
 1

Limits on Thread-Level Speculative Parallelism in
Embedded Applications

Mafijul Md. Islam1, Alexander Busck1, Mikael Engbom1, Simji Lee2,

Michel Dubois2, Per Stenström1

1Department of Computer Science and Engineering,
Chalmers University of Technology,

SE-412 96 Göteborg, Sweden

2Department of Electrical-Engineering Systems,
University of Southern California,

Los Angeles, USA

Contact Person: Mafijul Md. Islam, Email: mafijul.islam@ce.chalmers.se

ABSTRACT
As multi-core microprocessors are becoming widely
adopted, the need to extract thread-level parallelism
from sequential single-threaded applications in a
seamless fashion increases. In this paper, we study the
limits of performance speedup for embedded
applications using parallelizing compilers on platforms
with and without support for thread-level speculation.

First and somewhat expected, only two out of ten
applications from the consumer and telecom domains of
the EEMBC suite could be automatically parallelized
on multi-core architectures with no thread-level
speculation (TLS) support. We systematically study the
speedup obtained by parallelizing compiler
technologies by factoring in the impact of the number
of cores, thread decomposition strategies, and thread-
management overhead. Overall, we have found that a
TLS substrate is critical to uncover thread level
parallelism and thread-management overhead must be
low. On an eight-way multi-core system, it is possible
to achieve a speedup of four, on average, for six out of
the ten applications of EEMBC which we have
analyzed.

1. Introduction
Frequency-scaling and exploitation of instruction-level
parallelism have been the two major contributors to the
performance doubling every eighteen months as
predicted by Moore’s law. Unfortunately, while both
sources are far from exhausted, it has become
challenging to continue leveraging them. For the
desktop and server segments, heat dissipation on the
microprocessor die has made frequency-scaling less
attractive. And, the increasing wiring delays together
with exponentially growing reorder buffers have made
further exploitation of instruction-level parallelism
practically infeasible [1]. As a result, virtually all
microprocessor vendors have now launched multi-core
roadmaps in which the doubling of transistors every
eighteen months is likely to double the number of cores
on die.

In the embedded segment, multi-cores are also
expected to become an important technology. For
feature phones which have a rich functionality in terms
of multimedia support, the inherent thread-level
parallelism can potentially be uncovered by multi-core
microprocessors. Moreover, dynamic-voltage-
frequency-scaling methodologies can be used to reduce
the power consumption to make the battery last longer.

Most code is however sequential and single-threaded.
Despite research into parallelizing compilers for many
decades, few codes can be automatically parallelized.
This is because of the lack of information and/or
limitations in static pointer analysis frameworks to
chase all dependences at compile-time. This results in
conservative decisions that make most available
thread-level parallelism unexploited. As a remedy,
there has been a significant amount of research into
thread-level speculation (TLS) (see, e.g, [9, 10, 11, 13,
14, 15, 16]), which postpones the dependency check to
run-time. Assuming that multi-core chips offer a TLS
substrate, the compiler can more aggressively expose
thread-level parallelism.

This is the first study to establish the amount of thread-
level parallelism that can be uncovered in the entire
consumer and telecom suites of EEMBC [4] using a
parallelizing compiler framework assuming a multi-
core model with and without support for TLS. We
systematically study the speedup obtained by
parallelizing compiler technologies by factoring in the
impact of the number of cores, thread decomposition
strategy, and thread-management overhead. Overall,
we have found that a TLS substrate is critical in
uncovering thread-level parallelism and thread-
management overhead must be low. On an eight-way
multi-core system, it is possible to achieve a speedup
of four on average for six out of the ten applications in
EEMBC which we have analyzed.

 2

In the next section, we provide the details of the thread-
level speculative model that we use. In Section 3, we
provide details of the applications used along with the
experimental strategy. Characterizations of loops are
done in Section 4. Experimental results are presented in
Section 5 followed by a discussion of related work in
Section 6 before we conclude in Section 7.

2. Execution and Architectural Models
The goal of this study is to establish how much
speedup can be obtained using a parallelizing compiler
with and without support for TLS for a suite of
embedded applications. In this section, we first present
the software execution model used to extract TLP in
Section 2.1 and then the suite of architecture models
used in our experiments to establish the amount of
parallelism that can be uncovered. This is done in
Section 2.2.

2.1 Speculative Loop-level Execution Model
Our model for extracting threads from single-threaded
programs is based on speculative loop-level
parallelism. Successive loop iterations are
speculatively run in parallel. Figure 1 shows the loop-
level execution model. The program to the left in
Figure 1 contains an example loop with a trip count of
m. Assuming m = 3, the sequential execution time and
the execution time with TLS support when the
iterations are independent are shown to the right in
Figure 1.

