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Abstract— This paper explores some tradeoffs and limits
of performance in feedback control of interconnected multi-
agent systems, focused on the network sensitivity functions. We
consider the interaction topology described by a directed graph
and we prove that the sensitivity transfer functions between
every pair of agents, arbitrarily connected, can be derived using
a version of Mason’s direct rule. An analysis of the role of
cycles shows that these structures influence and considerably
limit the behavior of the system. We also derive a networked
version of Bode’s integral formula, showing that it still holds
for multi-agent systems.

I. INTRODUCTION

In recent years, thanks to advances in technology, attention

has been focused on the control of distributed dynamic

systems. In numerous mission scenarios, the concept of

a group of agents cooperating to achieve a determined

goal is very attractive when compared with the solution

of one single vehicle. In this class of systems, even if

the agents are dynamically decoupled, they are coupled

through the common task they have to achieve. When the

number of agents grows, centralized control is no longer

feasible and distributed control techniques became necessary.

Applications of coordinated control of multiple vehicles can

be found in many fields, including microsatellite clusters,

formation flying of unmanned aerial vehicles, automated

highway systems and mobile robotics.

The problem of distributed control has been widely studied

with tools from graph theory [1], [2], [3]. We consider

agents with identical linear dynamics and we model the

interconnection topology as a graph, in which the single

agents are represented by a vertex, while the interaction links

are the arcs.

The distributed control problem has been handled in

different ways and with different tools: dissipative theory and

linear matrix inequalities [4], edge agreement [5], [6], linear

quadratic regulator [7], decomposition and linear matrix

inequalities [8]. In almost all the works mentioned above

the control is applied to undirected graphs. If the graph

is undirected the problem becomes easier because all the

matrices associated with the graph, like the Laplacian, are

symmetric.

One approach to distributed control is to use leader-

follower arrangement. This approach is well studied and
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representative papers exploring graph-theoretic ideas in the

context of a leader-follower architecture include [3] and [9],

where a double-graph control strategy was proposed. This

topology represents a particular case, where the leader has a

more important role than the other agents and this may not

always be desirable.

The importance of the cycles in distributed control has

already been pointed out in several past works: Zelazo et

al. [5], [6] investigated the role of cycles and trees in the

edge Laplacian for the edge agreement problem, while Fax

and Murray [10] derived a relation between the presence of

cycles and the stability of the formation.

The contribution of this paper is to show a general method

to derive the transfer functions between any pair of agents,

where the interconnection topology is described by arbitrary

directed graphs with the leader-follower architecture is as a

particular case. We do not present a formula that simplifies

the complexity of computing sensitivity matrix, but we give

insight into its structure, in order to better understand the

role that cycles and paths play. We then analyze mechanisms

that rule the behavior of a multi-agent system and we show

intrinsic limits on the controller design due to the topology.

The paper is organized as follows. In section II we briefly

review the principal concepts of graph theory and the main

stability results on formation control. Section III extends

several classical control concepts in order to deal with multi-

agent systems. The core of the paper is presented in Section

IV. In Section V some design considerations and limitations

are proposed. Finally, Section VI contains examples on

different interaction topologies and the conclusions of the

paper are reported in Section VII.

A more detailed version of the paper is available as a

technical report [11].

II. PRELIMINARIES

In this section we summarize some of the key concepts

and definitions from graph theory that will be used in the

paper. A more detailed presentation of graph theory can be

found in [12].

A directed graph G is a set of vertices or nodes V and

a set of arcs A ⊂ V 2 whose elements a = (u, v) ∈ A
characterize the relation between distinct pairs of vertices

u, v ∈ V . For an arc (u, v) we call u the tail and v the

head. The in(out)degree of a vertex v is the number of arcs

with v as its head (tail). A directed path in a graph is a

sequence of vertices such that from each of its vertices there

is an arc to the next vertex in the sequence. A directed path

with no repeated vertices is called a simple directed path.
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A directed graph is called strongly connected if there is a

directed path from each vertex in the graph to every other

vertex. A directed graph is weakly connected if every vertex

can be reached from every other but not necessarily following

the directions of the arcs. A complete directed graph is a

graph where each pair of vertices has an arc connecting them.

