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In this paper we consider device scaling and speed limitations
on irreversible von Neumann computing that are derived from the
requirement of “least energy computation.” We consider compu-
tational systems whose material realizations utilize electrons and
energy barriers to represent and manipulate their binary represen-
tations of state.
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I. SCALING PROJECTIONS

The explosive growth of digital information processing
systems over the past 30 years has been driven by rapid
scaling, first of a variety of integrated circuit technolo-
gies, and, more recently, by accelerated scaling of CMOS
technology. Driven to obtain greater system functionality
on chip, scaling of MOS transistors performing as simple
electronic switches has been at the heart of this revolution.
However, CMOS scaling will likely become very difficult
at and beyond the 22-nm node (9-nm physical gate length).
Consequently, new approaches are emerging for realizing
similar switches in a variety of nanoscale technologies,
including molecular structures, carbon nanotubes, silicon
and germanium nanowires, etc. This paper addresses the
question of the minimum size of any irreversible logic
device that represents discrete binary logic states based on
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separation of a single charge for an arbitrary digital system
executing the common von Neumann architecture.

There is a rich literature that offers perspectives on the
limits of scaling [1]–[4], [11]. The question examined in this
paper is: “What are the limits to the maximum speed, max-
imum density and minimum energy of a system of binary
switches?” By using a simple physical model, we find that
we are rapidly approaching the point where compromises are
forced between device density and switching speed due to
thermal constraints.

Two important parameters in the realization of digital
systems are: 1) device switching timeand 2) integration
density (number of binary switches per cm) . Scaling
has afforded continuous improvement in both of these
parameters. As a result, the information throughput (e.g.,
the maximum number of binary transition per unit time

) has grown exponentially with time. Unfortunately,
since each binary transition requires energy , the total
power dissipation growth is in proportion to the information
throughput: .

Thus, to reduce power dissipation without sacrificing in-
formation throughput, must be decreased. The well-
known minimum limit for is given by theShannon–von
Neumann–Landauer (SNL)expression for smallest energy to
process a bit

eV K
(1a)

If we endeavor to construct a model for a computer operating
at SNL limit at 300 K, the minimum size and switching time
of binary switches can be estimated based on the Heisenberg
Uncertainty relations

(1b)

(1c)
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From these equations, the minimum size of a scaled
computational element or switch, which operates at is

nm K (2a)

This minimum size corresponds to a maximum integration
density of switches

devicescm (2b)

The minimum switching time of the gedanken least energy
switch is estimated as

ps (2c)

The power dissipation per unit area of this limit technology
is given by

W/cm (2d)

If we let , , then the feature size
computed from (2a) will be smaller and the switching time
will be faster, but unfortunately, the power per unit area at
maximum packing density increases as.

The 2001 International Technology Roadmap for Semi-
conductors (ITRS) calls for scaling of CMOS technology to
the 22-nm node. This technology node specifies NMOS tran-
sistors with a physical gate length of 9 nm and a CMOS IC
technology with a real gate density of 1.510 gates/cm
and power dissipation of 93 W/cm. The minimum-scaled
computational switch discussed above has a minimum size
only a factor of six less than the minimum size of the 22-nm
node NMOS transistor (physical gate length of 9 nm), but has
a device density 3 10 larger and a power density 510
larger than end-of-ITRS projections.

The size and switching time bounds and (1) and (2) are de-
rived without reference to a particular device structure. Con-
ceptually, the representation of a binary element requires a
material system with two physically distinguishable states
defined by the location of electric charge. Operation of the
switch requires one to conditionally change the state of the
material system. The usual approach to meeting these re-
quirements is to utilize an energy barrier manifested in the
material separating the binary states of the switch.

According to the Heisenberg/SNL model, it appears
that reduced energy operation would occur with cryogenic
temperatures. However, as will be shown in Section III,
computing below ambient temperature requires additional
energy for cooling, and the combined energy for compu-
tation will be larger than for computation at 300 K.
In order to investigate the distinguishability and cryogenic

Fig. 1. Energy model for limiting device:w = width of left-hand
well (LHW) and right-hand well (RHW);a = barrier width;
E = barrier energy.

operation questions, a more precise physical device model
is required, which is described in the next section.