Figure 1: Speculative loop-level execution model

2.2 Architectural Models
We initially assume an idealized multi-core
architecture with as many cores as the number of
iterations in a loop. Moreover, we do not factor in any
performance losses either in the memory system or due
to thread-management. When a speculative loop is
encountered, the same number of threads as the number
of iterations is spawned. If a thread with a higher
iteration number has speculatively read from a memory

location that a thread with a lower iteration number has
modified, and this modification happens after the read
operation, the former thread along with all threads
associated with subsequent iteration numbers are
squashed. Once all successfully spawned speculative
threads have terminated, the squashed threads are then
speculatively spawned using the same procedure until
all iterations have been executed. We have opted for
this simple model of re-execution but note that one
could have spawned the squashed threads immediately
after the violation. It is an open question which of the
strategies would be best.

In principle, the execution time of the speculatively
executed loop is dictated by the depth of the dataflow
graph where each node is a single iteration. The
algorithm for determining the execution time of the
speculative loop is shown in pseudo-code in Figure 2.

Figure 2: Pseudo-code for determining the
execution time for a speculative loop.

The outer loop visits iterations one by one. For each
iteration (denoted my_iter), the first task is to
determine whether there is a dependency with a
previous iteration by visiting all iterations which were
executed concurrently. The function is_dependent
checks dependences between two iterations. If there is
a dependency, time is elapsed by an amount that
corresponds to the time for the longest iteration, since
all concurrent iterations must be terminated before the
next group of speculatively executed iterations can
start.

When modeling a multi-core system with as many
cores as the number of iterations, P is initialized to the
number of iterations denoted no_of_iter. Then, the
condition of the first if-statement will never be
satisfied. On the other hand, when modeling a multi-
core system with a limited a number of cores (P), this

time=0;
first_iter=1;
for (i=1; i <= no_of_iter; i++) {
 my_iter = i;
 for (j=i-1; j >=f irst_iter; j--) {
 if (my_iter mod (P+1) != 0) then {
 if is_dependent(my_iter,j) then {
 time=time + max_time(first_iter, my_iter-1) +
 thread_management;
 first_iter = my_iter;
 }
 }
 else {
 time = time + max_time(first_iter, my_iter) +
 thread_management;
 first_iter = my_iter;
 }
 }
}

main ()
{

for(a=0;a<m;a++)
{
 …..
 …..
 }

}

Iteration 1

Iteration 2

Iteration 3

Execution Time
(Sequential)

Execution Time
(TLS)

 3

same condition is satisfied once every P iterations and
time is then advanced. This is what is taken care of by
statements in the else clause of Figure 2.

So far we have assumed that thread management incurs
no overhead. To factor in thread-management overhead
in the execution time of a speculative loop, we charge
thread_management cycles every time a new group
of P speculatively executed iterations is launched. The
extent to which the thread-management overhead
impacts on the execution time is dictated by the size of
each thread. Because a single iteration, so far,
corresponds to a thread, the number of instructions
executed per iteration is important. We will also
experiment with other thread decomposition strategies
to cut down on the impact of thread-management
overhead. Given N iterations and P cores, one natural
decomposition strategy is to assign the first N/P
iterations to the first core, the second N/P iterations to
the second core, and so on. This coarse grain
decomposition will make each thread bigger and
thread-management overhead will have a relatively
lower impact on the execution time.

3. Methodology
We start this section with a brief description of the
benchmarks used in this study. Then, we present a
detailed description of the simulation framework.

3.1 Benchmarks
We have used the ten applications from the telecom
and consumer domains of the industry-standard
embedded benchmark suite EEMBC 1.1 [4]. All of
them are written in C. The benchmarks were compiled
to the MIPS-like PISA architecture using the GCC
Cross Compiler of the SimpleScalar tool set assuming
optimization level -O3 [3]. The numbers of distinct
loops, that is, the static loop count and the dynamic
instruction count for each application have been
obtained by running the applications using sim-fast of
the SimpleScalar tool set [3]. This study has considered
only the loops present in the application code and
ignored the loops which are part of the library code.
Table 1 presents the applications used in this study. It
is evident from Table 1 that most of the applications,
except cjpeg and djpeg, contain a small number of
loops.

