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ABSTRACT 
As multi-core microprocessors are becoming widely 
adopted, the need to extract thread-level parallelism 
from sequential single-threaded applications in a 
seamless fashion increases. In this paper, we study the 
limits of performance speedup for embedded 
applications using parallelizing compilers on platforms 
with and without support for thread-level speculation. 
 
First and somewhat expected, only two out of ten 
applications from the consumer and telecom domains of 
the EEMBC suite could be automatically parallelized 
on multi-core architectures with no thread-level 
speculation (TLS) support. We systematically study the 
speedup obtained by parallelizing compiler 
technologies by factoring in the impact of the number 
of cores, thread decomposition strategies, and thread-
management overhead. Overall, we have found that a 
TLS substrate is critical to uncover thread level 
parallelism and thread-management overhead must be 
low. On an eight-way multi-core system, it is possible 
to achieve a speedup of four, on average, for six out of 
the ten applications of EEMBC which we have 
analyzed.  
 
1. Introduction 
Frequency-scaling and exploitation of instruction-level 
parallelism have been the two major contributors to the 
performance doubling every eighteen months as 
predicted by Moore’s law.  Unfortunately, while both 
sources are far from exhausted, it has become 
challenging to continue leveraging them. For the 
desktop and server segments, heat dissipation on the 
microprocessor die has made frequency-scaling less 
attractive. And, the increasing wiring delays together 
with exponentially growing reorder buffers have made 
further exploitation of instruction-level parallelism 
practically infeasible [1]. As a result, virtually all 
microprocessor vendors have now launched multi-core 
roadmaps in which the doubling of transistors every 
eighteen months is likely to double the number of cores 
on die. 

 
In the embedded segment, multi-cores are also 
expected to become an important technology. For 
feature phones which have a rich functionality in terms 
of multimedia support, the inherent thread-level 
parallelism can potentially be uncovered by multi-core 
microprocessors. Moreover, dynamic-voltage-
frequency-scaling methodologies can be used to reduce 
the power consumption to make the battery last longer.  
 
Most code is however sequential and single-threaded. 
Despite research into parallelizing compilers for many 
decades, few codes can be automatically parallelized. 
This is because of the lack of information and/or 
limitations in static pointer analysis frameworks to 
chase all dependences at compile-time. This results in 
conservative decisions that make most available 
thread-level parallelism unexploited. As a remedy, 
there has been a significant amount of research into 
thread-level speculation (TLS) (see, e.g, [9, 10, 11, 13, 
14, 15, 16]), which postpones the dependency check to 
run-time. Assuming that multi-core chips offer a TLS 
substrate, the compiler can more aggressively expose 
thread-level parallelism. 
 
This is the first study to establish the amount of thread-
level parallelism that can be uncovered in the entire 
consumer and telecom suites of EEMBC [4] using a 
parallelizing compiler framework assuming a multi-
core model with and without support for TLS. We 
systematically study the speedup obtained by 
parallelizing compiler technologies by factoring in the 
impact of the number of cores, thread decomposition 
strategy, and thread-management overhead. Overall, 
we have found that a TLS substrate is critical in 
uncovering thread-level parallelism and thread-
management overhead must be low. On an eight-way 
multi-core system, it is possible to achieve a speedup 
of four on average for six out of the ten applications in 
EEMBC which we have analyzed.  
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In the next section, we provide the details of the thread-
level speculative model that we use. In Section 3, we 
provide details of the applications used along with the 
experimental strategy. Characterizations of loops are 
done in Section 4. Experimental results are presented in 
Section 5 followed by a discussion of related work in 
Section 6 before we conclude in Section 7. 
 
2. Execution and Architectural Models  
The goal of this study is to establish how much 
speedup can be obtained using a parallelizing compiler 
with and without support for TLS for a suite of 
embedded applications. In this section, we first present 
the software execution model used to extract TLP in 
Section 2.1 and then the suite of architecture models 
used in our experiments to establish the amount of 
parallelism that can be uncovered. This is done in 
Section 2.2. 
 
