →∞ for all K1,K2,K3.

The following lemma shows that the M(K, N) are actually bounded:

Lemma 4.5.

0 ≤M(K, N) ≤ 1 . (4.4.1)

Proof. Note that ĜA∪B = ĜA ∩ ĜB. Denote Gi = ĜKi

N and Gij = Gi ∩Gj for i 6= j etc. The inequality
is trivially satisfied if Ko 6= ∅. If Ko = ∅, then K1 ∪ K2 ∪ K3 = K1 ∪ K2 etc., so that Gij = G123. We
claim that

|G1G2G3| =
|G1||G2||G3|
|G123|2

. (4.4.2)

To see this, note that by the usual argument we have |G1G2| = |G1||G2|/|G12|. Next consider the orbit
of the set G1G2 under the right action of G3. The stabilizer subgroup under this action is G123: On
the one hand, because G123 < G2, G1G2g3 = G1G2 if g3 ∈ G123. On the other hand, if g1g2g3 =
g̃1g̃2g̃3, g̃3g

−1
3 = g̃−1

2 g̃−1
1 g1g2, so that g̃3g

−1
3 stabilizes K1 ∩ K2 pointwise; clearly it also stabilizes K3

pointwise. But because Ko = ∅, we have (K1 ∩ K2) ∪ K3 = K1 ∪ K2 ∪ K3, so that g̃3g
−1
3 ∈ G123. The

orbit stabilizer theorem then implies that the orbit has length |G3|/|G123|, from which it follows that
|G1G2G3| = |G1G2||G3|/|G123| = |G1||G2||G3|/|G123|2 as claimed. Plugging this into (4.3.9) gives

M(K, N) =

(

|ĜK1

N ĜK2

N ĜK3

N |
|GN |

)1/2

, (4.4.3)

from which the claim follows since the numerator is a subset of the group in the denominator. �
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Because the M(K, N) are bounded, it is possible to find a VA limit of V N by picking a convergent
subsequence of V N . More precisely, since the basis Φ is a countable set, so is the set of structure
constants Cabc with a, b, c ∈ Φ. We can thus order them, and then, for the first structure constant,
pick an infinite subsequence of N for which all necessary M(K, N) converge, giving a limit C∞

abc for this
structure constant. We can apply this procedure recursively to all triples of basis vectors: in the k-th
step, we keep the first k terms of the (k-1)-th subsequence, and then pick an infinite subsequence of the
remaining terms for which the k-th structure constant converges. In total this gives a subsequence of V N

for which all structure constants converge, automatically satisfy Borcherds’ identity and hence define a
state-field map Y∞. In summary:

Theorem 4.6. Let V be a grading-restricted VA as in (3.1.1), and (GN )N∈N be a nested oligomorphic
family of permutation groups. Then we can find a grading-restricted VA V ∞ that is a limit of an
appropriate subsequence of the system (V N , fMN ) of permutation orbifolds.

5. The large N limit of VOAs

5.1. Large central charge limit of Virasoro VOAs. Let us now discuss the large N limit of vertex
operator algebras. As the most basic example, let us start out with a sequence of Virasoro VOAs of
increasing central charge.

Let V N = V ircN be the Virasoro VOA of central charge cN for some c > 1 with conformal vector ωN .

For each N , we define a re-scaled copy of the Virasoro algebra by taking ω̃N := ωN
√
N

and YN (ω̃N , z) =
∑

n∈Z
L̃N
n z−n−2 satisfying

[L̃N
m, L̃N

n ] =
1√
N

(m− n)L̃N
m+n +

c

12
m(m2 − 1)δm,−n1V . (5.1.1)

Now define

f1N (|0〉) = |0〉 , f1N (ω1) =
1√
N

ωN = ω̃N (5.1.2)

and recursively

f1N (L1
−na) =

1√
N

LN
−nf1N (a) . (5.1.3)

The maps f1N are clearly bijective, so that we can define connecting maps

fMN = f1N ◦ f−1
1M . (5.1.4)

These clearly satisfy the conditions of definition 2.3.
We claim that the VA-limit is given by the following grading-restricted VA: Define the Lie algebra

[L∞
m , L∞

n ] =
c

12
m(m2 − 1)δm,−n1V , (5.1.5)

which acts on the graded vector space V ir∞ := U(L∞) ⊗UL∞
(≤1)

C |0〉, where as usual L∞
n |0〉 = 0 for

n ≥ −1. Together with the state-field map Y (ω∞, z) =
∑

n L
∞
n z−n−2 this is then indeed a grading-

restricted VA, the grading operator being L(0) = L∞
0 .