3.2 Parallelizing Compiler
We have used the Intel® C++ 9.1 Compiler for Linux
[6] to determine the extent to which a parallelizing
compiler can uncover thread-level parallelism in the
embedded applications. The Intel® compiler includes
advanced optimization features such as Auto-
Parallelization which improves application

performance on multiprocessor systems by means of
automatic threading of loops [6].

Table 1: Number of static loops and the dynamic
instruction count of the EEMBC applications.

Benchmark Description

Dyn.
Instruc.
Count
(MInst)

Loop
Count
(Static)

autocor00

Telecom,
Fixed Point
Autocorrelation 7 10

conven00

Telecom,
Convolutional
Encoder 666 8

fbital00

Telecom,
Fixed Point Bit
Allocation 2240 9

fft00

Telecom, Fixed
Point Complex
FFT/IFFT 54 14

viterb00
Telecom,
Viterbi Decoder 893 13

cjpeg
Consumer, Jpeg
Compression 20960 100

djpeg
Consumer, Jpeg
Decompression 17081 108

rgbcmy01
Consumer,
Image Filter 2523 11

rgbhpg01
Consumer,
Image Filter 406 7

rgbyiq01
Consumer,
Image Filter 696 10

This option detects parallel loops capable of being
executed safely in , automatically generates multi-
threaded code, and relieves the user from having to
deal with the low-level details of iteration partitioning,
data sharing, thread scheduling, and synchronizations
[6]. We have used the optimization level –O3 and some
additional flags - parallel and par-report - to compile
and auto-parallelize the applications. The parallel flag
is used to detect the loops which can be executed safely
in parallel. The par-report flag is used to generate the
detailed report containing information such as how a
particular loop can be parallelized and why a particular
loop cannot be parallelized. The results obtained are
presented in Section 5.1.

3.3 Simulation Framework
All the results presented in this paper are obtained from
our custom trace-driven simulation tool. Figure 3
summarizes the simulation process. Firstly, as
mentioned in Section 3.1, we have compiled the
applications using the cross-compiler of SimpleScalar

 4

tool set [3]. Secondly, the generated binaries are fed
into objdump tool of GNU binutils of SimpleScalar [3]
as input to find the correspondence between the source
code and the assembly code of each of the applications.
We have used the output of objdump to determine the
start PC and the end PC of each loop as well as the start
PC of library code.

Figure 3: Simulation Framework used in this study

Thirdly, we have modified sim-fast, a fast functional
simulator of SimpleScalar tool set [3], to implement the
dynamic loop detection method described in [11] to
calculate the execution-time coverage of a loop. We
have executed the programs using the modified version
of sim-fast to which the start PC of library code has
been provided as one of the arguments. For each of the
loops present in the application code, we have
identified start PC and end PC of the loop, its
execution-time coverage and whether it is the
innermost loop (if nested). Note that we only attempt to
parallelize the innermost loop in a loop nest.

We then counted the total number of dynamic
instructions in a particular loop as well as in the
application. The dynamic instruction count of the loop
is divided by the dynamic instruction count of the
application to calculate the execution-time coverage of
the particular loop. The output of this stage is a set of
performance-critical loops – loops with execution-time
coverage higher than a pre-set threshold – for each of
the applications.

At the next step, the output of objdump is used to find
the exact location of each of the performance-critical
loops in the source code through manual analysis.
Then, we have performed manual analysis of each of
the loop body to identify the variables/statements to
which privatization and parallel reduction may be
applied to exploit and enhance parallelism. Then, we
have generated a separate trace file for each of the
performance-critical loops by simulating the programs

using another modified version of sim-fast and the
knowledge gathered through manual analysis.

We simulate a single-issue, in-order processor running
Linux which completes one instruction each cycle. We
have assumed a perfect memory system in which loads
and stores can always be used in the next clock cycle.
Though considerations of more realistic processor and
memory hierarchy models are very important, right
now we are only interested in establishing an upper
bound on the speedup obtained using speculative loop
level parallelism in the telecom and consumer suites of
EEMBC. The discovered potential may later be
realized/exploited using more realistic models. Finally,
the generated trace files are used as input to the custom
simulation tool that implements the algorithm
determining the execution time according to Figure 2.

4. Loop Characterization
In this section, we present detailed results for the
performance-critical loops of the selected applications
of EEMBC 1.1.

We have determined not only the location of the loop
in the source code but also its execution-time coverage
using the methodology presented in Section 3. The
loop trip and the dynamic number of instructions per
iteration are important because they serve as a guide to
decide on whether the loop should be parallelized and
the maximum number of threads to be spawned
simultaneously considering the available resources.
Firstly, the iterations with a low instruction count are
supposed to be more sensitive to thread-management
overhead than those with a high instruction count.
Secondly, variations in the instruction count among the
iterations may lead to load imbalance across the
processors. So we have determined the loop trip count
as well as the average number of instructions per
iteration for the selected loops. The results are shown
in Table 2.