A simple cycle is a closed path that is self-avoiding (does not

revisit nodes, other than the first). A acyclic directed graph

is a directed graph without cycles. A star graph of order

N , sometimes simply known as an N -star, is a graph on

N nodes with one node having degree N − 1 and the other

N − 1 nodes having degree 1.

The structure of a graph can be described by appropriate

matrices. The adjacency matrix A of a graph G is a square

matrix of size |V |, defined by Aij = 1 if (i, j) ∈ A, and zero

otherwise. The normalized Laplacian matrix L of a directed

graph G is a square matrix of size |V |, defined by Lij = 1
if i = j, Lij = 1/di if (i, j) ∈ A, where di is the outdegree

of the ith vertex, Lij = 0 otherwise. We can observe that

if di > 0 for all vertices in the graph, L has zero row sum,

which implies that zero is an eigenvalue of L. Furthermore

if G is strongly connected, zero is a simple eigenvalue of L
and all eigenvalues of L lie in a disk in the complex plane

with unity radius and centered at 1 + 0j [13].

We consider a formation of N agents with identical linear

dynamics. The normalized Laplacian matrix L of the graph

is used to represent the interaction topology. Suppose each

individual agent is a SISO system with local loop composed

of a local controller C(s) and a plant model P (s). According

to Fax [10], the multi-agent system is stable if and only

if the net encirclement of the critical points −λ−1
i (L) by

the Nyquist plot of P (s)C(s) is zero for all nonzero λi(L),
where λi(L) are the eigenvalues of the normalized Laplacian

matrix L of the graph.

We will utilize some additional notation used by Fax [10].

The Kronecker product ⊗ between two matrices P = [pij ]
and Q = [qij ] is defined as P ⊗ Q = [pijQ]. This is a

block matrix with the ijth block of pijQ. Let In indicate

the identity matrix of order n. To represent the matrix M
repeated N times along the diagonal we write M̂ = IN ⊗M .

Letting n be the number of configuration (output) variables

of each agent that can be controlled, L(n) is of dimension

Nn × Nn, i.e. L(n) = L ⊗ In.

III. STABILITY AND PERFORMANCE MEASURE

In this section we will investigate how the performance

specifications for single agent control systems translate into

requirements for multi-agent systems.

We consider the multi-agent feedback system in Figure

1, where r ∈ RN is the vector of the reference signals of

each agent, e ∈ RN are the errors between r and the process

outputs y ∈ RN , u ∈ RN is the control signal vector and

d ∈ RN and n ∈ RN are the load disturbances and the

measurement noises respectively. Define the networked loop

transfer function matrix as L̂(s) = P̂ (s)Ĉ(s). All through

the paper we will consider only stable systems. The relations

between the inputs and the interesting signals of the system

Fig. 1. Block diagram of a multi-agent feedback system.

are given by the following transfer function matrices that can

be recognized to be the networked version of the single agent

ones. We define the networked sensitivity function matrix

S̃(s) as

S̃(s) =
(
I + L(n)P̂ (s)Ĉ(s)

)−1

,

the networked complementary sensitivity function matrix

T̃ (s) = S̃(s)P̂ (s)Ĉ(s), the networked load sensitivity func-

tion matrix P̂ (s)S̃(s) and the networked noise sensitivity

function matrix L(n)Ĉ(s)S̃(s).
From now on, without loss of generality, we will consider

n = 1 so that each agent has a single output variable

that is being controlled. In analogy with the single agent

case, in order to guarantee stability, robustness and good

performance, we want to have

|S̃(jω)| ≪ 1 for ω ≪ ωc, and |S̃(jω)| ≈ 1 for ω ≫ ωc

|T̃ (jω)| ≪ 1 for ω ≫ ωc, and |T̃ (jω)| ≈ 1 for ω ≪ ωc.

Since in a multi-agent control the critical point for the

stability of the system is no longer the point −1, but the

collection of points −λ−1
i (L), the well-know indicators for

how near the Nyquist plot is to the critical points need to be

redefined.

