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Abstract 

 The lower bound customarily cited for Poisson’s ratio ν, 1, is derived from the 

relationship between ν and the bulk and shear moduli in Lamé’s theory of linear elasticity. 

However, experimental verification of the theory has been limited to materials having ν  0.2. 

From consideration of the longitudinal and biaxial moduli, we recently determined that the lower 

bound on ν for isotropic materials from this theory is actually 1/5. Since this value is consistent 

with experimental measurements on most real materials, the general presumption is that the 

theory has been validated. Herein we generalize our prior result, first by analyzing expressions 

for ν in terms of six common elastic constants, and then by considering arbitrary strains. The 

results corroborate that ν  1/5 for linear elasticity theory to be applicable. For materials that 

deviate from this bound (ν < 0.2), Lamé’s theory will yield erroneous results, and thus more 

sophisticated elasticity models must be used to analyze the mechanical behavior of such 

materials. 

 

1. Introduction 

The ratio of lateral strain 22 to longitudinal strain 11 defines the elastic constant 

 22

11

  
 

(1)  

for a material under uniaxial stress σ11. This constant is named for Poisson, who defined it in 

1829 in his single constant theory of linear elasticity, in which  = ¼ for all solids [1]. Recent 

interest in auxetic materials (ν < 0) [2,3] and nano-composites, in which Poisson’s ratio is used to 

characterize mechanical behavior [4,5,6,7,8], has renewed attention to this quantity. 

Much of the experimental investigations of the mechanical behavior of isotropic solids in 

the early 19th century were devoted to measuring ν, in order to verify the single constant Poisson 
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idea. Its refutation developed sporadically; the first evidence appeared in 1848, when ν was 

found to be ca. ⅓ for various oxide glasses and brasses [9], and in 1859, when experiments 

determined ν = 0.295 for steel [10]. Unfortunately, other less accurate measurements supported 

the theory, and the controversy persisted into the 1860s. Lamé’s two-constant linear elasticity 

theory for isotropic materials [11] was adopted by most researchers soon thereafter, in part 

because it accommodates variation in ν [12,13]; however, this did not prove the theory was valid. 

According to the theory, for an isotropic material only two elastic constants are unique, 

so its validation requires measurement and comparison of three different constants. For example, 

the relation  

 1
2 6

E
B

    (2)  

can be used to compare measured values of Poisson’s ratio to that determined from Young’s 

modulus E and the bulk modulus B. This approach presents two challenges: (i) highly precise 

data are required (see review [14]); and (ii) conventional solids are often non-linear even at 

strains as small as 10−5 [15,16]. Experimental verification appeared in the early 1900s [17,18], 

with data for iron, tin, aluminum, copper, silver, platinum, and lead [18] conforming to Lamé’s 

two-constant theory (Fig. 1). In the past 100 years, the theory has been fully accepted and is 

universally applied in science and engineering. Thus, it is common practice to limit 

characterizations of isotropic solids to two elastic constants, obtained for example from shear and 

longitudinal wave speed measurements [19,20], with other parameters calculated from the Lamé 

relations.  

The accepted theoretical limits on Poisson’s ratio are much lower than the experimental 

range in Fig. 1, which means that the theory has actually been verified only for materials having 

ν  0.2. The conventional limits are found from [12] 

 
(1 2 )3

2(1 )
G B







 (3)  

where G is the shear modulus. To minimize the strain energy at equilibrium and avoid 

spontaneous deformation, G and B must be positive, leading to the oft-stated 

“thermodynamically admissible” range [12,21] 

 1
21    (4)  
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This derivation of the limits on ν is the obvious one, considering deformations involving 

changes in size and shape. The actual thermodynamic limits on ν have never been determined 

experimentally, and measurements for isotropic materials occupy a much narrower range than 

the conventional limits (Fig. 1). Reviews of the literature of more than 3,000 measurements on 

596 different substances over a wide range of temperature and pressure, including pure elements, 

engineering alloys, polymers, ceramics, and glasses, show that with very few exceptions (e.g., 

porous quartz or very hard materials such as diamond and beryllium), ν  0.2 for isotropic, 

homogeneous materials [22,23]. Thus, the lower limit in eq. 4 does not represent the behavior of 

most real materials. This does not mean that real materials cannot have ν  0.2, but only that  

Lamé’s theory has not been experimentally validated for ν  0.2  

Notwithstanding its conceptual appeal, there is no mathematical or physical justification 

in Lamé’s theory for preferring G and B over other pairs of constants in determining the limits on 

Poisson’s ratio. For example, using Lamé’s relation for  in terms of E and the longitudinal 

modulus, M, we have shown from the roots of a quadratic expression that the range in eq. 4 is 

split into [23] 

 1
51     (5a) 

 1 1
5 2   (5b) 