It is noticeable from Table 2 that there is often a single
performance-dominating innermost loop which could
potentially yield significant speedup if it has no loop-
carried dependences. In fact, all applications except
cjpeg and djpeg have such a performance-critical
loop. For example, autocor00 has a loop invoked
40000 times with 85% execution-time coverage and
performance-critical loops, e.g., the loops in fbital00,
rgbcmy01, rgbhpg01 and rgbyiq01, have high
loop trip counts of 256, 4161, 318, and 4714,
respectively. This implies that these applications might
show substantial speedup. There are counter examples
as well – conven00 has a loop trip count of 5 for the
loop with 60% execution-time coverage and we would

Source
Code

SimpleScalar
Compiler

Binary SimpleScalar
(Sim-fast)

SimpleUtils
(objdump)

Start PC of
library code

SimpleScalar
(Sim-fast)

Custom
Simulation Tool

Manual
Analysis

Trace File

Performance-
critical loop(s)

Results

 5

expect that parallelization of the loop might not yield
reasonable speedup for this application.

In general, we observe that the number of instructions
in each iteration is low (<100) in most of the loops
which implies that thread-management overhead is
expected to have a significant impact on the achievable
speedup. For example, the average number of

instructions per iteration is 13 in autocor00 whereas
the number is 86 in case of rgbyiq01. Thus when
parallelized, we may expect rgbyiq01 to perform
better compared to autocor00 with an increase in
thread-management overhead.

Table 2: Characteristics of performance-critical loops

Application Location of Loop
(Filename : Line No)

Execution-time
Coverage

Max. No of Iterations
/Invocation

Avg. No of
instructions /Iteration

autocor00 autocor00.c:111 85.00% 16 13
conven00 conven00.c:130 60.00% 5 17
conven00 conven00.c:119 14.00% 4 10
conven00 conven00.c:127 13.00% 2 101
fbital00 fbital00.c:129 96.00% 256 27
fft00 fft00.c:172 72.00% 128 39
fft00 fft00.c:136 9.00% 256 20
fft00 fft00.c:191 8.00% 256 16
viterb00 viterb00.c:263 84.00% 16 48
viterb00 viterb00.c:310 5.00% 32 11
cjpeg jccolor.c:212 14.00% 320 38
cjpeg jfdctint.c:283 11.00% 8 155
cjpeg jfdctint.c:218 10.50% 8 153
cjpeg jcdctmgr.c:216 9.00% 64 17
cjpeg fileio.c:396 8.00% 66651 8
cjpeg rdbmp.c:551 8.00% 960 8
cjpeg fileio.c:299 7.00% 14 8
djpeg fileio.c:396 19.00% 6771 8
djpeg jdcolor.c:208 15.00% 320 35
djpeg jidctint.c:341 15.00% 8 187
djpeg jidctint.c:235 10.00% 8 188
djpeg jdsample.c:439 9.00% 158 22
djpeg fileio.c:299 9.00% 4096 8
rgbcmy01 bmark_lite.c:271 93.00% 4161 32
rgbhpg01 bmark_lite.c:234 95.00% 318 52
rgbyiq01 bmark_lite.c:349 94.00% 4714 86

5. Results
In this section, we present and discuss the results of our
application case study. Firstly, we present the
achievable speedup using the parallelizing compiler
from Intel® [6] in Section 5.1 with no support for TLS
followed by the speedup assuming support for TLS on

an ideal machine in Section 5.2. We then study the
impact of constraining the number of cores and thread-
management overhead on the potential speedup in
Section 5.3 and Section 5.4, respectively. Finally, the
impact of thread size on the speedup is studied in
Section 5.5.

 6

5.1 Speedup without Support for TLS
Figure 4 presents the obtained speedup for the selected
applications using the parallelizing compiler as
described in Section 3.2. We have assumed infinite
number of processing elements and zero-cycle thread-
management overhead. As expected, the performance
improvement for most of the applications is quite poor.

Figure 4: Speedup using Intel® Compiler

In fact, only two applications (autocor00 and
rgbyiq01) out of ten enjoy a significant speedup. In
terms of loops, out of twenty-six loops presented in
Table 2 of Section 4, only seven can be automatically
parallelized by the compiler. To uncover the reason, we
have analyzed the reports on parallelization generated
by the Intel® Compiler for the loops which have
execution-time coverage of at least 50%. The findings
are shown in Table 3.

