〕 Open access • Journal Article • DOI:10.1109/TNS.1979.4330082

Linac Particle Tracing Simulations — Source link \square

W. P. Lysenko

Institutions: Los Alamos National Laboratory
Published on: 01 Jan 1979 - IEEE Transactions on Nuclear Science (IEEE)
Topics: Accelerator physics, Beam emittance, Linear particle accelerator, Particle accelerator and Thermal emittance

Related papers:

- Particle accelerator physics : basic principles and linear beam dynamics
- Modeling and simulation of beam dynamics in linear accelerator with RFQ
- Simulation of charged particle beams using a semi-Lagrangian Vlasov method
- Differential equation particle tracing program
- Simulation with space charge

TITLE: linac particle tracing simulations

AUTHOR(S): Walter P. Lysenko

SUBMITTED TO: Particle accelerator Conference, San Francisco, CA, March 17~1\%, 1979

By acceptance of this article, the publisher recognizes that the U.S. Government reisins a nonexclusive, royalty-free license to publish or reprocluce the published form of this contribu. tion, or to allow o"hers to do so, for U.S. Government purposas.

The Los Alemos Screntific Laboratory requests that the publisher identify this urticle ee work performed under the auspices of the U.S. Departmert of Energy.

LIMAC PARTICLE TRACIMG STMILATIOMs*

Welter P. Lymenko
Los Almos Scientific Laboratory, Los Alamon, NM 87545

Abstract

A particle tracing code was developed to study space-charge effects in proton or haavy-ion linear accelerators. The purpose is to study space-charge phenomena as directly as posaible without the complicacions of any accelerator detaila. Thus, the accelerator is represented simply by harmonic oncillator or impulse restoring forces. Variable yarameters as well as mimatched phasespace diatributions were studied. This study represenca the initial search fot those features of the accelerator or of the phanespace distribution thet lead to aittance growth.

Input Digeributions and Matching ${ }^{1}$

In the absence of space charge, a two-dimenaional phass-space distribution is matched if it has the same shape as cnat of the trajectories of the outermost particles. With space charge, if forces do not depend explicitly on time, it is poseible to produce six-dimensional phaserspace discributions, celled equilibrium dis ibutions, that are time independent and are matched to the accelerator, even if space charge introduces nonliaearities and couplinge.

Equilibsium calculations give space-charge limits in term of accelerntor parmaters that are ueful scaling laws for apace-charge dominaced beam. Because the aingleparticle Reailtonian is conserved, we have equilibriu if the distribution function is a function of the Heariltonian.
$f(\vec{x}, \vec{p})=\boldsymbol{F}(H)$
For the function F, we choome one of the following
P - const. $x \quad n\left(H_{0}-H\right)^{n-1}$
where n is an integer. These are thr eme functions used in the original one-degree-ot-freedon work by Glucketern, Chasman, and Crandall. 2 We zanerally consider n - 2 type distributions because they seen to corraspond most closely to experimentally observed distributions.

We use the tollowing two-degree-of-freedon model

$$
\begin{equation*}
H=\frac{p^{2}}{2 m}+\frac{k r^{2}}{2}+\frac{k_{n} z^{2}}{2}+\phi(r, z), \tag{3}
\end{equation*}
$$

where $\phi(r, z)$ is che unknown space-charge potential. All courdinates and momenta are relative to the anchronous particle. To determine ϕ we must solve a nonlinear poisson equation with three paremeters: u, α, and n. The space-charge parameter μ is proportional to the particle density at the bunch center and is defized by

$$
\begin{equation*}
j=\frac{2 k \mu_{r}+k_{z} \mu_{2}}{2 k+k_{z}} \tag{4}
\end{equation*}
$$

whare u_{r} is the ratio of the radial space-charge force co the radial wternal restoring force at the bunch certer with a similar definition for μ_{2}. The tune deprgssion factor in the direction i is ($1-\mu_{i}$) $1 / 2$. The parameter α is the ratio of the longitudinal force constant to the raial force constant and is the only accelerator parameter relevant to the space-charge physics in the present model.