Since elastic properties are unique, only one range can be valid; moreover, the lower limit of 1
5  

agrees with experimental data. Thus, this more restrictive upper range, 1 1
5 2  , appears to 

be the correct limit for Lamé elasticity, since values of  still conform to eq. 4. The argument 

might be made that the range extending to 1    in eq. 5 is mathematically valid, and hence 

represents an acceptable bound. However, rejection of spurious roots is common when an 

analysis produces two or more solutions; physical considerations are applied to eliminate roots 

that are false. Examples include the Landau-Lifshitz equation for the motion of a charge [24], 

analysis of projectile trajectories in air [25], Pythagoras’ theorem for right triangles, and more 

generally in the solutions of ordinary differential equations [26]. We also note that a recent 

theoretical analysis [27], based on symmetry arguments from elastic constants that were 

restricted to linear combinations of the two Lamé constants, similarly found expressions for ν 

having multiple roots; the lower bound on Poisson’s ratio was larger than -1, namely  1 2 2 . 

Thus, two recent analyses [23,27] undermine the accepted range of  for Lamé’s theory to be 

valid. 
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 This more restrictive lower bound on Poisson’s ratio in eq. 5b is important because it 

means that whenever a material has ν < 0.2, the equations of linear elasticity derived from the 

Lamé theory cannot apply; a more sophisticated model of elasticity must be invoked to provide 

relations between elastic constants for that material. In this work we first extend the analysis of 

ref. [23] to all commonly defined elastic constants, in order to obtain their associated limits for 

Poisson’s ratio. We then generalize these results to arbitrary deformation mode. Our previous 

conclusion [23], that the minimum of ν for an isotropic material is 1/5, is shown to be general for 

materials for which the equations of the Lamé elasticity are valid. 

2. Limits on ν from common elastic constants 

 For an isotropic solid with strain components εij, the reversible work of deformation is 

[12] 

     2 2 2 2
11 22 33 12 13 23 22 33 33 11 11 222 2 4 4 4W                          (6)  

where λ and μ (=G) are the Lamé constants. (Note defining the shear strain as the , there is a 

factor  Differentiation with respect to εij defines the stress tensors σij. When uniaxial loading is 

substituted (i.e., σ = σ11 and all other σij = 0),  

 
(3 2 )

,  
2 2

E
   

   


 
 

 (7)  

This procedure can be carried out for any deformation or loading geometry to define the 

corresponding stiffness [28]. These definitions are combined to obtain relations between the 

elastic constants. For example, for longitudinal loading (ε = ε11 and all other εij = 0) we obtain 

 1
(1 2 )(1 )

M E
 


 
 (8) 

where M is the longitudinal modulus.  

 Table 1 lists all of the equations for Poisson’s ratio from commonly defined moduli. 

Included are expressions that involve the biaxial stress modulus H, defined when σ = σ11= σ22 

and all other σij = 0, and the biaxial strain modulus I, defined when ε = ε11= ε22 and all other εij = 

0. I is unusual, but is included here as the counterpart to H. The second column in the Table 

shows the restrictions on ν arising from the requirement that all elastic moduli are greater than 

zero. It is seen that the conventional limits, −1 < ν < ½, follow from eqs. T1 and T2. The other 
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linear expressions lead to wider ranges for ν. Of course, the more restrictive limits for Poisson’s 

ratio is the governing range, since all broader ranges are also satisfied.  

Of special interest are the four quadratic relations, eqs. T12 – T15. These arise from 

stress-strain counterparts, such as E (defined from a stress) and M (defined from a strain). Note 

that if E/M is substituted for H/I, eq. T13 becomes eq. T12, and therefore the two equations are 

identical; thus,   

 E H
M I

  (9)  

Each quadratic relation in Table 1 has two roots that limit the span of Poisson’s ratio. These 

relations are plotted in Fig. 2, with the positive roots denoted by a solid line and the negative 

with a dashed line. The roots converge at smoothly continuous maxima; only the bounds of −1 

and ½ encompass the allowable range for all relations. Restricting ν to real numbers means that:  

1. Eqs. T12 and T13: 0 < E/M ≤ 1 with the same range for H/I. The two roots of this 

expression have ranges −1 < ν ≤ 0 and 0 ≤ ν < ½. This equation also produces real values 

if E/M ≥ 9, which has two roots with ranges 1 < ν ≤ 2 and 2 ≤ ν < ∞; however, this 

solution is discarded because it falls beyond the bounds of eq. 4. 