To see that (V ir∞, Y ) is indeed the VA-limit of the above system, note that V ir∞ = lim−→V ircN as a

graded vector space. To show that the structure constants CN
abc converge to C∞

abc, proceed as following:
Evaluate

bNn cN (5.1.6)

recursively using Borcherds’ identity until it is a linear combination of terms the form L̃N
n1
· · · L̃N

nk
|0〉.

Then commute modes L̃N
n with n ≥ −1 to the right, picking up commutator terms from (5.1.1). The

result is a linear combination of states a, from which we can read off the structure constants CN
abc. The

point is that this computation differs from the computation of C∞
abc using (5.1.5) only by terms of order

O(N−1/2), so that

C∞
abc = CN

abc +O(N−1/2) , (5.1.7)

so that V ir∞ is indeed the VA-limit of V ircN . It is however not a VOA, since (5.1.5) is not the Virasoro
algebra.
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5.2. Möbius-conformal VAs and Unitary VAs. The above example shows that the VA-limit of a
family of VOAs is in general not a VOA. However, it is not just a grading-restricted VA, but also a
Möbius-conformal VA [Kac98]. That is, even though it no longer contains a full copy of the Virasoro
algebra, it still contains a copy of the global conformal algebra sl2(C).

Proposition 5.1. The VA-limit (V ∞, |0〉, Y∞) of a system of VOAs of CFT type is a grading-restricted
Möbius-conformal VA of CFT type.

Proof. Since VOAs are special cases of grading-restricted VAs with L(0) = L0 and T = L(−1) = L−1,
the only thing left to prove is the existence of the operator L(1). We simply define it as the weak limit
of LN

1 , L(1)u := limN→∞ LN
1 uN . Since LN

0 , LN
−1, L

N
1 satisfy the commutation relations of the Möbius

sl2(C) Lie algebra, so do L(0), L(−1), L(1). �

Let V be a Möbius-conformal VA of CFT type. We say a ∈ V is quasiprimary if L(1)a = 0. V is
then spanned by all quasiprimary fields and their L(−1)-derivatives (see e.g. Remark 4.9d in [Kac98]).
On V , define the bilinear form B from

awta+wtb−1b =: B(a, b)|0〉 . (5.2.1)

From skew symmetry it follows that

B(a, b) = (−1)wta+wtbB(b, a) . (5.2.2)

We have

B(a, L(−1)b) = L(−1)awta+wtbb+ [L(−1), awta+wtb]b = −(wta+wtb)B(a, b) , (5.2.3)

where we used that awta+wtbb = 0. (5.2.3) shows that if we know B on the subspace of quasiprimaries, its
value on all descendants follows. In particular, if two quasiprimaries are orthogonal to each other, then
so all are their descendants. Finally, if a, b are quasiprimaries, then B(a, b) vanishes unless wta = wtb:
Using the commutation relation

[L(1), an] = −(n+ 2− 2wta)an+1 + (L(1)a)n+1 , (5.2.4)

we have

L(1)awta+wtb−2b = [L(1), awta+wtb−2]b = −(wtb− wta)awta+wtb−1b = (wta− wtb)B(a, b)|0〉 . (5.2.5)

The state on the left hand side has weight 0 and is therefore the vacuum. However, since the vacuum is
not in the image of L(1), it must vanish. It follows that either wta = wtb or B(a, b) = 0. In total we
have that B restricted to the subspace of quasiprimaries is blockdiagonal.