Table 3 : Auto-parallelization report

Application Coverage
Auto-

Parallel
ization

Remarks

autocor00 85% Yes

conven00 60% No
Potential data
dependency

fbital00 96% No

Statically
unknown
loop trip

fft00 72% No
Potential data
dependency

viterb00 84% No
Potential data
dependency

rgbcmy01 93% No
Potential data
dependency

rgbhpg01 95% No
Potential data
dependency

rgbyiq01 94% Yes

We have found two main reasons why the loops cannot
be parallelized automatically: 1) statically unknown
loop trip and b) a potential data dependency. For
example, the loop in fbital00 with execution-time
coverage of 96% cannot be parallelized by the
compiler because of the statically unknown loop trip
count.

5.2 Speedup with Support for TLS
In this section, we have assumed an ideal machine
model with TLS support and an infinite number of
cores. The machine model is capable of managing
(spawning, committing, and making a rollback) threads
in zero time. It spawns a new thread at every iteration
of a loop. Dependencies due to loop variables and the
variables to which privatization and parallel reduction
are applicable have been taken out of the trace to
obtain the results. The speedups shown in Figure 5 are
for the programs and are calculated following
Amdahl’s Law using execution-time coverage of the
selected loops.

Figure 5: Speedup on the ideal machine

Surprisingly, we can see from Figure 5 that six
applications (autocor00, fbital00, viterb00,
rgbcmy01, rgbhpg01 and rgbyiq01) out of ten
yield decent speedup. We have also analyzed the other
four applications (conven00, fft00, cjpeg and
djpeg) to figure out why they do not yield better
speedup. We have found that conven00 does not
show any speedup because of very low loop trip counts
which are 5, 4 and 2 for the three loops with 60%, 14%
and 13% execution-time coverage, respectively, as
shown in Table 2. The presence of loop-carried
dependences in the most performance-critical loop of
fft00 with execution-time coverage of 72% explains
the reason of its lack of performance improvement.

Unlike other applications, cjpeg and djpeg do not
have a single performance dominating loop. Rather, we
have identified multiple loops for each of the

0

2

4

6

8

10

12

14

16

18

autocor00
conven00
fbital00
fft00

viterb00
cjpeg

djpeg

rgbcm
y01

rgbhpg01
rgbyiq01
GM

ean

Sp
ee

du
p

0

3

6

9

12

15

18

21

24

autocor00
fbital00
viterb00
rgbcm

y01
rgbhpg01
rgbyiq01
G

M
ean 1

conven00
fft00

cjpeg

djpeg
G

M
ean 2

Sp
ee

du
p

 7

applications and data dependences across iterations
exist in many of them which make these two
applications unsuitable for exploiting thread-level
parallelism. We have also analyzed the six applications
which yield significant speedups to understand the
variations in the obtained speedup. The loop trip count
and the execution-time coverage shown in Table 2 can
explain the results. For example, fbital00 which yields
the highest speedup (22.86) has a loop trip count of 256
for the loop with execution-time coverage of 96% and
autocor00 with the lowest speedup (4.92) among the
first six applications has a loop trip count of only 16
and execution-time coverage is 85%.

5.3 Impact of Number of Cores
In Figure 6 we present the speedup of the applications
running on a machine with a limited number of cores.
We have also incorporated the results from the
previous section to get a better understanding of the
impact of the number of cores on speedup. All the
other assumptions made in Section 5.2 are valid in this
section as well. Further, an n-way machine will
concurrently execute n speculative threads which are n
successive iterations of a loop in this study.

Figure 6: Speedup with 2, 4, 8, 16 or an infinite
number of cores.

In Figure 6, for each of the applications we show five
bars which represent the speedup on a machine with 2,
4, 8, 16 and an infinite number of cores, respectively,
from left to right. We can conclude from Figure 6 that
six applications (autocor00, fbital00, viterb00,
rgbcmy01, rgbhpg01, and rgbyiq01) achieve
linear speedup with respect to the number of cores and
using more than two cores does not have any
noticeable impact on the speedup of the remaining four
applications (conven00, fft00, cjpeg and djpeg).
Also, the potential speedup can be fully realized using
sixteen processors for two applications (autocor00
and viterb00) because of the loop trip (16) of the
performance-critical loop of these applications.