Define the networked gain margin GMn as the mini-

mum scaling that will cause the Nyquist curve for L(jω)
intersect one of the eigenvalues of L. Define the networked

phase margin PMn as the minimum angle between the

argument of −λ−1 and L(jωcλ
), where ωcλ

is the angu-

lar frequency where the Nyquist plot intersects the circle

with radius | − λ−1| closest to the point −λ−1, i.e. where

|L(jω)| = | − λ−1|.

IV. DISTURBANCE REJECTION FOR

MULTI-AGENT SYSTEMS

In this section we show how to derive the networked

sensitivity transfer functions between any pair of agents for

a given topology. We are dealing with determining transfer

functions on graphs and an effective and straightforward

means to achieve it is signal-flow graph theory. The main

results in this area are due to Mason [14], who derived a

rule to compute the transfer function of a signal-flow graph,

commonly known as Mason’s direct rule [15], [16].

We define the Laplacian weight of a simple directed path

of length k from i to j, where i = i0, i1, . . . , ik = j, as the

product of the negative inverse of the outdegrees d of all the

nodes in the path besides the last one:

Lwk
i0ik

:= sgn(k)

t=k−1∏

t=0

(
−

1

dit

)
, (1)
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where sgn(k) = −1 if k is odd, sgn(k) = +1 if k is even.

We say a path is a degenerate path if it is a path of length

zero between a node and itself and we define its Laplacian

weight as one: Lw0
ii = 1. Since in a cycle every node can

be the starting and ending node, the Laplacian weight of a

cycle will be indicated with o as subscript. The Laplacian

weight of a cycle of length k will be

Lwk
o := sgn(k − 1)

t=k−1∏

t=0

(
−

1

dit

)
, i0 = ik, (2)

We define disjoint cycles in G to be a set of non-adjacent

simple cycles, that is, two simple cycles that do not share

any common nodes. The length of disjoint cycles is given

by the sum of the lengths of the composing simple cycles,

while the Laplacian weight of disjoint cycles is given by the

product of the Laplacian weights of the composing simple

cycles.

Define Gk
ij as the subgraph of G obtained from G by

removing all the nodes and all the arcs touching the simple

directed path from node i to node j of length k.

Theorem 1: The sensitivity transfer function between ev-

ery pair of nodes i and j of a generic graph G can be derived

using the following expression, which is a version of the

Mason’s Direct Rule:

S̃ij =
1

∆

∑

paths p ∈ G

Tp∆p, (3)

where:

1) ∆ is the determinant of (I + LP̂ Ĉ),

∆ =(1 + PC)N

+
∑

cycles o ∈ G

(
Lwk

o

)
(1 + PC)(N−k)(PC)k; (4)

2) Tp is the ‘gain’ of the pth simple directed path from

node i to node j of length k,

Tp =
(
Lwk

ij

)
(PC)k; (5)

and

3) ∆p is the value of ∆ for the subgraph Gk
ij not touching

the pth simple directed path from node i to node j of

length k,

∆p = (1 + PC)(N−1−k)

+
∑

cycles o ∈ Gk
ij

(
Lwk

o

)
(1 + PC)(N−1−k−k)(PC)k, (6)

and k represents the length of the cycles in Gk
ij .

The proof can be found in [11].

In classical control theory, in order to attenuate the

disturbances entering the system, the gain of S is reduced at

low frequencies and consequently the gain of the open loop

transfer function is large at those frequencies. Therefore

it is interesting to study the asymptotic behavior of the

networked sensitivity functions for |PC| → ∞.

The denominator in equation (3) is the determinant of

(I + LP̂ Ĉ), so it is a polynomial of N th order in PC. It

depends only on the cycles in G and it is the same for all

the S̃ij and S̃ii.

Proposition 2: Given a graph G, the determinant of the

normalized Laplacian matrix L is

det(L) = 1 +
∑

cycles o ∈ G

(
Lwk

o

)
. (7)

Proof: We will follow the proof of Theorem 1 in [11].

Consider the transformed graph G̃ with the same topology

described by L but the weight of each arc equal to

wij =
1

di

, ∀(i, j) ∈ G̃

and no self-loops (wii = 0). The transformed weighted

adjacency matrix Ã for the graph G̃ will be Ã = I −L and

the transformed gain matrix M̃ = (I − I + L)−1 = (L)−1.

