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INTRODUCTION 
 
Esophageal cancer (EC) is one of the most frequent 

cancers globally [1], and it carries a poor prognosis with 

roughly 25% of patients presenting with metastatic 
disease [2]. There are two main types of EC that occur 

in the esophagus: esophageal squamous cell carcinoma 
(ESCC) and esophageal adenocarcinoma (EAC). Rates 

of esophageal adenocarcinoma have been rising over 

the past four decades. The reasons for this remarkable 
increasing are unknown [3, 4]. The mortality rate of 

EAC is higher worldwide. However, effective strategies 

to decrease the incidence and mortality of EAC remain 
lacking.  

 

Accumulating evidence has indicated that long non-
coding RNAs (lncRNAs) play important roles in cancer 

biology [5–9]. Recently, long noncoding RNA 
(lncRNA) has attracted researchers’ attentions [10]. 

LncRNAs are involved in various malignant tumors, 

such as those of the brain [11, 12], breast [13], lung  
[14, 15], liver [16] and pancreas [17, 18]. LncRNAs, 

which are defined as being longer than 200 nucleotides 

without or with limit protein coding ability [19–21], 
emerge as essential regulators in almost all aspects of 

biology via regulation at chromatin organization, 
transcriptional and post-transcriptional levels [22, 23]. 

Additionally, a number of studies extend our knowledge 

lncRNAs play important roles in carcinogenesis and 
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ABSTRACT 
 

Esophageal adenocarcinoma (EAC) is one of the leading causes of cancer-related death worldwide, and the 

molecular biology of this cancer remains poorly understood. Recent evidence indicates that long non-coding 

RNAs are dysregulated in a variety of cancers including EAC. In this study, siRNA mediated gene knockdown, 

Western blot, RT-PCR, as well as oncogenic function assay were performed. We found that the cell 

proliferation, colony formation, invasion and migration were decreased after LINC00857 knockdown in EAC cell 

lines. We also found that knockdown LINC00857 could induce apoptosis. Mechanistically, we found that the 

MET, STAT3, c-Myc and p-CREB proteins were decreased after LINC00857 knockdown. Our study suggests that 

LINC00857 may play an important oncogenic role in EAC via STAT3 and MET signaling. 
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cancer metastasis [24–27]. Mounting evidence has 
shown that lncRNAs are capable of influencing various 

cellular processes such as cell proliferation, cell cycle 
regulation, tumor growth and apoptosis [28–31]. Also, 

despite the vast number of recent lncRNA studies  

[32, 33], the exact function of lncRNA in esophageal 
carcinoma tumor genesis is still unknown.  

 

As we know, research on the effects of lncRNA on 
EAC is still in the preliminary stage, and the related 

reports are rare [34]. Yang et al [35] reported that 
dysregulation of HNF1A-AS1 participated in esophageal 

tumorigenesis, knockdown of HNF1A-AS1 inhibited the 

proliferation and invasion of esophageal 
adenocarcinoma cells. Wu et al [36] showed that long 

non-coding RNA AFAP1-AS1 was reduced in BE and 
EAC, and its expression inhibited cancer-related 

biologic functions of EAC cells. Although, there has 

been a heavy focus on the ways that lncRNAs 
contribute to cancers development, but their aberrant 

expression and functional role in EAC development is 

still not well documented. 
 

LINC00857 was reported to play oncologic roles in 
several cancers, for example, lung adenocarcinoma [37], 

bladder [38], gastric [39, 40] and liver cancer [41], and 

it has already been suggested that LINC00857 acts as a 
cell cycle regulator in lung adenocarcinoma by our 

previous work [37]. However, the functional role and 
underlying mechanism of LINC00857 in EAC remains 

unclear. Here we investigated the role of LINC00857 in 

EAC. We found that knockdown of LINC00857 
decreased cell proliferation, invasion and migration, as 

well as increased apoptosis in EAC cell lines. The 

oncogenic role of LINC00857 may be through multiple 
oncogenes. 

 

RESULTS 
 
LINC00857 expression was increased in primary 

EAC and cell lines 

 

LINC00857 expression was increased in many types of 

cancer [37], but there is no report of this lncRNA 
expression status in esophagus cancer. By analyzed our 

esophagus cancer Affymetrix array data (unpublished 
data), we found LINC00857 was increased in EAC as 

compared to normal esophagus tissues (Figure 1A). 

Next, we performed RT-PCR for LINC00857 
expression using another set of tissues including 8 EAC 

and 8 normal esophagus controls. We confirmed that 

LINC00857 expression was higher in EAC (Figure 1B).  
We also evaluated the LINC00857 expression in a larger 

RNA-Seq data [42] including 26 esophagus cancer cell 
lines. We found 19/26 cell lines have higher 

LINC00857 expression level more than 1 FPKM value, 

and OE33, an adenocarcinoma, was the highest one 
(Figure 1C).   

 
The cell proliferation and colony formation were 

decreased after knockdown of LINC00857 in EAC 

 
LINC00857 was reported to play an oncogenic role in 

lung cancer. To test if LINC00857 was functionally 

involved in EAC, we measured cell proliferation and 
colony formation followed by LINC00857 knockdown 

with siRNAs in 3 EAC cell lines, OE19, OE33 and 
FLO1. QRT-PCR assays revealed that LINC00857 

expression was significantly reduced after transfection 

with LINC00857 siRNAs (**p < 0.01, Figure 2A). The 
cell proliferation was performed using WST-1 assay 

and the result showed that the cell proliferation was 
decreased by more than 35% after LINC00857 

knockdown at 120 h in  OE19, OE33 and FLO1 cell 

lines (*p < 0.05, Figure 2B). Similarly, the colony-
formation was significantly decreased following 

inhibition of LINC00857 in OE33 and FLO1 cell lines 

(**p < 0.01, Figures 2C and 1D). Flow cytometry 
analysis indicated that the cell cycle was arrested at G1 

phase after LINC00857 knockdown in OE33 cells 
(Figure 2E). These findings suggested that LINC00857 

was involved in the regulation of cell proliferation/cell 

cycle in EAC cells. 
 