5.4 Impact of Thread-Management Overhead
Figure 7 shows speedup for an 8-way machine which
incurs thread-management overhead to support
speculation. In Figure 7, for each of the applications we
have four bars which represent the speedup on an 8-
way machine with thread-management overheads of 0
(no overhead), 10, 20 and 50 cycles, respectively from
left to right. Thread management typically incurs three
types of overhead – starting a new speculative thread,
performing a rollback on mis-speculation and
committing speculative state when a thread has
successfully finished [13]. In this study, we have used
the term thread-management overhead to collectively
refer to these three different types of overheads. We
have run simulations for three different values of
overhead – 10, 20, and 50 cycles. While 10 cycles is
aggressive, multi-cores open up the possibility for new
thread-spawn mechanisms in which the initial
architectural state is broadcast. On the other hand, 50
cycles is more on par with what is achievable today.

Each thread consists of a single iteration of a loop. To
have a better insight into the impact of overhead on the
speedup, the results obtained using zero-cycle overhead
has been reproduced.

Figure 7: Speedup with thread-management
overhead of 0, 10, 20 or 50 cycles.

It is evident from Figure 7 that speedup of every
application is highly sensitive to the thread-
management overhead. In fact, the four applications
which have achieved poor speedup in Sections 5.2 and
5.3 (zero-cycle overhead) are getting slower with
respect to their sequential versions for an overhead of
20 cycles or more. The remaining six applications,
though achieving reasonable speedup, are getting
significantly slower with the gradual increase of
overhead. In order to understand this behavior, we have
looked at the average number of instructions in an
iteration of the selected loops as shown in Table 2 of
Section 4.

0

3

6

9

12

15

18

21

24

autocor00
fbital00
viterb00
rgbcm

y01
rgbhpg01
rgbyiq01
G

M
ean 1

conven00
fft00

cjpeg

djpeg

G
M

ean 2

Sp
ee

du
p

2 4 8 16 Infinite

0

1

2

3

4

5

6

7

autocor00
fbital00
viterb00
rgbcm

y01
rgbhpg01
rgbyiq01
G

M
ean 1

conven00
fft00

cjpeg

djpeg

G
M

ean 2

Sp
ee

du
p

0-cycle 10-cycle 20-cycle 50-cycle

 8

We have found that the average instruction counts in
autocor00, fbital00, rgbcmy01, rgbhpg01, and
rgbyiq01 are 13, 27, 32, 52 and 86, respectively.
Hence, autocor00 is expected to be the most sensitive
whereas rgbyiq01 is expected to be the least sensitive
to the increasing thread-management overhead. In fact,
the expectations turn out to be true if we look at the
results shown in Figure 7. Moreover, there is a one-to-
one correspondence between the number of cycles and
instructions in our single-issue machine. Thus, it is
perceivable that thread-management overhead has a
significant impact on the execution time assuming a
single iteration per thread. This necessitates evaluating
the impact of packing multiple iterations into a single
thread on speedup which we do in the next section.

5.5 Impact of Thread Size
In this section, we experiment with a coarse-grained
thread decomposition strategy in which the N iterations
are assigned to threads by letting each thread execute K
consecutive iterations. The objective is to amortize
thread-management overhead on a larger code chunk.
A thread size (K) of 1, 2 and 4 iterations is considered
and the corresponding results for an eight-way machine
with thread-management overhead of 10 cycles are
shown in Figure 8. In Figure 8, for each of the
applications we show three bars which represent the
speedup for a thread size of 1, 2 and 4 iteration(s),
respectively, from left to right.

Figure 8: Speedup with thread size of 1, 2 or 4
iteration(s).

It is evident from Figure 8 that the poor performance
improvement of the four applications (conven00,
fft00, cjpeg and djpeg) is consistent with the trends
shown in the previous sections. Moreover, the
exploration of thread-level parallelism in these
applications causes performance degradation for a
thread size of two or more iterations.

More interestingly, we can see two different trends of
performance improvement for the remaining six
applications with when thread size is increased.

Though the achievable speedup is increasing with
increasing thread size for the four applications
(fbital00, rgbcmy01, rgbhpg01 and rgbyiq01), the
other two applications (autocor00 and viterb00)
exhibit a different trend. In fact, a thread size of two
iterations yields the best performance whereas a thread
size of four iterations yields the worst performance in
autocor00 and viterb00. Recalling the data in Table
2, we note that the loop trip count of these two
applications is sixteen. This implies that an eight-way
machine with a thread size of two iterations perfectly
balances the load across all the processors and thus
amortizes thread-management overhead on a bigger
chunk in these two applications. On the other hand, a
thread size of 4 or more iterations causes load
imbalance and consequently, will have negative impact
on the speedup.