2. Eq. T14: 0 < E/I ≤ 9/8; the two roots have the ranges −1 < ν ≤ −¼ and −¼ ≤ ν < ½. 

3. Eq. T15: 0 < H/M ≤ 9/8; the two roots have the ranges −1 < ν ≤ 1/5 or 1/5 ≤ ν < ½. 

There are companion relations for G and B, and these quadratic equations have interconnected 

roots. For example, the counterpart to eq. T15 for the bulk modulus is 

 ½3 9 8
6

( )[ ]HMB
M

    (10) 

and, having the same argument for the square root as in eq. T15, restricts 0 < H/M ≤ 9/8 for this 

expression to be real. The negative root has the range 0 < B/M ≤ ½, ½ ≤ B/M < 1 for the positive 

root. It can be shown that the positive root is linked to the positive root of eq. T15 and vice-

versa; that is, if ½ ≤ B/M < 1, then 1/5 ≤ ν < ½.  

Quadratic expressions with two possible solutions for G, B, and ν are at odds with the 

behavior of real materials, which have unique elastic constants for any thermodynamic state. 

Therefore, only one set of solutions can be valid.  
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3. Limits on ν for arbitrary deformations 

The considered elastic constants – shear G, hydrostatic pressure or dilatation B, uniaxial 

stress E, uniaxial strain M, biaxial stress H, and biaxial strain I – permute a single stress or strain 

through the available tensor combinations for an isotropic material. However, the possibility 

exists that more restrictive limits on ν can be found from other elastic constants derived from 

more complex combinations of stress or strain. To examine this, we introduce two, continuously 

variable elastic constants. The first is a biaxial stress with σ11 = σ and σ22 = yσ, where y is a 

constant describing the fraction of biaxial stress, 0 ≤ y ≤ 1; all other σij = 0. The elastic constant 

for this variable stress geometry is 

 
1y

EH
y




 (11) 

When y = 0 (uniaxial loading), H0 = E; when y = 1 (biaxial stress), eq. 11 becomes eq. T8.  

For the second constant, consider a variable biaxial strain ε11 = ε; ε22 = ε, where  is the 

fraction of biaxial strain, 0 ≤  ≤ 1; and all other εij = 0. The elastic constant for this variable 

strain geometry is 

 1 (1 )
1

I M
 


 


 (12)  

Similarly, when  = 0, I0 = M (longitudinal deformation), and when  = 1, eq. 12 becomes eq. 

T9, corresponding to biaxial strain. These expressions define the elastic stiffness for any mixture 

of one or two dimensional stress or strain. 

 From the equations in Table 1, many other relations that involve Hy and I can be derived. 

Of particular interest is 

2
2

2
½9 (10 2 2 4 ) (1 )(1 ) 1

4 2 (1 )
[ ]{ }y yy

y

I H HH y yy y
II y H I I



  
                (13)  

This equation combines the four quadratic expressions for Poisson’s ratio into a single, 

continuous function. Each of the four quadratic expressions for ν, T12 – T15 in Table 1, can be 

recovered by substituting the respective values for y and . Intermediate values y and  produce 

curves that lie between these extremes. Shown in Fig. 2 is the curve for y = ½ and  = 0, which 

falls between the H/M and E/M curves. Likewise, the two roots of eq. 13 meet without 

discontinuity. This common point is defined as ν*(y,) at * */yH I ;  it divides Poisson’s ratio into 

the ranges −1 < ν ≤ ν* and ν* ≤ ν < ½. Since the upper span corresponds to experimental data 
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[29,30], it is of interest to determine the lower limit ν*. This point is found when the two roots 

are equal, which occurs when 

 
* *

* *
2 29 (10 2 2 4 ) (1 ) 0( )y yH Hy yy

I I 
           (14) 

This expression has the solutions 

 
*

*

2 2

2

½5 2[( 2)( 2)]2
(1 )

y y y y yH
I y

  


      
 

 (15) 

The positive root is rejected because it returns * */yH I  ≥ 9, producing ν > 1, which is beyond the 

bounds from eq. 4. Note this corresponds to E/M ≥ 9, which was also discarded in Section 2 

above. 

The values of ν* satisfying eq. 15 for given y and  have the range −1/4 < ν* ≤ 1/5, with 

ν*= 0 for y = . In terms of the common elastic constants, (i) ν* = 1 at  = 0, y = 0, 

corresponding to ν*(E,M); (ii) ν* = 1/5 at  = 0, y = 1, corresponding to ν*(H,M); (iii) ν* = −1/4 

at  = 1, y = 0, corresponding to ν*(E,I); and (iv) ν* = 0 at  = 1, y = 1, corresponding to ν*(H,I). 

Thus, eq. 15 merges the ranges of ν for specific conditions of stress and strain (Fig. 1) into a 

single continuous function describing arbitrary stress and strain. Fractional values of y and  in 

eq. 13 determine ν* for any combination of two-dimensional stress or strain. Again, the most 

restrictive range is the correct range, because it accommodates the other ranges, and the lower 

bound for Lamé’s theory to be applicable is 1/5 for any stress and strain.  

Note that eq. 15 is undefined when  + y = 1. For this condition, the solution for * */yH I  

is found by substituting a − y =  and taking the limit a → 1 by twice applying L’Hôpital’s rule. 