Finally, let us say a few words about unitary VAs. We often want to work with VAs whose bilinear
form B is non-degenerate. From (5.2.3) it follows that for this it is enough to ensure that B is positive
definite on all (finite dimensional) subspaces of quasiprimaries of a given weight. An example of VAs
with such a B are unitary VAs: If the VA V is unitary, then for a, b quasiprimary with wta = wtb the
bilinear form B is related to the inner product through

B(a, b) = (|0〉, a2wta−1b) = (θ(a), b) , (5.2.6)

where θ is the anti-linear involution and (, ) the positive definite Hermitian form on V [DL14]. If we
choose a real basis, that is θ(a) = a, then the bilinear form B is given by the same matrix as the inner
product, so that it is in particular non-degenerate.

Assume we have a system of unitary grading-restricted VAs V N with connecting maps fMN that
preserve the anti-linear involutions and inner products θM and (, )M , that is θN ◦ fMN = fMN ◦ θM and
(u, v)M = (fMN (u), fMN (v)). Then the VA limit V ∞ is again unitary, with θ∞(u) := fN(θN (uN)) and
(u, v)∞ := (uN , vN )N . These are clearly again an anti-linear involution and a positive definite Hermitian
form.

We note that the connecting maps for permutation orbifolds introduced in definition 4.2 are compatible
with the unitary structure.

6. Factorization

6.1. Factorization in VAs. The example discussed in section 5.1 has another interesting property.
Taking a closer look at (5.1.5), we see that V ∞ is a special kind of VA: it factorizes.

Definition 6.1. Let V be a vertex algebra. We say V factorizes if there is a set A ⊂ V of vectors that
generate V and that satisfy

[an, bm] = D(a, b, n,m)1V (6.1.1)

for some function D for all a, b ∈ A and n,m ∈ Z.
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In physics, such VAs are also called free field theories. To avoid confusion with the notion of a free
algebra, we use the term ‘factorization’ instead.

For VAs that factorize, computations become quite simple: Using Borcherds’ formula, expressions
such as matrix elements or correlation functions can be written in terms of modes of generator fields.
These modes can then be commuted through, picking up identity operators only. The matrix elements
can thus be obtained by so-called Wick contractions.

For completeness, let us make this more precise (see for instance also section 3.3 in [Kac98]). Using

[Y (a, z), Y (b, w)] =
∞∑

n=0

Y (anb, w)∂
(n)
w δ(z − w) (6.1.2)

it follows that

[Y (a, z), Y (b, w)] =

∞∑

n=0

1V D(a, b, n,−1)∂(n)
w δ(z − w) (6.1.3)

since for n ≥ 0, anb = anb−1|0〉 = [an, b−1]|0〉 = D(a, b, n,−1)|0〉.
If V is grading-restricted and all generators are homogeneous, we can say something more: (6.1.2)

then implies that

[Y (a, z), Y (b, w)] = 1V B(a, b)∂(wt(a)+wt(b)−1)
w δ(z − w) , (6.1.4)

which in turn fixes the commutator to be

[an, bm] = B(a, b)1V

(
n

wta+wtb− 1

)

δn−wta+1,−m+wtb−1 . (6.1.5)

Define the annihilation part Y +(a, z) and the creation part Y −(a, z) of a field as

Y (a, z) = Y +(a, z) + Y −(a, z) =
∑

n≥0

anz
−n−1 +

∑

n<0

anz
−n−1 . (6.1.6)

We then have

[Y ±(a, z), Y ±(b, w)] = 0 . (6.1.7)

This follows from (6.1.5) for the Y − commutator, and from [an, bm]|0〉 = 0 for n,m ≥ 0 for the Y +

commutator. Finally we have

[Y +(a, z), Y −(b, w)] = iz,w
B(a, b)

(z − w)wta+wtb
1V (6.1.8)

[Y −(a, z), Y +(b, w)] = −iw,z
B(a, b)

(z − w)wta+wtb
1V (6.1.9)

where iz,w indicates taking the formal power series given by the series expansion of the function for
|z| > |w|. The functions appearing on the right-hand side are often called Wick functions in physics.