The computer code R2ED (R-Z Equilibrium Distribution) was written to solve the nonlinear Poisson quation. From the resulting distribution function, relation between the beam current,

[^0]TasLe I
ACCELEEATOR PABANETERS

ACCELERATOR PABALETERS		
Frequency	E	$10^{9} \mathrm{gz}$
Initial velocity	B	0.04
Phase advance	μ°	$27.4{ }^{\circ}$ (5T solenoid
	8 hr	or Bpale - 1.5T quadrupole)
Electric field	$\mathrm{E}_{0} \mathrm{~T}$	$1.53 \mathrm{mv} / \mathrm{m}$
Synchronoul phase	\$s	-300

caictance: and radiun aay be deterained in terms of accelerator paramears (sec Ref. 1).

$$
\begin{align*}
& I=P(\mu, \alpha, n) \frac{ \pm}{a}\left(\mu_{s r}^{0}\right)^{1 / 2}(\eta f)^{3 / 2} \tag{5a}\\
& \frac{T}{B \lambda}=G(\mu, \alpha, n)\left(\frac{\eta_{f}}{u_{i h r}^{0}}\right)^{1 / 2} B^{-1}, \tag{5b}
\end{align*}
$$

The apaca-charge physics saiculated by RZED is contained in the functions $F(\mu, a, n)$, and $G(\mu, a, n)$. These space-charge effects are shown in Fig. l where the current and the redius are plotted as function of the apace-charge parmeter. The other RZED parmeters are fixed at $a=0.67$ and $n=2$. These curvas represent different equilibria for aixed nomalized transverse caitesace value of $n=7.4 \times 10^{-7}$ rad and for a fixed accelerator described by the parametera in Table I.

日igher deasity distributiona correspond to larger been radii. For a tiven accelerator, there if no liait to the current that can be transported except that the aatched radius also increases without limit. To decrease the space charge effects (decrase μ) for a fixed current and eaittance, one must dacrease tie beam radius by incraseing the external focuaing forces. Variable Parametari
If the product $\mathrm{E}_{\mathrm{O}} \mathrm{T}$ sin ϕ_{B} is proportional to β during ecceleration, then the longitudinal focusing force is constant, and the bunch length remains fixed. Thia realt holds for an equilibrium distribution even in the presence of spece charge.

If the lectric field and the symchronous phase remain constant, then, in the absence of space charge, the bunch length incresses as $\mathrm{B}^{1 / 4}$. With space charge this resule is modified. It is importanc that the bunch length does not incraane faster than B; if it does, the phase extent of the buneh will increase and will cause unatable longitudinal motion
in e real accelerator with finite potential well.
For slowiy varying parameters we expect instaneaneous equilibrium to be maintained, even though the condition given by Eq. (1) will not be preserved. (However, for one dacr:s is frsedom, Eq. (1) is preserved hut the final F a. sers from the initial F.)

The HOT Code

The HOT (Harmonic Oecillator Tracing) code ir its usual form usen hamonic oscillator restoring forces in all three directions. Acceleration is applied concinuousiv. Couplinge and nonlinearities occur only through sivce charge. The apace charge forcea are calculated with an area-waghted particle-in-cell method uaitg variable r-z mesh (up to 15×30 cells). U_{p} to ten tiousand macroparticlea can he traced. Input tables provide the desired variacion of cransverse wavelengtha: accelerating gradient, and synchronous phase ae functions of the distance along the structure. Time is the independent variable.