2.1 Speculative Loop-level Execution Model 
Our model for extracting threads from single-threaded 
programs is based on speculative loop-level 
parallelism. Successive loop iterations are 
speculatively run in parallel.  Figure 1 shows the loop-
level execution model. The program to the left in 
Figure 1 contains an example  loop with a trip count of 
m. Assuming m = 3, the sequential execution time and 
the execution time with TLS support when the 
iterations are independent are shown to the right in 
Figure 1.   
 

 
Figure 1: Speculative loop-level execution model 

 
2.2 Architectural Models 
We initially assume an idealized multi-core 
architecture with as many cores as the number of 
iterations in a loop. Moreover, we do not factor in any 
performance losses either in the memory system or due 
to thread-management. When a speculative loop is 
encountered, the same number of threads as the number 
of iterations is spawned. If a thread with a higher 
iteration number has speculatively read from a memory 

location that a thread with a lower iteration number has 
modified, and this modification happens after the read 
operation, the former thread along with all threads 
associated with subsequent iteration numbers are 
squashed. Once all successfully spawned speculative 
threads have terminated, the squashed threads are then 
speculatively spawned using the same procedure until 
all iterations have been executed. We have opted for 
this simple model of re-execution but note that one 
could have spawned the squashed threads immediately 
after the violation. It is an open question which of the 
strategies would be best. 
  
In principle, the execution time of the speculatively 
executed loop is dictated by the depth of the dataflow 
graph where each node is a single iteration. The 
algorithm for determining the execution time of the 
speculative loop is shown in pseudo-code in Figure 2. 
 

Figure 2: Pseudo-code for determining the 
execution time for a speculative loop. 

 
The outer loop visits iterations one by one. For each 
iteration (denoted my_iter), the first task is to 
determine whether there is a dependency with a 
previous iteration by visiting all iterations which were 
executed concurrently. The function is_dependent 
checks dependences between two iterations. If there is 
a dependency, time is elapsed by an amount that 
corresponds to the time for the longest iteration, since 
all concurrent iterations must be terminated before the 
next group of speculatively executed iterations can 
start. 
 
When modeling a multi-core system with as many 
cores as the number of iterations, P is initialized to the 
number of iterations denoted no_of_iter. Then, the 
condition of the first if-statement will never be 
satisfied. On the other hand, when modeling a multi-
core system with a limited a number of cores (P), this 

    
              
time=0; 
first_iter=1; 
for (i=1; i <= no_of_iter; i++)  { 
    my_iter = i; 
    for (j=i-1; j >=f irst_iter; j--) { 
       if  (my_iter  mod (P+1)  !=  0)  then { 
          if  is_dependent(my_iter,j) then { 
              time=time + max_time(first_iter, my_iter-1) +  
                       thread_management;            
              first_iter = my_iter; 
           } 
       } 
       else { 
         time = time + max_time(first_iter, my_iter) + 
                    thread_management; 
         first_iter = my_iter; 
       }  
    } 
}

main ()  
{ 
 .... 
 
for(a=0;a<m;a++)    
{ 
   …..  
   ….. 
 } 
 
} 

Iteration 1 

Iteration 2 

Iteration 3 

Execution Time 
(Sequential) 

Execution Time 
(TLS) 
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same condition is satisfied once every P iterations and 
time is then advanced. This is what is taken care of by 
statements in the else clause of Figure 2.  
 
So far we have assumed that thread management incurs 
no overhead. To factor in thread-management overhead 
in the execution time of a speculative loop, we charge 
thread_management cycles every time a new group 
of P speculatively executed iterations is launched. The 
extent to which the thread-management overhead 
impacts on the execution time is dictated by the size of 
each thread. Because a single iteration, so far, 
corresponds to a thread, the number of instructions 
executed per iteration is important. We will also 
experiment with other thread decomposition strategies 
to cut down on the impact of thread-management 
overhead. Given N iterations and P cores, one natural 
decomposition strategy is to assign the first N/P 
iterations to the first core, the second N/P iterations to 
the second core, and so on. This coarse grain 
decomposition will make each thread bigger and 
thread-management overhead will have a relatively 
lower impact on the execution time. 
    