From the above results and discussion, we may
conclude that the loop trip, the instruction count in
each iteration, and the thread-management overhead
are the key factors to yield potential performance
improvement by exploiting the speculative loop-level
parallelism available in the embedded applications
considered.

6. Related Work
A lot of research has been devoted to speculative
thread-level parallelism. The most common sources of
parallelism studied until today are either module-level
or loop-level. However, loop-level parallelism offers
certain advantages over module-level parallelism.
Loops are ideal candidates for extracting parallel
threads because of their regular structures and
significant coverage on execution time [5, 7, 8, 9, 11,
12]. Moreover, when a loop is encountered, many
threads can potentially be spawned at once for many
successive iterations [13]. It has been shown in [9] that
the loop-iteration spawning policy with an increment
predictor and unlimited connectivity architecture is an
effective design to exploit speculative thread-level
parallelism.

To this date, however, most work has been driven by
SPEC benchmark application case studies. Tubella and
Gonzalez [11] have proposed the dynamic detection
and characterization of loops to obtain speculative
threads from a sequential program in the context of
multithreaded processors and presented the results
using SPEC95 benchmark suite. They have shown that
for a feasible configuration with 2, 4, 8 and 16
contexts, their proposed mechanism achieves a TPC
(average number of active and correctly speculated
threads per cycle) of 1.65, 2.6, 4 and 6.2, respectively
[11]. A hardware method for runtime predictability of
loop patterns has been evaluated and presented in [2].

0

1

2

3

4

5

6

autocor00
fbital00
viterb00
rgbcm

y01
rgbhpg01
rgbyiq01
G

M
ean 1

conven00
fft00

cjpeg

djpeg

G
M

ean 2

Sp
ee

du
p

1-iteration 2-iteration 4-iteration

 9

The results provided in [2] show that it is possible to
correctly predict the number of iterations and the
associated path for more than half of the loops visited
in SPECint2000 applications. A method of selecting a
suitable set of loops for parallelization to improve
overall performance has been proposed in [12]. They
have shown that a judicious choice of loops can
improve the overall performance of SPEC2000 integer
benchmarks by as much as 20% [12]. Thus most of the
previous works have primarily focused on the
applications from SPEC benchmark suite and are
particularly suitable for general-purpose and high-end
processors for the desktop. On the contrary, our work
has evaluated the potential of thread-level parallelism
in embedded applications.

Gordon-Ross and Vahid [5] have proposed small on-
chip hardware to detect frequent loops. Their work is
motivated by the fact that about 85% of the critical
regions of code of Powerstone and MediaBench
applications are small inner loops or near-inner loops
while remaining 15% of the critical regions being
subroutines with no inner loops [5]. But our studies
have not only detected the performance-critical loops
dynamically but also explored the potential of thread-
level parallelism out of those loops. Moreover, the
objectives of the two studies are quite different from
each other.

Only recently, Kejariwal et al [7] has presented the
challenges in exploitation of loop parallelism in
embedded applications. However, our work is
significantly different from [7] in several ways. Firstly,
they have added instrumentation support through
hardware performance counters to analyze the loop
coverage which imposes overhead [7] along with a
negative impact on the results. But we have calculated
the execution-time coverage of the loops without any
instrumentation which may have impact on the results.
Thus, our work provides a more accurate estimate of
the execution-time coverage of the loops. Secondly, it
has been shown in [7] that in many programs,
innermost loops which are comparatively easier to
parallelize may have low coverage. On the contrary,
we have shown that eight applications out of ten have a
single performance-critical innermost loop with at least
60% coverage of the execution time. Thirdly, they have
claimed that hardware and/or software support for data
dependence speculation (DDS), control speculation
(CS) and data value speculation (DVS) may potentially
yield better performance [7]. However, our study has
shown that DVS is not needed to get significant
speedups. In contrast to their study, we use
privatization and parallel reduction and show that it is
important to yield significant performance
improvements for most of the applications and we

provide data for the entire suite of consumer and
telecom applications. Finally, we have systematically
studied the limits of TLS by analyzing the impact of
number of processing elements, thread-management
overhead and thread size on the potential performance
gain which is not done in [7].

7. Conclusion
In this study, the limits of performance speedup in
embedded applications using parallelizing compilers on
machines with and without thread-level speculation
(TLS) support have been evaluated. We have found
that a parallelizing compiler without support for TLS is
not adequate to exploit the potential performance
improvement of the applications. In fact, only two out
of the ten selected applications can be parallelized
automatically by the compiler.