TABLE II
transurase sizes and emittances FOR MISMATCHED BEAMS

n / n_{0}	TRANSVERSE SIZES AND EMITTANCES for mishatcred beahs			
	Initial		Finel	
	$\begin{aligned} & \text { Size }^{\text {a }} \\ & (\mathrm{zime⿻})^{2} \end{aligned}$	$\begin{aligned} & \text { Enictanceb } \\ & \text { (tremad) } \end{aligned}$	$\begin{aligned} & \text { Size }^{\text {a }} \\ & \text { (ma) } \end{aligned}$	$\begin{aligned} & \text { Eaictanceb } \\ & \text { (momrad) } \end{aligned}$
1	0.66	0.046		ched)
1/2	0.47	0.023	0.79	0.024
$1 / 4$	0.33	0.011	1.00	0.013
1/8	0.23	0.006	1.26	0.009

size of fitted traneverse phase-ap se elliple containing 908 of the particles.
Morwalized rus transuerse enittance.

Simulationa with Harmonic Longitudinal Potentisl
Slowly Varying Parsaters. As an exmple, an acceleracor with fixed tranaverse forces and with fixed values for the electric accelerating field and for synchronous phasc wes considered. A $L=0.95$ initial distribution was used (such highth distributiona cennot be accurately prepared but it turns out that mall aisatches are not important). In accelerating from $B-0.04$ to $B=0.11$, the 90% and mes emitcances in the three direction separately were conserved to within 37 and their sums ware conserved to within 0.5\%. Figure 2 show the initial and final ewo-dimentional phaserapace projections. The bunch length is hown as Eunction of velocity in Fis; ${ }^{3}$. Note that the bunch leagth grows tasist than $\beta^{1 / 4}$, Which is the ediabatic nompace-charge result, but siower chan β, so that phase damping is prestant.

Because the longitudinal restoring force docreasce with B, the bunch langth increate. This increasc causes the net tranaverte focusing forcen to incres.ae. In our example, the final charge denaity is 0.7 of the initial value. The harmonic olecillacor adiabatic invariant predicta a final beam radius of about 0.6 of the initial valua. But we find in reality that the Einal radiut is about 0.9 of the initisi value so this space-charge coupling effect is suall. At least part of the explanation is that the final distribution is more sharply peaked in the center than the initial distribut:on.
Misratches. Linac simulations by Chesman ${ }^{3}$ have indicated thet the output emittance approaches a nonzero limit as the inputemittance is reduced to zero. In ihe present model, Eq. (5) and Fig. 1 a how that we can maintain equilibrium and scill decrease the emittance indefinitely kenping the beam current and accelerator parameters fixed. In so doing, the spacecharge parameter u approachen unity and the matched heam radius increases indefinitely. There is no lowar iimit to the outpur emittance. Of course, the finite hore dimenaion will imposes a limit but there is no Limit caused by emittance growtn. Consider the situation where the x to x ratio in a distribution is fixed and the emittance is reduced below its matched ralue keeping the current and accelerator parameters tixed. Starting with a $u=0.95$ discribucion with currenc I_{0} and emittance η_{0}, the current: I required to maintain a marich with a naw emittance n can be obtained from the acaling law Eq. (5a)

$$
\begin{equation*}
I / I_{0}=\left(n / n_{0}\right)^{3 / 2} \tag{6}
\end{equation*}
$$

Calculacing a new iower current distribution producen a distrifution with the desired smaller mittance n. But in tha particie tracing simulation we lat ach macroparticle earrv a chatge corresponding to the original current I_{0}. The results are shown for a few cases in Table r_{1}.

For the mismatched cases, the radius grows quickly then fluctuates with twice the external frequency. Because the average beam radius is large, the average apace charge forces are saall so that the time to reach a maximu in the radius is about mefourth the undepressed transverae period. It dops not pay to decrease the bear radiua to below its matched value because space-charge growth will only increase the radius to above ita wateched value.

The emittance growth is mall so that a lower limit to the exittance, if it exists, will be very mall (remember the been is already near the spacecharge liait even before the emictance ia reduced). Because of the mimatch the phate-space area swept out by the beam is large and in the presence of external nonlinearities givea an effective emittance growth because of filmencation.