3. Methodology 
We start this section with a brief description of the 
benchmarks used in this study. Then, we present a 
detailed description of the simulation framework. 
  
3.1 Benchmarks 
We have used the ten applications from the telecom 
and consumer domains of the industry-standard 
embedded benchmark suite EEMBC 1.1 [4]. All of 
them are written in C. The benchmarks were compiled 
to the MIPS-like PISA architecture using the GCC 
Cross Compiler of the SimpleScalar tool set assuming 
optimization level -O3 [3]. The numbers of distinct 
loops, that is, the static loop count and the dynamic 
instruction count for each application have been 
obtained by running the applications using sim-fast of 
the SimpleScalar tool set [3]. This study has considered 
only the loops present in the application code and 
ignored the loops which are part of the library code. 
Table 1 presents the applications used in this study. It 
is evident from Table 1 that most of the applications, 
except cjpeg and djpeg, contain a small number of 
loops.  
 
3.2 Parallelizing Compiler 
We have used the Intel® C++ 9.1 Compiler for Linux 
[6] to determine the extent to which a parallelizing 
compiler can uncover thread-level parallelism in the 
embedded applications. The Intel® compiler includes 
advanced optimization features such as Auto-
Parallelization which improves application 

performance on multiprocessor systems by means of 
automatic threading of loops [6]. 
 

Table 1: Number of static loops and the dynamic 
instruction count of the EEMBC applications. 

Benchmark Description 

Dyn. 
Instruc. 
Count  
(MInst) 

Loop  
Count  
(Static) 

autocor00 

Telecom,  
Fixed Point 
Autocorrelation 7 10 

conven00 

Telecom, 
Convolutional 
Encoder  666 8 

fbital00 

Telecom,  
Fixed Point Bit 
Allocation 2240 9 

fft00 

Telecom, Fixed 
Point Complex 
FFT/IFFT 54 14 

viterb00 
Telecom,  
Viterbi Decoder 893 13 

cjpeg 
Consumer, Jpeg 
Compression 20960 100 

djpeg 
Consumer, Jpeg 
Decompression 17081 108 

rgbcmy01 
Consumer, 
Image Filter 2523 11 

rgbhpg01 
Consumer, 
Image Filter 406 7 

rgbyiq01 
Consumer, 
Image Filter 696 10 

           
This option detects parallel loops capable of being 
executed safely in , automatically generates multi-
threaded code, and relieves the user from having to 
deal with the low-level details of iteration partitioning, 
data sharing, thread scheduling, and synchronizations 
[6]. We have used the optimization level –O3 and some 
additional flags - parallel and par-report - to compile 
and auto-parallelize the applications. The parallel flag 
is used to detect the loops which can be executed safely 
in parallel.  The par-report flag is used to generate the 
detailed report containing information such as how a 
particular loop can be parallelized and why a particular 
loop cannot be parallelized. The results obtained are 
presented in Section 5.1.     
 
3.3 Simulation Framework 
All the results presented in this paper are obtained from 
our custom trace-driven simulation tool. Figure 3 
summarizes the simulation process. Firstly, as 
mentioned in Section 3.1, we have compiled the 
applications using the cross-compiler of SimpleScalar 
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tool set [3]. Secondly, the generated binaries are fed 
into objdump tool of GNU binutils of SimpleScalar [3] 
as input to find the correspondence between the source 
code and the assembly code of each of the applications. 
We have used the output of objdump to determine the 
start PC and the end PC of each loop as well as the start 
PC of library code.  
 

 
Figure 3: Simulation Framework used in this study 
 
Thirdly, we have modified sim-fast, a fast functional 
simulator of SimpleScalar tool set [3], to implement the 
dynamic loop detection method described in [11] to 
calculate the execution-time coverage of a loop. We 
have executed the programs using the modified version 
of sim-fast to which the start PC of library code has 
been provided as one of the arguments. For each of the 
loops present in the application code, we have 
identified start PC and end PC of the loop, its 
execution-time coverage and whether it is the 
innermost loop (if nested). Note that we only attempt to 
parallelize the innermost loop in a loop nest.  
 