The denominator of the gain matrix is the determinant of L.

Theorem 3: If every vertex in G has outdegree greater than

zero, the coefficient of (PC)N in the complete polynomial

expression of the denominator is always zero:

1 +
∑

cycles o ∈ G

(
Lwk

o

)
= 0. (8)

Proof: The coefficient of (PC)N can be computed from

equation (4) and gives the left hand side of equation (8). This

term is det(L) by Proposition 2. For graphs with di > 0, ∀i
we know that L has a zero eigenvalue and so det(L) = 0.

Therefore for weakly connected graphs with outdegree

of every node greater than zero, the polynomial in the

denominator is order N −1 in PC. The asymptotic value as

|PC| → ∞ depends on the coefficient of (PC)(N−1) and it

is easy to show it is given by

N +
∑

cycles o ∈ G

(
Lwk

o

)
(N − k). (9)

If a graph has at least one node with outdegree equal to zero,

the Laplacian matrix looses its property of zero row sum and

det(L) 6= 0. Graphs of this type will have a polynomial in

the denominator of N th order.

The numerator of S̃ij is an element of the adjugate matrix

(the transpose of the cofactors matrix) of (I+LP̂ Ĉ) and it is

a polynomial of order N −1 in PC. The coefficients depend

on all the simple directed paths from node i to node j and on

the cycles of the subgraphs Gk
ij . The value of the coefficient

of (PC)(N−1) in the complete polynomial expression of the

numerator for i 6= j is given by

∑

paths ij ∈ G


(

Lwk
ij

)
·


1 +

∑

cycles o ∈ Gk
ij

(
Lwk

o

)




 . (10)

If no cycles exist in Gk
ij , then Lwk

o = 0. If no path exists

from node i to node j, S̃ij will be always zero for every

|PC| value.

If i = j we have a degenerate path and Lw0
ii = 1. The

subgraph Gk
ij is obtained by removing the ith node and all

the arcs with head or tail in i and it will be indicated by Gi.
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TABLE I

SAMPLE GRAPHS AND NETWORKED SENSITIVITY FUNCTIONS

Complete directed graph Directed tree

eSii =
PC + (N − 1)

N · PC + (N − 1)
eSii =

1

PC + 1

eSij =
PC

N · PC + (N − 1)
eSij =

(PC)k

(1 + PC)(k+1)

Single cycle directed graph Directed star graph

eSii =
(1 + PC)(N−1)

(1 + PC)N
− (PC)N

eS11 =
PC + 1

2PC + 1

eSij =
(1 + PC)(N−1−k)(PC)k

(1 + PC)N
− (PC)N

We have only to look at the Laplacian weights Lwo of all

the simple cycles or disjoint cycles in Gi. Equations (5) and

(6) for i = j simplify to

(1 + PC)(N−1)

+
∑

cycles o ∈ Gi

(
Lwk

o

)
(1 + PC)(N−1−k)(PC)k, (11)

and the value of the coefficient of (PC)(N−1) in the com-

plete polynomial expression of the numerator for i = j
becomes

1 +
∑

cycles o ∈ Gi

(
Lwk

o

)
. (12)

From Theorem 3 we can assert that if every node has

outdegree greater than zero, both S̃ij and S̃ii are proper

functions in terms of the open loop transfer function. If at

least one node has d = 0, S̃ij and S̃ii are strictly proper

functions.

To better understand (1)–(12), we consider some sample

graphs. In Table I we summarize the networked sensitivity

functions for special graphs. A more detailed analysis and

all the proofs can be found in [11]. In all the examples no

self-loops have been considered.

V. DESIGN CONSIDERATIONS

In the previous sections we have shown how to derive all

the sensitivity transfer functions given a topology. Now we

will analyze how to design the topology in order to achieve,

when possible, desired levels of performance and we will

present some design limitations. Furthermore the role of the

cycles will be discussed more in detail.

To aid in our designs, we would like to find a relationship

between S̃ii and S̃ij . For low loop gains we have

lim
|PC|→0

|S̃ii| = 1 and lim
|PC|→0

|S̃ij | = 0.