Discrate Gap Simulations

The above calculations uned a continuous acceleration wodel with harmonic longitudinal restoring forces. Another version of $B O T$ was used to determine if localizing the longitudinal forces to the gap: modifies the results. Whenever a particle crosses a gap, it receives an anergy increase equal to eEot cos ϕ, where ϕ is the rf phate at the time of gap crosing. At the time the eynchronous particle crosaes the gap, all particies are given another energy change because of the new refarunce energy. Beaides making the acreleration and longitudinal focusing discrete, this procedure also makes the effective longitudinal potential nonlinear.

In uning the nonlinear potential a new problem ariaes when space charge is included becaume the size of the finite potential well is reduced.* To longitudinally contain the particles it was necessary to change the synchronctia phase from -30° to -37° (the accelerating field was also increased so $1.66 \mathrm{MN} / \mathrm{a}$ to maintain the old acceleration rate). A change in aynchronous phase is much more effective than an increase in accelerating field in maintaining a potential well in the presence of space charge. The rasules for the discrete gap calculation are ahown in Figt. 2 and 3. There wera 130 gaps in this simulation. Phass demping was not decreased by waking the longitudinal forces discrete. The transverse emittances increased by about 15\% (this may be partly numerical). The longicudinal emittance containing 90\% of the particles increased by about afactor of two. This growth is filzmentation caused by the nonlinear external longitudanal potential. Such an increase can be reduced by watching to the actual nonlinear potantisal (the initial distribution was matched to the harmonic restoring potential).

Conclusions

Most calculations vere done assuming hamonic oscallator focusing forces and continuous acceleration. We found that even a beam near the space-charge limit was wall hehaved. Phase damping is still present and emictance growth becausc of mismatches is not noticeable. Nonlinearities and couplinga introduced solely by space charge apparently have little effect. But oven in this model, we fourd that mismatcles are undesirable because they produce growth in beam spetial fimensions.

With discrete longitudinal forces we found no degredation of phase demping compared to the :nandous case. Space-charge limitad beame will probably heve to be contained by using larger magnitudes of synchronous phases. Longitudinal amictance growth was

FI Ehank M. Waise for pointing out the importance of this effact.
obserwed owing to filamentation caused by the large external nonlinearity.

These calculations indicate that future studies should look et the effects of external nonlinearities and couplings in space-charge limited beans. Also, other types of misantches (other kinds of initial dis* tributions) should be studied. Nonaxisymetric features such as quedrupole magnets may change some conclusiont but proper study of these fearures will require threedinensional apace-charge cilculations.

Acknowledemens

I thank R. Jaseson for useful discussions and al.so S. Cheng for assistance with the nueerical work.

References

1. W. P. Tysenko, "写quilibriug Phase-Spece Distributions and Space Charge Linits in Uinec*," Los Alamos Scientific Laboratory report LA-7010-MS (October 1977).
2. R.L. Gluckstern, R. Gheman, and K. Crandall. Proc. 1970 Proton Linear Accelerator Conf., National Accelerator Laboratory, 1970, p. 823.
3. A. Chmen, Proc. 1968 Proton Linear Acceleracor Conf., Brookhaven National Laboratory, 1968, p. 372.
(a)

(b)

(c)

'if. 2 . The cransverse and longicudinal phase-space revections are shown for the initial distribution a), the final diatribution for the continuous cceleration and inamonic focusing case (b), and the inal distribution for the discrete gap forces asse c). Units are mo for x and z and momrad for x ' $x /$ elet and $z^{\prime}=$ da/det.

Fig. 1. The current and beam radius for equilibrium distributions witn $a=0.67$ and $n=2$ are shown as a function of the space-charge parameter μ. The transverse pmittance value and all acceleracor parameters are fixed.

Fig. 3. The hunch length is thown as anction of B Eur hoch the continuous acealaration and discrete gaps cases.

[^0]: WWork perforned utider the auspicen of the U.S. apartment of Energy.