We can use these commutators to compute correlation functions

〈|0〉, Y (u1, z1)Y (u2, z2) . . . Y (un, zn)|0〉〉 . (6.1.10)

To do this, we first use Borcherds’ identity to recursively write out Y (u, z) in terms of (residues of)
products of generators Y (a, z), giving a correlation function

C = 〈|0〉, Y (a1, z1) · · ·Y (am, zm)|0〉〉 . (6.1.11)

We then split all fields into creation and annihilation parts and commute the annihilators to the right,
where they annihilate the vacuum, Y +(a, z)|0〉 = 0. This leaves only terms with creation parts and with
Wick functions. However, due to the grading, any terms containing creation parts will have a vanishing
matrix element when paired with |0〉. The correlator (6.1.11) is thus simply given by a sum over all
possible product Wick functions,

C =
{ ∑

p∈P 2
m/2

∏

{i,j}∈p
B(ai,aj)

(zi−zj)
wtai+wtaj

: m even

0 : m odd
. (6.1.12)

Here P 2
n denotes all partitions of the set {1, 2, . . . , n} into disjoint pairs, and the product is over all such

pairs in the partition p. In physics this is called Wick’s theorem. It is the analogue of Isserli’s theorem
in probability theory.
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6.2. The large N limit of symmetric orbifolds. Before proving the general theorem, let us give
one more example of a large N limit that factorizes. Consider symmetric orbifolds, that is permutation
orbifolds for which GN = SN . These were worked out as an example in [GK21]. Picking vectors v1, v2, v3
with supp(vi) = Ki and |Ki| = Ki, (4.3.9) is given by

M(κ,N) =

(
(N −K1)!(N −K2)!(N −K3)!

N !(N − 1
2 (K1 +K2 +K3 − nt(κ)))!2

)1/2

. (6.2.1)

Here we defined nt(κ) := |κ1K1 ∩ κ2K2 ∩ κ3K3| as the length of the triple overlap set under the configu-
ration κ. Using Stirling’s approximation it follows that for nt(κ) > 0,

M(κK, N) = O(N−nt(κ)/2) (6.2.2)

for N →∞, and for nt(κ) = 0
M(κK, N)→ 1 . (6.2.3)

This establishes that only configurations κ contribute that have nt(κ) = 0. Theorem 6.4 below will show
that therefore symmetric orbifolds indeed factorize in the large N limit. For the moment, we want to
use (6.2.2) to discuss how symmetric orbifolds are generated.

Definition 6.2. Let v ∈ V N := (V ⊗|IN |)GN . We say v is a single-trace if |supp(v)| = 1. We say v ∈ V ∞

is single-trace if v = fN (vN ) for some single-trace vector vN .

Proposition 6.1. Let V ∞ = lim−→(V ⊗N )SN be the limit VA of symmetric orbifolds. Then V∞ is generated
by single-trace vectors.

Proof. First let us prove that V N is generated by single-trace vectors using induction in n = |supp(v)|.
The base case n = 1 is immediate. Let v have |supp(v)|. We can write

vN = πN (v1 ⊗ v2 ⊗ · · · ⊗ vn ⊗ |0〉 ⊗ · · · ⊗ |0〉) (6.2.4)

Next define uN = πN (vn ⊗ |0〉 · · · |0〉) and wN = πN (v1 ⊗ · · · ⊗ vn−1 ⊗ |0〉 · · · |0〉 We then have

vN = uN
−1w

N + . . . (6.2.5)

where the . . . are vectors of support length n − 1 or less. By induction, this establishes that V N is
generated by single-trace vectors.

Next consider v = fN (vN ) ∈ V∞. Consider C∞
xuw = 〈x, u−1w〉. By (6.2.2), the structure constant

vanishes unless nt = 0, which implies that |supp(x)| = n or n−2. The former automatically implies that
x = v. It follows that

v = u−1w + . . . (6.2.6)

where the states in . . . have support n− 2 or less. By induction it follows that V ∞ is also generated by
single-trace states.