We then counted the total number of dynamic 
instructions in a particular loop as well as in the 
application. The dynamic instruction count of the loop 
is divided by the dynamic instruction count of the 
application to calculate the execution-time coverage of 
the particular loop. The output of this stage is a set of 
performance-critical loops – loops with execution-time 
coverage higher than a pre-set threshold – for each of 
the applications.    
 
At the next step, the output of objdump is used to find 
the exact location of each of the performance-critical 
loops in the source code through manual analysis. 
Then, we have performed manual analysis of each of 
the loop body to identify the variables/statements to 
which privatization and parallel reduction may be 
applied to exploit and enhance parallelism. Then, we 
have generated a separate trace file for each of the 
performance-critical loops by simulating the programs 

using another modified version of sim-fast and the 
knowledge gathered through manual analysis.  
 
We simulate a single-issue, in-order processor running 
Linux which completes one instruction each cycle. We 
have assumed a perfect memory system in which loads 
and stores can always be used in the next clock cycle. 
Though considerations of more realistic processor and 
memory hierarchy models are very important, right 
now we are only interested in establishing an upper 
bound on the speedup obtained using speculative loop 
level parallelism in the telecom and consumer suites of 
EEMBC. The discovered potential may later be 
realized/exploited using more realistic models. Finally, 
the generated trace files are used as input to the custom 
simulation tool that implements the algorithm 
determining the execution time according to Figure 2.  
 
4. Loop Characterization 
In this section, we present detailed results for the 
performance-critical loops of the selected applications 
of EEMBC 1.1.  
 
We have determined not only the location of the loop 
in the source code but also its execution-time coverage 
using the methodology presented in Section 3. The 
loop trip and the dynamic number of instructions per 
iteration are important because they serve as a guide to 
decide on whether the loop should be parallelized and 
the maximum number of threads to be spawned 
simultaneously considering the available resources. 
Firstly, the iterations with a low instruction count are 
supposed to be more sensitive to thread-management 
overhead than those with a high instruction count. 
Secondly, variations in the instruction count among the 
iterations may lead to load imbalance across the 
processors. So we have determined the loop trip count 
as well as the average number of instructions per 
iteration for the selected loops. The results are shown 
in Table 2.  
 
It is noticeable from Table 2 that there is often a single 
performance-dominating innermost loop which could 
potentially yield significant speedup if it has no loop-
carried dependences. In fact, all applications except 
cjpeg and djpeg have such a performance-critical 
loop. For example, autocor00 has a loop invoked 
40000 times with 85% execution-time coverage and 
performance-critical loops, e.g., the loops in fbital00, 
rgbcmy01, rgbhpg01 and rgbyiq01, have high 
loop trip counts of 256, 4161, 318, and 4714, 
respectively.  This implies that these applications might 
show substantial speedup. There are counter examples 
as well – conven00 has a loop trip count of 5 for the 
loop with 60% execution-time coverage and we would 

Source 
Code  

SimpleScalar 
Compiler 

Binary SimpleScalar 
(Sim-fast) 

SimpleUtils 
(objdump) 

Start PC of 
library code  

SimpleScalar 
(Sim-fast) 

Custom 
Simulation Tool 

Manual 
Analysis 

Trace File 

Performance-
critical loop(s) 

Results 
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expect that parallelization of the loop might not yield 
reasonable speedup for this application.  
 
In general, we observe that the number of instructions 
in each iteration is low (<100) in most of the loops 
which implies that thread-management overhead is 
expected to have a significant impact on the achievable 
speedup. For example, the average number of 

instructions per iteration is 13 in autocor00 whereas 
the number is 86 in case of rgbyiq01. Thus when 
parallelized, we may expect rgbyiq01 to perform 
better compared to autocor00 with an increase in 
thread-management overhead.    
 