II. THE MODEL: A PHYSICAL SYSTEM AS A COMPUTING

MEDIUM

Classical information processing technology always re-
quires a physical carrier, usually electrons and holes. The first
requirement to physical realization of any arbitrary switch is
the creation ofdistinguishablestates within a system of such
material particles. The second requirement is the capability
for a conditionalchange of state. The properties ofdistin-
guishabilityandconditional change of stateare two funda-
mental and essential properties of a material subsystem that
represents binary information. These properties are usually
obtained by creatingenergy barriersin a material system.

To that end, we consider a simple device consisting of two
wells separated by a finite potential barrier, shown in Fig. 1.
This device or switch has two stable states. Control of the
switch operation (e.g., changing the electron position from
one well to the other) is effected either by supplying the elec-
tron additional energy or, equivalently, by reducing the bar-
rier energy, denoted by . We assume that in the “on-state”
the electron can move “freely” from one well to the other.
However, in the “off-state” with the two wells separated by
an energy barrier , ideally there should be no movement
of the electron between the wells. In real systems, there al-
ways is some probability of spontaneous transitions
between the wells, and here we elaborate on the concept of
distinguishability. The location of the electron is said to be
“distinguishable” if there is a very low probability of sponta-
neous transition to the alternate well. If, on the other hand, for
the election in a given state (well), the probability of spon-
taneous transition to the alternate state (well) is equal to 0.5,
we say that distinguishability is lost. Thus, in the “off-state,”

0 for an ideal, perfectly distinguishable switch state,
and 0.5 for indistinguishable states. In “on-state,” the
probability of transition 1.

We believe that the two-well, one-barrier model is a valid
abstraction for electron transport switching devices. For ex-
ample, the field-effect transistor (FET) can be thought of as
consisting of two wells (source and drain) separated by a bar-
rier (channel).
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In this paper, we consider implications for device design
at the highest levels of integration density and lowest levels
of energy consumption. To a first approximation, the size of
a switch is greater than, while energy per switching op-
eration is given by the barrier height . The electron can
spontaneously change state either due to classic overbarrier
or quantum mechanical tunneling transitions. If the barrier
width is large enough, only overbarrier transitions play a role,
and the probability of such classic transitions is

(3)

Solving (3) for 0.5, when distinguishability is
completely lost, one obtains , which is the
well-known SNL energy limit per switch operation.

With respect to highest integration densities, when
is small, we argue that the Heisenberg Uncertainty rela-
tions give the limits of distinguishability. Consider again a
“two-well” bit in Fig. 1. How close could the wells be to each
other and still remain distinguishable? As is known from
quantum mechanics, a particle can pass (tunnel) through a
barrier of finite width even if the particle energy is less than
the barrier height . A simple analytical form of tunneling
probability through a rectangular barrier is given by the
Wentzel–Kramers–Brillouin (WKB) approximation [5]

(4)

Equation (4) also emphasizes the parameters controlling the
tunneling process. They are thebarrier height andwidth

as well as theeffective mass . If separation between two
wells is less than the Heisenberg limit, the structure of
Fig. 1 cannot represent a bit of information.

The total probability of spontaneous transitions is given by

(5)

from which an approximate solution for 0.5 is

(6)

Solution of (6) gives a generalized value for minimum en-
ergy per switch operation at the limits of distinguishability
that takes into account both classic and quantum transport
phenomena. The plot given in Fig. 2 shows the numerical
solution of (5) and its approximate analytical solution given
by (6) for 0.5. It is clearly seen that for 5 nm,
the expression is a valid representation of min-
imum energy per switch operation, while for 5 nm, the
minimum switching energy can be considerably larger.

In order to change the state of a switch, the particle in a
well should be provided additional energy to transition over
the barrier. Alternatively, work needs to be done to reduce the

Fig. 2. Minimum energy per switch operation as a function of
minimum switch size.

Table 1
Energy Barrier Height(E ) and Width(a), Switching Time
(t ), Error Probability(� ), and Dense-Packed Circuit
Power Density(P ) of an “Ultimate Switch”

height or width of the barrier. If the process is irreversible,
this energy is converted into heat. For a given value of ,
we can use (2) and (6) to develop data relating the energy
barrier height and width , switching time , error
probability , and power density as displayed in
Table 1.