The result is 

 
2

* *
2

(1 2 )
/ 1

( 2)4y
y

H I
y y
 
 

 (16) 

This demonstrates that there is no discontinuity when  + y = 1. 

 The companion quadratic relations for G and B are 

 
2

2
2
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2

2
2

½9 (10 2 2 4 ) (1 )3 (1 )
6 6

[ ]{ }y yyI H HH y yB y y
II I



 
               (18) 
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The inverted ± sign in eq. 17 denotes that its negative root is linked to the positive roots of eqs. 

13 and 18. 

 

4. Exceptions 

As stated in the introduction, isotropic materials exist for which ν < 1/5, although they are 

rare. Homogenous materials which show this behavior include pyrite [31], α-cristobalite [32], 

diamond [33,34,35], a TiNb24Zr4Sn7.9 (β-type titanium) alloy [36], boron nitride [37], α-

beryllium [38], and certain silicate glasses [39]. In the former cases (pyrite, cristobalite, 

diamond), elastic properties have been determined from vibrational measurements of single 

crystals, and aggregate isotropic behavior is inferred. For the titanium alloy, boron nitride, 

beryllium, and SiO2 glasses, elastic properties of the aggregate were determined by vibrational 

methods, in which two elastic constants are measured, with Poisson’s ratio in turn found from 

the expressions in table 1. It can be seen that while homogeneous solids having ν < 1/5 have been 

identified, for none have the Lamé relations been tested. 

There are recent reports of auxetic behavior in crystalline materials that exhibit negative ν 

in certain directions [40,41]. However, when the aggregate isotropic behavior is examined, these 

substances show the conventional behavior, ν ≥ 1/5. There is also a class of open-cell foams that 

have negative Poisson’s ratio, due to debuckling of the cell walls [3]. These auxetic foams 

exhibit non-linear mechanical properties [42], so that the application of linear elasticity is 

problematic. Fitting their behavior to more complicated elasticity models has had limited success 

[43], although recently we showed that the equations of Lamé elasticity theory fail for such 

materials [44]. Recent investigations of larger scale, two-dimensional skeletal structures, both 

experimental [45,46] and theoretical [47], also discovered auxetic behavior, but linear elasticity 

does not apply to deformations larger than mathematically infinitesimal, so that the theory cannot 

be tested. 

5. Summary 

  The equations of Lamé elasticity impose restrictions on the values of Poisson’s ratio. Any 

pair of elastic constants leads to various expressions for the bounds on ν, but for mutual 

consistency, the most restrictive limits are the correct ones. The result, 1/5 ≤ ν < ½, is shown to 

be the valid range for any isotropic material subjected to arbitrary loading or deformation. This 
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range comports with the values of ν for the vast majority of isotropic materials, although 

materials having ν < 1/5 do exist. However, the equations of Lamé elasticity cannot be applied 

for the latter. 
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Table 1: Relations between elastic constants that include Poisson’s ratio 

 RELATION  (eq.) RESTRICTIONS ON  ν 

3 2
6 2

B G
B G

 
  

 (T1)  1
2

1   
 

3
6

H B
H B

 
  

 (T2) 
1
2

1   
 

3
3
B M
B M

 
  

 (T3) 1 1  

2
2

GH
H G

 
  

  (T4) 1 1  

2
2 2
M G
M G

 
  

  (T5) 
1
2

  
 

1
2 6

E
B

  
 

 (T6) 
1
2

  
 

1
2

G
I

  
 

 (T7) 
1
2

  
 

1 E
H

  
 

 (T8) 1    

1 M
I

  
 

 (T9) 1  

1
2
E
G

  
 

(T10) 1     

3 1B
I

  
 

(T11) 1   

2

2
1
4

½1 10 9( ) ][ E E E
M MM

      (T12) 
1
2

0 1: 1 0 0E or
M

       

2

2
1
4

½1 10 9([ ])H H H
I II

      (T13) 
1
2

0 1: 1 0 0H or
I

       

1
4

½1 9 8( )[ ]E
I

   
 

(T14) 
9 1 1 1
8 4 4 2

0 : 1E or
I

         

½2 1 9 8
2 4

( )[ ]M H H
MH M M

    
 (T15) 

9 1 1 1
8 5 5 2

0 : 1H or
M

       
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Figure Captions 

Figure 1. Experimental data from Grüneisen [18], demonstrating the validity of Lamé’s 

quadratic theory of linear elasticity for ν  1/5.  

Figure 2. Poisson’s ratio as a function of the ratio of the indicated elastic constants, with positive 

roots shown indicated by the solid lines and negative roots with dashed lines. Also included are 

the two roots of eq. 13 with y = ½ and  = 0. The limits encompassing all moduli is 1/5 ≤ ν < ½. 
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