�

As a side remark, let us mention that even if the seed VA V is finitely generated, V ∞ is not:

Proposition 6.2. Unless V is trivial, V ∞ = lim−→(V ⊗N )SN is not finitely generated.

Proof. For any finitely generated VA, the asymptotic growth of log dim V(n) for n → ∞ is bounded by

A
√
n for some constant A. On the other hand, log dimV ∞

(n) ∼ n/ logn as n→∞ (see e.g. [BKM15]). �

6.3. Factorization for oligomorphic permutation orbifolds. Now we want to establish under what
conditions oligomorphic permutation orbifolds factorize in the large N limit. To this end, we first
introduce the following definition:

Definition 6.3. We say a family of permutation groups (GN )N∈N has no finite orbits if for every finite
non-empty set K ⊂ N, the length of the orbit of K under GN diverges,

ON (K)→∞ . (6.3.1)

Proposition 6.3. Let GN be nested oligomorphic. Then M(K, N) → 0 for all configurations K such
that Kt 6= ∅ if and only if GN has no finite orbits.

Proof. Assume GN has no orbit of finite length. If Kt 6= ∅, then ĜK1

N ĜK2

N ĜK3

N ⊂ ĜKt

N . By the orbit-

stabilizer theorem we have ON (Kt) = |GN |/|GKt

N | = |GN |/|ĜKt

N ||G(Kt)|, where we take N large enough
so that condition 2 of definition 4.3 applies. From (4.4.3) it follows that

M(K, N) ≤ |G(Kt)|−1/2ON (Kt)
−1/2 → 0 . (6.3.2)
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Conversely, let K be a set whose orbit length ON (K) is bounded. Consider the configuration K1 = K2 =
K3 = K. Using (4.3.9), we have

M(K, N) =

(

|ĜK
N |

|GN |

)1/2

= |G(Kt)|−1/2ON (K)−1/2 , (6.3.3)

which does not converge to 0. �

Theorem 6.4. The large N limit of oligomorphic permutation orbifolds with no finite orbits factorizes.

Proof. Clearly V ∞ is generated by states of definite support. Take u = πN (uN ) and v = πN (vN ), where
uN , vN have support Ku,Kv. We can specialize Borcherds’ identity to obtain the following expression
for the commutator (see e.g. [LL04]):

[um, vn] =
∑

k≥0

(
m

k

)

(ukv)m+n−k (6.3.4)

We evaluate the structure constants C∞
wuv = 〈w, ukv〉 by using (4.3.7). We first note that any config-

uration with κ3Kv 6= κ2Ku automatically vanishes. This follows because for k ≥ 0, u(i)k|0〉 = 0 and
(|0〉)kv(i) = 0. For configurations with κ3Kv = κ2Ku, the structure constant does not vanish only if
κ1Kw ⊂ κ3Kv. However, if κ1Kw 6= ∅, then Kt 6= ∅, so that by proposition 6.3 CN

wuv → 0. It follows that
C∞

wuv = 0 unless Kw = ∅, that is w ∈ C |0〉, which implies that indeed only the identity operator appears
in the commutator. �

6.4. Uniqueness of factorizing VAs. Finally let us briefly discuss uniqueness of VAs that factorize.
Define F k to be the factorizing grading-restricted Möbius VA generated by a quasiprimary v of weight
k > 0. That is, Y (v, z) =

∑

n vnz
−n−1 with modes

[vn, vm] = 1V

(
n

2k − 1

)

δn−k+1,−m+k−1 , (6.4.1)

acting on U(V)⊗UV(≤1)
C |0〉 , where the vacuum |0〉 is as usual annihilated by sl(2). Its character is

Zk(τ) =
∏

n≥k

1

(1− qn)
. (6.4.2)

To see (6.4.2), we only need to establish that the vectors v−n1v−n2 · · · v−nl
|0〉, ni > 0 are linearly

independent. But this follows from the fact that their duals maps 〈|0〉, vn1+2k−1 · · · vnl+2k−1·〉 are rank
1 and form a dual system to the vectors above, as follows from the commutation relations (6.4.1).