Note that the SNL value for minimum switching energy
underestimates the minimum switching

energy required to operate the device. Due to tunneling, the
error probabilities would always exceed 50% if the barrier
height was set at .

In fact, we can develop a device design constraint from the
above arguments.

Suppose that there aredevices in a unit area oper-
ating at a switching frequency. Let denote maximum
thermal power that can be removed from the chip per unit
area. Then

(7)

and tradeoffs between and are implied by the physical
limit on heat removal capability.

As can be seen from Table 1, even “least energy computa-
tion” at SNL limit results in extremely high heat generation.
However, for practical purposes, must be much larger
than . If not, there is high static standby power dissipa-
tion, and a very high rate of false bit occurrences generated
by thermal fluctuations (the latter problem was recently an-
alyzed in [12]).

III. L IMITS OF HEAT REMOVAL

The energy density bound of 5–10 MW/cmobtained in
this paper by invoking the Heisenberg Principle and distin-

1936 PROCEEDINGS OF THE IEEE, VOL. 91, NO. 11, NOVEMBER 2003



guishability concept (see Table 1) is an astronomic number.
By comparison, the power density of a light bulb filament is
about 100 W/cm, and the power density of the surface of
the sun is roughly 6000 W/cm. Clearly, scaling for max-
imum component densities depends on the maximum rate
at which thermal energy can be removed from a solid. It is
recognized that heat can only be removed from systems at
some finite rate [4]; however, quantitative estimates of fun-
damental limits for heat removal from a heterogeneous solid
system at moderate temperature gradients to the ambient are
difficult to obtain because there exist several different heat
removal mechanisms and because of the complex geometry
of a packaged chip. Although fundamental limit estimates for
heat removal capacity are beyond the scope of the paper, we
outline a few basic thermal considerations below.

Any heat removal process implies the presence of a reser-
voir with an infinite heat capacitance, i.e., const, in
which all heat ultimately flows. We take 300 K.

Newton’s Law of Cooling is another governing principle
for heat removal, i.e.

(8)

where is the device temperature during operation, and
is the heat transfer coefficient. Note that (8) indicates the

rate of heat removal is directly proportional to the differ-
ence between the ambient and the device temperature and
requires that 300 K. The maximum temper-
ature of silicon integrated circuits is estimated to be about
400 K (125 C [6]); thus, 300 K 400 K.

A. Heat Removal at

The coefficient in (8) varies significantly depending
upon the cooling method chosen. The maximum values of

are limited by material constants such as specific heat,
thermal conductivity, viscosity, etc. Highest values offor

400 K can be achieved by using liquid forced con-
vection and phase change/boiling [7]. Additional increase
of the heat removal rate can be achieved by creating ex-
tended surface area [7]. In [8], it was estimated that the ulti-
mate limit for heat removal from silicon surface at
400 K is about 1000 W/cmby convective cooling. A sim-
ilar heat removal capacity was estimated for phase change [7]
and thermoelectric cooling [9]. Experimentally, 790 W/cm
was demonstrated by forced water convection cooling of a
uniformly heated Si substrate with embedded microchan-
nels [8]. In information-processing systems the upper limit
of heat removal is somewhat lower, due to concentration of
heat sources in local areas of the system. If known cooling
methods are employed, it appears that that heat removal ca-
pacity of several hundredW/cm represents a practically
achievable limit for a two-dimensional structure. Note that
ITRS projects 93 W/cmfor the year 2016, and this number
is in the “no known solution” category.

(A similar analysis can be offered for heat removal capac-
ities for a three-dimensional solid system, where the theoret-
ical heat removal rates can be as high as 10 kW/cm[10].

Fig. 3. The total energy per bit operation for room temperature
and cryogenic operations of a nanoelectronic switch.

However, this is offset by much higher volumetric heat gen-
eration by the electronic components.)

B. Heat Removal at

Another alternative is to remove the heat generated by the
device by refrigeration. In this case, Carnot’s Theorem gives
the maximum efficiency for an ideal machine for forced heat
removal

(9)

where is the heat removed and is the work required
to remove the heat. Since energy is consumed by refrigera-
tion, one must consider the total energy consumed by both
device operation and the refrigeration system

(10)

Note from Fig. 3 that for nanodevice cryogenic operation,
the total energy per bit increases dramatically relative to the
total energy per bit required at room temperature. This in-
creased dissipation is ultimately due to the temperature in-
dependence of the second term on the right side of (10) that
arises from tunneling considerations.