 
Table 2: Characteristics of performance-critical loops 

Application Location of Loop 
(Filename : Line No) 

Execution-time 
Coverage 

Max. No of Iterations 
/Invocation 

Avg. No of 
instructions /Iteration 

autocor00 autocor00.c:111 85.00% 16 13 
conven00 conven00.c:130 60.00% 5 17 
conven00 conven00.c:119 14.00% 4 10 
conven00 conven00.c:127 13.00% 2 101 
fbital00 fbital00.c:129 96.00% 256 27 
fft00 fft00.c:172 72.00% 128 39 
fft00 fft00.c:136 9.00% 256 20 
fft00 fft00.c:191 8.00% 256 16 
viterb00 viterb00.c:263 84.00% 16 48 
viterb00 viterb00.c:310 5.00% 32 11 
cjpeg jccolor.c:212 14.00% 320 38 
cjpeg jfdctint.c:283 11.00% 8 155 
cjpeg jfdctint.c:218 10.50% 8 153 
cjpeg jcdctmgr.c:216 9.00% 64 17 
cjpeg fileio.c:396 8.00% 66651 8 
cjpeg rdbmp.c:551 8.00% 960 8 
cjpeg fileio.c:299 7.00% 14 8 
djpeg fileio.c:396 19.00% 6771 8 
djpeg jdcolor.c:208 15.00% 320 35 
djpeg jidctint.c:341 15.00% 8 187 
djpeg jidctint.c:235 10.00% 8 188 
djpeg jdsample.c:439 9.00% 158 22 
djpeg fileio.c:299 9.00% 4096 8 
rgbcmy01 bmark_lite.c:271 93.00% 4161 32 
rgbhpg01 bmark_lite.c:234 95.00% 318 52 
rgbyiq01 bmark_lite.c:349 94.00% 4714 86 

 
5. Results 
In this section, we present and discuss the results of our 
application case study. Firstly, we present the 
achievable speedup using the parallelizing compiler 
from Intel® [6] in Section 5.1 with no support for TLS 
followed by the speedup assuming support for TLS on 

an ideal machine in Section 5.2. We then study the 
impact of constraining the number of cores and thread-
management overhead on the potential speedup in 
Section 5.3 and Section 5.4, respectively. Finally, the 
impact of thread size on the speedup is studied in 
Section 5.5. 
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5.1 Speedup without Support for TLS 
Figure 4 presents the obtained speedup for the selected 
applications using the parallelizing compiler as 
described in Section 3.2. We have assumed infinite 
number of processing elements and zero-cycle thread-
management overhead. As expected, the performance 
improvement for most of the applications is quite poor.   

 

Figure 4: Speedup using Intel® Compiler 
 
In fact, only two applications (autocor00 and 
rgbyiq01) out of ten enjoy a significant speedup.  In 
terms of loops, out of twenty-six loops presented in 
Table 2 of Section 4, only seven can be automatically 
parallelized by the compiler. To uncover the reason, we 
have analyzed the reports on parallelization generated 
by the Intel® Compiler for the loops which have 
execution-time coverage of at least 50%. The findings 
are shown in Table 3. 
 

Table 3 : Auto-parallelization report 

Application Coverage 
Auto-

Parallel
ization 

 
Remarks 

autocor00 85% Yes  

conven00 60% No  
Potential data 
dependency 

fbital00 96% No 

Statically 
unknown 
loop trip 

fft00 72% No  
Potential data 
dependency 

viterb00 84% No  
Potential data 
dependency 

rgbcmy01 93% No  
Potential data 
dependency 

rgbhpg01 95% No  
Potential data 
dependency 

rgbyiq01 94% Yes  
 

We have found two main reasons why the loops cannot 
be parallelized automatically: 1) statically unknown 
loop trip and b) a potential data dependency. For 
example, the loop in fbital00 with execution-time 
coverage of 96% cannot be parallelized by the 
compiler because of the statically unknown loop trip 
count.  
 
5.2 Speedup with Support for TLS 
In this section, we have assumed an ideal machine 
model with TLS support and an infinite number of 
cores. The machine model is capable of managing 
(spawning, committing, and making a rollback) threads 
in zero time. It spawns a new thread at every iteration 
of a loop. Dependencies due to loop variables and the 
variables to which privatization and parallel reduction 
are applicable have been taken out of the trace to 
obtain the results. The speedups shown in Figure 5 are 
for the programs and are calculated following 
Amdahl’s Law using execution-time coverage of the 
selected loops.             