Proposition 6.5. Let V be a grading-restricted Möbius VA of CFT type with non-degenerate bilinear
form B. Then V is isomorphic as a VA to

V ∼=
∞⊗

k=1

(
F k
)⊗Nk

(6.4.3)

for some numbers Nk ∈ N0.

Proof. For a grading-restricted VA V , denote by V(≤n) :=
⊕

k≤n V(k), and denote Un :=
⊗n

k=1

(
F k
)⊗Nk .

By induction in n, V(≤n−1)
∼= Un−1

(≤n−1). Denoting

W := Un−1
(n) (6.4.4)

we can use the fact that B is non-degenerate to decompose V(n) = W ⊕W⊥. Note that all vectors in W⊥

are quasi-primary: otherwise W⊥ would contain a descendant of a quasiprimary of lower weight, which
would therefore be in W and not in W⊥. We can thus choose a (in general complex) basis vi of W⊥ such
that B(vi, vj) = δij . This leads to commutators of the form (6.4.1), and since the vi are orthogonal to

each other, we have W⊥ = ((Fn)⊗ dimW⊥

)(n). Because the v
i have higher weight than all quasiprimaries

in Un−1, they are orthogonal to them. It follows that V(≤n) can be written as
(
⊗n

k=1

(
F k
)⊗Nk)

)

(≤n)

with Nn = dimW⊥.
�
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In particular this implies that as long as the VA-limit factorizes and has a non-degenerate bilinear
form B, then the limit is unique, that is independent of the choice of connecting maps fMN .

Let us summarize the various results that we have found for the physically most relevant case of
unitary VOAs of CFT type:

Proposition 6.6. Let V N be a family of unitary VOAs of CFT type together with connecting maps
fMN forming a grading-restricted system as in definition 2.3 and compatible with the unitary structure.
If the structure constants CN

abc converge for all basis vectors, then the VA-limit (V ∞, Y∞) exists and is
a grading-restricted unitary Möbius VA of CFT type. Moreover, if this V ∞ factorizes, then the limit
is unique up to isomorphism: that is, if (V N , fMN ) and (V N , f̃MN ) are two systems whose connecting

maps f and f̃ both satisfy the above conditions and whose VA-limits both factorize, then the two limits
are isomorphic as grading-restricted VAs.
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227 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2004.
[LM01] Oleg Lunin and Samir D. Mathur. Correlation functions for MN/S(N) orbifolds. Commun. Math. Phys.,

219:399–442, 2001.
[Mal98] Juan Martin Maldacena. The Large N limit of superconformal field theories and supergravity.

Adv.Theor.Math.Phys., 2:231–252, 1998.

Thomas Gemünden, Independent, Bayes House, London, UK
Email address: thomas.gemunden@cantab.net

Christoph A. Keller, Department of Mathematics, University of Arizona, Tucson, AZ 85721-0089, USA
Email address: cakeller@math.arizona.edu


	1. Introduction
	2. Large N limits of vertex algebras
	2.1. Grading-restricted vertex algebras
	2.2. The setup
	2.3. The restricted dual
	2.4. Vertex operators and matrix elements
	2.5. The VA-limit

	3. A (non-)example: Tensor Power VAs
	3.1. Seed VAs and tensor products
	3.2. Connecting maps
	3.3. Duals
	3.4. The Vertex Algebra V infinity
	3.5. An action by S infinity

	4. An example: Permutation orbifolds
	4.1. Connecting maps for the permutation orbifolds
	4.2. Nested oligomorphic permutation orbifolds
	4.3. Structure constants
	4.4. The VA limit of permutation orbifolds

	5. The large N limit of VOAs
	5.1. Large central charge limit of Virasoro VOAs
	5.2. Möbius-conformal VAs and Unitary VAs

	6. Factorization
	6.1. Factorization in VAs
	6.2. The large N limit of symmetric orbifolds
	6.3. Factorization for oligomorphic permutation orbifolds
	6.4. Uniqueness of factorizing VAs

	References