Theorem 4: When the open loop gain is very high, the

magnitude of the networked sensitivity function between

every node and node i reaches the same value:

|S̃ji| ≈ |S̃ii|, |PC| → ∞. (13)

The proof can be found in [11].

Equation (13) states that for very high gain of the system,

the disturbance affecting agent i is propagated with the same

intensity through all its neighbors.

Analyzing the signs of the Laplacian weights we can

observe the following: (Lwij) is always positive, for simple

cycles (Lwo) is always negative and for disjoint cycles

nothing can be said about the sign of (Lwo). As it is

defined,|Lwo| ≤ 1 and the more cycles there are in the

subgraph, the more negative it is.

Define the global loopiness C as the total number of

distinct simple cycles in the graph (cyclic permutations of

the nodes do not count). The local counterpart, C(i) , is the

number of simple cycles that pass through node i. Define the

loopiness ratio of a node as C
(i)
r = C(i)/C.

The asymptotic value of the sensitivity depends on the

loopiness ratio. We have that the lower C
(i)
r is, the lower

the asymptotic value of S̃ii and S̃ji will be. This is because

(Lwo) is always negative and we would like to have the

highest number of cycles in the subgraph Gi, in order to keep

the asymptotic value as low as possible. If a small number of

cycles pass through node i compared to the total number of

cycles in the graph, in the subgraph Gi there will be a large

number of cycles left and then the asymptotic value will be

low. In a directed star graph (see Table I) the central node

has the worst loopiness ratio, Cr = 1, because all the cycles

of the graph are concentrated in it, while all the other nodes

have a good loopiness ratio because only one cycle passes

through them.

Unfortunately we cannot bring all the asymptotic values to

be small at the same time because all the asymptotic values

of S̃ii sum up to the unity. If we look at the sum of all

the asymptotic values of the numerator of S̃ii (12) for graph

with di > 0, ∀i ∈ G, we can see that they sum up to the

asymptotic value of the denominator (4). This is because a

cycle is not counted in Gi if the node i belongs to the cycle,

therefore each cycle in all the Gi is counted (N −k) times. It

implies that there are fundamental limitations to what can be

achieved by control and that control design can be viewed as

a redistribution of disturbance attenuation at low frequencies
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among the agents. Thus if we want to keep all the asymptotic

values as small as possible, the best result we can achieve

is 1/N for all the nodes, like in complete directed graphs

and single cycle directed graphs. In order to obtain the same

result in a generic graph, we have to equally distribute the

cycles on the nodes, like in a regular graph. The loopiness

ratio should be more or less the same for all the nodes. The

worst sensitivity function we can have is that of a directed

star graph.

We have seen that relation (8) holds only if every node

has outdegree greater than zero. By definition in a leader-

follower topology the leader node has d = 0, leading it to

have a sensitivity transfer function where the degree of the

numerator is less than the degree of the denominator. There-

fore any leader-follower topology has the asymptotic value

of any sensitivity function equal to zero for |PC| → ∞.

The diagonal sensitivity transfer function of an agent with

outdegree equal to zero, will be in any case always equal to

S. This is because since that agent node is not involved in any

cycle, G and Gi will have exactly the same cycles, and (11)

and (4) will differ only by a (1 + PC) at the denominator.

Bode [17] showed that for a SISO, stable open loop system

P (s)C(s), the integral of log(|S(jω)| is a constant value and

it is equal to zero.

Theorem 5: In a multi-agent system, Bode’s integral for-

mula for stable open loop systems still holds for each

diagonal interconnected sensitivity function S̃ii, no matter

what the interconnection topology is:
∫ ∞

0

log(|S̃ii(jω)|)dω = 0.

The proof can be found in [11].

VI. EXAMPLES

In this section we apply the theory developed above

to some formations and we analyze the frequency domain

behavior.

Suppose there are five agents in the formation with identi-

cal dynamics P (s) = 1/(s2 + s+4) and the local controller

C(s) = (800s + 2000)/(s + 40). It can be shown that C(s)
is a stabilizing controller for a single agent with infinite gain

margin and 60◦ of phase margin. The magnitude for very

low frequencies is |S| = 7.4 · 10−2.