We found that TLS support is the key to uncover
thread-level parallelism in the applications to achieve
substantial speedup. In fact, four applications that the
parallelizing compiler was unable to parallelize could
be parallelized successfully with TLS support.
However, low thread-management overhead along with
a coarse-grain thread decomposition strategy is
important to get the most out of TLS. Also, from the
application perspective, the loop trip and the
instruction count per iteration are the two most
important characteristics to decide on whether a
particular performance-critical loop should be
parallelized speculatively. At the end, we have shown
that an average speedup of four is achievable on an
eight-way multi-core system with TLS support for six
out of the ten chosen embedded applications.

Acknowledgments
This research has been partly sponsored by the SARC
project under the EU funded FET program. Travel
support from the Swedish STINT program is also
deeply appreciated.

References
1. V. Agarwal, M.S. Hrishikesh, S. W. Keckler and D.

Burger, “Clock Rate versus IPC: The End of the Road
for Conventional Microarchitectures”, In Proceedings of
the 27th Annual International Symposium on Computer
Architecture (ISCA -00), pages 248 – 259, 2000.

2. M. Alba and D. Kaeli, ”Runtime Predictability of

Loops”, In Proceedings of IEEE International
Workshop on Workload Characterization (WWC-4),
pages 91 – 98, 2001.

3. D. Burger and T. Austin, “The SimpleScalar Tool Set

Version 2.0”, University of Wisconsin-Madison,
Computer Sciences Department, Technical Report 1342,
1997.

 10

4. EEMBC. http://www.eembc.org/.

5. A. Gordon-Ross and F. Vahid, “Frequent Loop
Detection Using Efficient Non-Intrusive On-Chip
Hardware”, IEEE Transactions on Computers, Special
Issue – Embedded Systems, Microarchitecture and
Compilation Techniques, Vol. 54, Issue 10, pages 1203
– 1215, 2005.

6. Intel® C++ 9.1 Compiler for Linux.

http://www.intel.com/cd/software/products/asmo-
na/eng/compilers/284264.htm

7. A. Kejariwal, A. V. Veidenbaum, A. Nicolau, M.

Girkar, X. Tian and H. Saito, “Challenges in
Exploitation of Loop Parallelism in Embedded
Applications”, In Proceedings of the 4th International
Conference on Hardware/Software Codesign and
System Synthesis, pages 173 – 180, ACM Press, 2006.

8. D. J. Lilja, “Exploiting the Parallelism Available in

Loops”, IEEE Computer, Vol. 27, Issue 2, pages 13 –
26, 1994.

9. P. Marcuello and A. Gonzalez, “A Quantitative

Assessment of Thread-Level Speculation Techniques”,
In Proceedings of the 14th International Conference on
Parallel and Distributed Processing Symposium (IPDPS
‘00), pages 595 – 604, 2000.

10. G. Steffan and T. Mowry, “The Potential for Using

Thread-Level Data Speculation to Facilitate Automatic
Parallelization”, In Proc. of Fourth Int. Symp. on High-
Performance Computer Architecture, pp. 2-13, Feb.
1998.

11. J. Tubella and A. Gonzalez, “Control Speculation in
Multithreaded Processors through Dynamic Loop
Detection”, In Proceedings of the 4th International
Symposium on High Performance Computer
Architecture (HPCA – 4), Pages 14 – 23, 1998.

12. S. Wang, X. Dai, K. S. Yellajyosula, A. Zhai and P.

Yew, “Loop Selection for Thread-Level Speculation”, In
Proceedings of the 18th International Workshop on
Languages and Compilers for Parallel Computing,
2005.

13. F. Warg and P. Stenström, “Limits on Speculative

Module-Level Parallelism in Imperative and Objective-
Oriented Programs on CMP Platforms“, In Proc. of Int.
Conf. on Parallel Architectures and Compiler
Techniques (PACT’2001), pages 221-230, Sept. 2001.

14. F. Warg and P. Stenström,, “Improving Speculative

Thread-Level Parallelism through Module Run-Length
Prediction”, In Proc. of 6th IEEE International
Symposium on Parallel and Distributed Processing
Symposium, April 2003.

15. F. Warg, “Techniques to Reduce Thread-Level

Speculation Overhead”, PhD Thesis, Department of
Computer Science and Engineering, Chalmers
University of Technology, Sweden, 2006.

16. Y. Zhang, L. Rauchwerger and J. Torrellas, “Hardware

for Speculative Run-Time Parallelization in Distributed
Shared-Memory Multiprocessors”, In Proc. of Fourth
Int. Symp. on High-Performance Computer Archi-
tecture, pp. 162-173, Feb. 1998.