Figure 5: Speedup on the ideal machine 
 
Surprisingly, we can see from Figure 5 that six 
applications (autocor00, fbital00, viterb00, 
rgbcmy01, rgbhpg01 and rgbyiq01) out of ten 
yield decent speedup. We have also analyzed the other 
four applications (conven00, fft00, cjpeg and 
djpeg) to figure out why they do not yield better 
speedup. We have found that conven00 does not 
show any speedup because of very low loop trip counts 
which are 5, 4 and 2 for the three loops with 60%, 14% 
and 13% execution-time coverage, respectively, as 
shown in Table 2. The presence of loop-carried 
dependences in the most performance-critical loop of 
fft00 with execution-time coverage of 72% explains 
the reason of its lack of performance improvement.  
 
Unlike other applications, cjpeg and djpeg do not 
have a single performance dominating loop. Rather, we 
have identified multiple loops for each of the 
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applications and data dependences across iterations 
exist in many of them which make these two 
applications unsuitable for exploiting thread-level 
parallelism. We have also analyzed the six applications 
which yield significant speedups to understand the 
variations in the obtained speedup.  The loop trip count 
and the execution-time coverage shown in Table 2 can 
explain the results. For example, fbital00 which yields 
the highest speedup (22.86) has a loop trip count of 256 
for the loop with execution-time coverage of 96% and 
autocor00 with the lowest speedup (4.92) among the 
first six applications has a loop trip count of only 16 
and execution-time coverage is 85%.     
 
5.3 Impact of Number of Cores 
In Figure 6 we present the speedup of the applications 
running on a machine with a limited number of cores. 
We have also incorporated the results from the 
previous section to get a better understanding of the 
impact of the number of cores on speedup. All the 
other assumptions made in Section 5.2 are valid in this 
section as well. Further, an n-way machine will 
concurrently execute n speculative threads which are n 
successive iterations of a loop in this study.         

Figure 6: Speedup with 2, 4, 8, 16 or an infinite 
number of cores. 

 
In Figure 6, for each of the applications we show five 
bars which represent the speedup on a machine with 2, 
4, 8, 16 and an infinite number of cores, respectively, 
from left to right. We can conclude from Figure 6 that 
six applications (autocor00, fbital00, viterb00, 
rgbcmy01, rgbhpg01, and rgbyiq01) achieve 
linear speedup with respect to the number of cores and 
using more than two cores does not have any 
noticeable impact on the speedup of the remaining four 
applications (conven00, fft00, cjpeg and djpeg). 
Also, the potential speedup can be fully realized using 
sixteen processors for two applications (autocor00 
and viterb00) because of the loop trip (16) of the 
performance-critical loop of these applications.       
 

5.4 Impact of Thread-Management Overhead 
Figure 7 shows speedup for an 8-way machine which 
incurs thread-management overhead to support 
speculation. In Figure 7, for each of the applications we 
have four bars which represent the speedup on an 8-
way machine with thread-management overheads of 0 
(no overhead), 10, 20 and 50 cycles, respectively from 
left to right. Thread management typically incurs three 
types of overhead – starting a new speculative thread, 
performing a rollback on mis-speculation and 
committing speculative state when a thread has 
successfully finished [13]. In this study, we have used 
the term thread-management overhead to collectively 
refer to these three different types of overheads. We 
have run simulations for three different values of 
overhead – 10, 20, and 50 cycles. While 10 cycles is 
aggressive, multi-cores open up the possibility for new 
thread-spawn mechanisms in which the initial 
architectural state is broadcast. On the other hand, 50 
cycles is more on par with what is achievable today.  
 
Each thread consists of a single iteration of a loop. To 
have a better insight into the impact of overhead on the 
speedup, the results obtained using zero-cycle overhead 
has been reproduced.      

Figure 7: Speedup with thread-management 
overhead of 0, 10, 20 or 50 cycles. 