Let us see now what happens when we have the multi-

agent system. In the following examples we will consider

only stable topologies and we will focus on performance.

Suppose we have the two interaction topologies shown in

Figure 2 .

Topology 1 represents a leader-follower scheme, where

agent 1 is the leader and the others are followers. Using

the fact that for low frequencies |S̃ji| ≈ |S̃ii| we write

the diagonal sensitivity functions. We already know that

S̃11 = S, while the others S̃ii are all equal and they can

be computed with equation (3). The Bode plot is shown in

Figure 3. As we expected, for low and high frequencies the

leader-follower sensitivity functions behave like the single

agent one. But for frequencies near the cut-off frequency, the

followers have a high peak value of about Ms = 5, meaning

(a) Topology 1 (b) Topology 2

Fig. 2. Two different topologies.
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Fig. 3. Topology 1: sensitivity functions Bode plot.

that the disturbances on those frequencies will be amplified

five times. Even if the system is stable, the interconnection

has caused a loss of a significant part of the stability margins,

which are now 2.3 for the gain margin and 17.5◦ for the

phase margin (Figure 4).
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(a) Topology 1
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(b) Topology 2

Fig. 4. Nyquist plot and critical points.

Looking at topology 2 we notice that it is exactly like

topology 1 but with arc 12 added. This added arc creates a

new cycle and transforms the graph into a strongly connected

one. Even if only one arc is added and the critical points of

topology 2 do not move too far from the ones of topology 1

(see Figure 4), the sensitivity transfer functions in Figure 5

are very different from Figure 3. Comparing Figure 5 with

Figure 3 we can see that the disturbance attenuation for low

frequencies is worse than in the leader-follower case, having

attenuation factors of about 0.3 and 0.2, but near the cut-off

frequency the peaks are lower Ms < 1.5. As we expected,

the poor behavior at low frequencies is given by nodes 2

and 3 because two cycles pass through them while only one

cycle passes through nodes 1, 4 and 5. The stability margins
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Fig. 5. Topology 2: sensitivity functions Bode plot.

for topology 2 are still reduced if compared to the single

agent case, but they are better than for topology 1: 2.86 for

the gain margin and 19.5◦ for the phase margin.

What about the off-diagonal sensitivity functions? The low

frequency behavior is similar to the corresponding diagonal

sensitivity functions, while at high frequencies the gain

drastically decreases. S̃ij are band-pass filters and this can be

seen in Figure 6, where the Bode plot of some off-diagonal

sensitivity functions is shown.
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Fig. 6. Topology 2: Bode plot of some off-diagonal sensitivity functions.

VII. CONCLUSIONS AND FUTURE WORK

The formula derived in Section IV shows how to compute

the network sensitivity functions for arbitrary graphs and

number of agents. We expect that this framework, together

with the considerations in Section V, will be helpful for

multi-agent controller designers.

From the examples above we can conclude that the inter-

connection topology influences the sensitivity functions in

two ways:

1) the cycles influence the low frequency behavior;

2) the Laplacian spectrum influences the peak value.

Given a topology, the open loop transfer function should have

higher gain at low frequencies in order to better attenuate the

disturbances. But because of the Bode’s integral formula, a

higher gain reduces the stability margins leading to a rise of

the sensitivity function’s peak.

No matter how the controller is designed, there are

fundamental limitations to performance. Control with only

feedback does not guarantee disturbance rejection. For this

reason, a two degree of freedom controller is needed. In

order to improve the properties of the multi-agent system,

the feedforward compensation should filter the disturbances

arriving from the agent’s neighbors.

Our analysis demonstrates that the presence of cycles

in the interaction topology degenerates the system’s per-

formance. Fax [10] arrived to a similar conclusion when

observed that adding a link to a system caused a loss on

the stability margin. If there are cycles in the graph, the

disturbance entering on an agent passes through its neighbors

and comes back making more difficult to attenuate it.

In this paper we have considered only systems with

identical dynamics, but we expect that this approach can

be extended to heterogeneous systems. We conjecture that

polynomials of the network sensitivity functions will include

different plant models, but that the paths and cycles structures

will influence the performances in the same way.
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