IV. REALITY CHECK: COMPARISONWITH THE 2001 ITRS

Present day and projected silicon integrated circuits differ
from the above model in several respects. First, the packing
density is less than , since the effective size of FET
switch is larger than the channel length(in practice,
10 15 ). Second, in integrated circuits, there exist many
layers of interconnects that dissipate energy and also require
some floorspace. It is well known that the minimum energy
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Table 2
Comparison of the Results of This Analysis With Data Projected for CMOS Technology Projected
for End-of-the-ITRS 22-nm Node MOSFETS for 2016 in the 2001 ITRS

dissipated by interconnects for successful signal transmis-
sion is also . Therefore, taking into account that
a part of chip area is occupied by interconnect does not sub-
stantially change estimate for minimum power.

Third, not all switches in the circuit change their state si-
multaneously; in other words, the activity factor is less than
100%.

Table 2 compares the results of the gedanken switch anal-
ysis with data projected for CMOS technology at the 2001
ITRS 22-nm node (2016) MOSFETs [5]. The table shows
that if we scale the gedanken switch to a comparable density
and speed to that of the end of the ITRS switch, the power
dissipation per unit area is remarkably similar.

This comparison suggests two conclusions. First, any bi-
nary switch, operating at lower bound of energy, and in a
maximum density configuration, fundamentally is limited in
size to a critical dimension of 1 nm (see (2a) and Table 1).
This critical dimension is less than 10smaller than the crit-
ical dimension (9 nm) of an end-of-the-roadmap MOSFET.

Second, it is clear from the above analysis that scaling for
binary switches, packed to maximum density, is ultimately
limited by the system capability to remove heat. Even if we
make an overoptimistic assumption that the devices operate
at the SNL minimum energy limit, we can see than the bene-
fits of scaling begin to erode as features’ sizes approach those
projected by the end of ITRS. This means that the simulta-
neous gains in packing density and speed of operation will
eventually be replaced by a tradeoff between packing den-
sity and speed in order to satisfy heat removal constraints.

V. SUMMARY AND IMPLICATIONS

The 30-year-long trend in microelectronics has been to in-
creasebothspeedanddensity by scaling of device compo-
nents (e.g., CMOS switch). However, this trend will end as
we approach the energy barrier due to limits of heat removal
capacity. For nanoelectronics, this result implies that an in-
crease in device density will require a sacrifice, due to power
consideration, in operational speed, and vice versa. Thus, it
appears that we are entering a regime where tradeoffs are re-
quired between speed and density, quite in contrast to the
traditional simultaneous benefits in speed and density from
conventional scaling.

Sometimes it is argued that enhanced processing speed at
the algorithm level can be obtained via parallel execution,
thus reducing the need for high-speed components. Indeed,
in some cases, parallel execution can result in faster execu-
tion of a particular algorithm applied to a particular problem.
In these cases, speedup in algorithm performance often is
proportional to the number of additional elements utilized.
Further, these additional computational elements usually are
exercised at their limits of performance with high rate of
component utilization. Consequently, the same fundamental
limits on device size and speed, discussed above, remain op-
erative.

We believe that in the next ten years, the impact of na-
noelectronics research will be seen primarily through im-
provements in the evolution of the CMOS technology plat-
form that will continue to advance along the lines prescribed
by ITRS 2001. For example, new materials and processes
are needed to reduce the gate and channel leakage problems
associated with device scaling, and nonclassical MOSFET
structures may be required to sustain scaling to and beyond
the 22-nm technology node. Exotic structures, such as carbon
nanotubes, may find their way into CMOS applications, not
so much driven by acceleration of the scaling cadence, but
more likely to enhance the performance of CMOS devices, or
perhaps to simplify fabrication. The gedanken model above
suggests that even if entirely different electron transport de-
vices are invented for digital logic, their scaling for density
and performance may not go much beyond the ultimate limits
obtainable with CMOS technology, due primarily to limits
on heat removal capacity. We think that this suggests that
research to extend the benefits of scaling beyond the ITRS
horizon should examine alternate physical mechanisms for
device operation. All forms of information processing tech-
nology would significantly benefit from advances in heat re-
moval technology.
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