 
It is evident from Figure 7 that speedup of every 
application is highly sensitive to the thread-
management overhead. In fact, the four applications 
which have achieved poor speedup in Sections 5.2 and 
5.3 (zero-cycle overhead) are getting slower with 
respect to their sequential versions for an overhead of 
20 cycles or more. The remaining six applications, 
though achieving reasonable speedup, are getting 
significantly slower with the gradual increase of 
overhead. In order to understand this behavior, we have 
looked at the average number of instructions in an 
iteration of the selected loops as shown in Table 2 of 
Section 4.  
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We have found that the average instruction counts in 
autocor00, fbital00, rgbcmy01, rgbhpg01, and 
rgbyiq01 are 13, 27, 32, 52 and 86, respectively. 
Hence, autocor00 is expected to be the most sensitive 
whereas rgbyiq01 is expected to be the least sensitive 
to the increasing thread-management overhead. In fact, 
the expectations turn out to be true if we look at the 
results shown in Figure 7. Moreover, there is a one-to-
one correspondence between the number of cycles and 
instructions in our single-issue machine. Thus, it is 
perceivable that thread-management overhead has a 
significant impact on the execution time assuming a 
single iteration per thread. This necessitates evaluating 
the impact of packing multiple iterations into a single 
thread on speedup which we do in the next section.            
  
5.5 Impact of Thread Size 
In this section, we experiment with a coarse-grained 
thread decomposition strategy in which the N iterations 
are assigned to threads by letting each thread execute K 
consecutive iterations. The objective is to amortize 
thread-management overhead on a larger code chunk. 
A thread size (K) of 1, 2 and 4 iterations is considered 
and the corresponding results for an eight-way machine 
with thread-management overhead of 10 cycles are 
shown in Figure 8. In Figure 8, for each of the 
applications we show three bars which represent the 
speedup for a thread size of 1, 2 and 4 iteration(s), 
respectively, from left to right.    

Figure 8: Speedup with thread size of 1, 2 or 4 
iteration(s). 

 
It is evident from Figure 8 that the poor performance 
improvement of the four applications (conven00, 
fft00, cjpeg and djpeg) is consistent with the trends 
shown in the previous sections. Moreover, the 
exploration of thread-level parallelism in these 
applications causes performance degradation for a 
thread size of two or more iterations.  
 
More interestingly, we can see two different trends of 
performance improvement for the remaining six 
applications with when thread size is increased. 

Though the achievable speedup is increasing with 
increasing thread size for the four applications 
(fbital00, rgbcmy01, rgbhpg01 and rgbyiq01), the 
other two applications (autocor00 and viterb00) 
exhibit a different trend. In fact, a thread size of two 
iterations yields the best performance whereas a thread 
size of four iterations yields the worst performance in 
autocor00 and viterb00. Recalling the data in Table 
2, we note that the loop trip count of these two 
applications is sixteen. This implies that an eight-way 
machine with a thread size of two iterations perfectly 
balances the load across all the processors and thus 
amortizes thread-management overhead on a bigger 
chunk in these two applications. On the other hand, a 
thread size of 4 or more iterations causes load 
imbalance and consequently, will have negative impact 
on the speedup. 
 
From the above results and discussion, we may 
conclude that the loop trip, the instruction count in 
each iteration, and the thread-management overhead 
are the key factors to yield potential performance 
improvement by exploiting the speculative loop-level 
parallelism available in the embedded applications 
considered.       
 
6. Related Work 
A lot of research has been devoted to speculative 
thread-level parallelism. The most common sources of 
parallelism studied until today are either module-level 
or loop-level. However, loop-level parallelism offers 
certain advantages over module-level parallelism. 
Loops are ideal candidates for extracting parallel 
threads because of their regular structures and 
significant coverage on execution time [5, 7, 8, 9, 11, 
12]. Moreover, when a loop is encountered, many 
threads can potentially be spawned at once for many 
successive iterations [13]. It has been shown in [9] that 
the loop-iteration spawning policy with an increment 
predictor and unlimited connectivity architecture is an 
effective design to exploit speculative thread-level 
parallelism.  
 
To this date, however, most work has been driven by 
SPEC benchmark application case studies. Tubella and 
Gonzalez [11] have proposed the dynamic detection 
and characterization of loops to obtain speculative 
threads from a sequential program in the context of 
multithreaded processors and presented the results 
using SPEC95 benchmark suite. They have shown that 
for a feasible configuration with 2, 4, 8 and 16 
contexts, their proposed mechanism achieves a TPC 
(average number of active and correctly speculated 
threads per cycle) of 1.65, 2.6, 4 and 6.2, respectively 
[11]. A hardware method for runtime predictability of 
loop patterns has been evaluated and presented in [2]. 
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The results provided in [2] show that it is possible to 
correctly predict the number of iterations and the 
associated path for more than half of the loops visited 
in SPECint2000 applications. A method of selecting a 
suitable set of loops for parallelization to improve 
overall performance has been proposed in [12]. They 
have shown that a judicious choice of loops can 
improve the overall performance of SPEC2000 integer 
benchmarks by as much as 20% [12].  Thus most of the 
previous works have primarily focused on the 
applications from SPEC benchmark suite and are 
particularly suitable for general-purpose and high-end 
processors for the desktop. On the contrary, our work 
has evaluated the potential of thread-level parallelism 
in embedded applications.  
 
Gordon-Ross and Vahid [5] have proposed small on-
chip hardware to detect frequent loops. Their work is 
motivated by the fact that about 85% of the critical 
regions of code of Powerstone and MediaBench 
applications are small inner loops or near-inner loops 
while remaining 15% of the critical regions being 
subroutines with no inner loops [5]. But our studies 
have not only detected the performance-critical loops 
dynamically but also explored the potential of thread-
level parallelism out of those loops. Moreover, the 
objectives of the two studies are quite different from 
each other.    
 
Only recently, Kejariwal et al [7] has presented the 
challenges in exploitation of loop parallelism in 
embedded applications. However, our work is 
significantly different from [7] in several ways. Firstly, 
they have added instrumentation support through 
hardware performance counters to analyze the loop 
coverage which imposes overhead [7] along with a 
negative impact on the results. But we have calculated 
the execution-time coverage of the loops without any 
instrumentation which may have impact on the results. 
Thus, our work provides a more accurate estimate of 
the execution-time coverage of the loops. Secondly, it 
has been shown in [7] that in many programs, 
innermost loops which are comparatively easier to 
parallelize may have low coverage. On the contrary, 
we have shown that eight applications out of ten have a 
single performance-critical innermost loop with at least 
60% coverage of the execution time. Thirdly, they have 
claimed that hardware and/or software support for data 
dependence speculation (DDS), control speculation 
(CS) and data value speculation (DVS) may potentially 
yield better performance [7]. However, our study has 
shown that DVS is not needed to get significant 
speedups. In contrast to their study, we use 
privatization and parallel reduction and show that it is 
important to yield significant performance 
improvements for most of the applications and we 

provide data for the entire suite of consumer and 
telecom applications. Finally, we have systematically 
studied the limits of TLS by analyzing the impact of 
number of processing elements, thread-management 
overhead and thread size on the potential performance 
gain which is not done in [7].  
 
7. Conclusion 
In this study, the limits of performance speedup in 
embedded applications using parallelizing compilers on 
machines with and without thread-level speculation 
(TLS) support have been evaluated. We have found 
that a parallelizing compiler without support for TLS is 
not adequate to exploit the potential performance 
improvement of the applications. In fact, only two out 
of the ten selected applications can be parallelized 
automatically by the compiler.  
 
We found that TLS support is the key to uncover 
thread-level parallelism in the applications to achieve 
substantial speedup. In fact, four applications that the 
parallelizing compiler was unable to parallelize could 
be parallelized successfully with TLS support.  
However, low thread-management overhead along with 
a coarse-grain thread decomposition strategy is 
important to get the most out of TLS. Also, from the 
application perspective, the loop trip and the 
instruction count per iteration are the two most 
important characteristics to decide on whether a 
particular performance-critical loop should be 
parallelized speculatively. At the end, we have shown 
that an average speedup of four is achievable on an 
eight-way multi-core system with TLS support for six 
out of the ten chosen embedded applications.                     
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