Cell migration and invasion were decreased after 

LINC00857 knockdown in EAC cells  

 

Cell migration and invasion are significant aspects of 
cancer progression, which involves the dissolution of 

extracellular matrix proteins and the migration of tumor 

cells into contiguous tissues. In order to investigate the 
potential role of LINC00857 on cell migration and 

invasion in EAC cells, we performed transwell assays. 
We found that the cell migration was inhibited by 90% 

after LINC00857 knockdown in OE33 and FLO-1 cells 

(**p < 0.01, Figure 3A and 3B).  The cell invasion was 
down-regulated by 90% in OE33 and FLO-1 followed 

LINC00857 knockdown (**p < 0.01, Figure 3C and 

3D). These results implied that LINC00857 may be 
involved in mechanisms relevant to the metastatic 

potential of EAC. 
 

Apoptosis was induced after LINC00857 knockdown 

in EAC cells  

 

To probe potential role of LINC00857 in cell death 
regulation, we assessed apoptosis assay by measuring 

cleaved PARP protein in OE33 and FLO1 cells. 

Western blot indicated that the cleaved PARP bands 
(Figure 4A) occurred only after LINC00857 siRNA 

treatment, suggesting that inhibition of LINC00857 

could induce apoptosis in these cell lines. Moreover, 
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Figure 1. LINC00857 expression was increased in primary EAC and cell lines. (A) LINC00857 was increased in EAC as compared to 

normal esophagus tissues (The original data is coming from our unpublished Affymetrix Human Gene ST2.1 including 35 EAC and 13 paired 

non-tumor esophageal tissues). (B) LINC00857 expression was higher in EAC by RT-PCR using another set of tissues including 8 EAC and 8 

normal esophagus controls. (C) LINC00857 expression in a larger RNA-Seq data [42] including 26 esophagus cancer cell lines. 

 

 
 

Figure 2. SiRNA-mediated knockdown of LINC00857 inhibits EAC cell proliferation. (A) The LINC00857 expression level was 

determined by qPCR when OE19, OE33 and FLO1 cells transfected with siLINC00857. (B) WST-1 assays were used to determine the cell 

viability for siLINC00857-transfected OE33, FLO1 and OE19. (C) Colony-forming assays were conducted to determine the colony formation of 

siLINC00857-transfected OE33 and FLO1 cells. (D) The bar chart represented the count number of cloning. Values represented the mean ± 

s.d. from three independent experiments. *p < 0.05, **p < 0.01. (E) Flow cytometry analysis showed that the cell cycle was arrested at G1 

phase after LINC00857 knockdown in OE33 cells.  
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LINC00857 knockdown led to an increased expression 
of p53, suggesting this apoptosis may be p53 mediated.  

 
Multiple oncogenic proteins including MET, STAT3, 

c-Myc and CREB were decreased upon LINC00857 

knockdown 

 

In a further attempt to dissect potential molecular 

signaling regulated by LINC00857, we applied Western 
blot to identify proteins whose expression altered after 

LINC00857 knockdown in OE33 and FLO1 cells. We 
found that several oncogenic proteins including t-MET, 

p-MET, p-STAT3, c-Myc and p-CREB were decreased 

after LINC00857 knockdown with siRNA treated cells 
at 72 hrs in OE33 and FLO1 cells (Figure 4A). The t-

STAT3 was not decrease in FLO1 cells. The results 
indicated that these proteins may take an important role 

in regulating cell proliferation and apoptosis in EAC 

cells in LINC00857 network. We performed the mRNA 
expression of these genes by RT-PCR, we found the 

MET mRNA was down regulated by 40–50% in both 

OE33 and FLO1 cells, indicating the MET gene was 
regulated at the transcriptional level upon LINC00857 

knockdown (Figure 4B and 4C). While, the mRNA 
levels of STAT3, c-Myc and CREB were either 

increased or not changed after LINC00857 knockdown, 

suggesting these proteins were regulated at post-
transcriptional level. We didn’t find that ERK, AKT, 

FAK, p27, and Bax proteins were changed after 
LINC00857 siRNA treatment at 72 hours in EAC. 

 

OE33 is known as MET driven cell, in order to evaluate 
the role of MET in EAC cells, we performed MET 

siRNA knockdown on OE33 and FLO1cells. After 
MET knockdown, the cell proliferation measured by 

WST-1 assay was decreased by more than 33%–49% 

relative to control scramble siRNA (Figure 5A). We 
also found that the cell proliferation was decreased upon 

STAT3 knockdown (Figure 5B). This suggested that 

MET and STAT3 are important oncogenes in 
LINC00857 regulating cancer progression in EAC cells.  

Taken together, LINC00857 affecting tumor cell 
proliferation, colony formation, apoptosis, as well as 

migration and invasion may be via MET, STAT3, c-

Myc and CREB oncoproteins (Figure 5C). 
 

DISCUSSION 
 

LINC00857 is a novel lncRNA transcribed from 
chromosome 11q22.3, and played an oncogenic role in 

lung cancer [37]. LINC00857 was also reported to be 
detectable in patient plasma with gastric cancer [40]. 

The oncogenic role of this lncRNA in EAC has not been 

reported. Our study showing that the LINC00857 was 
overexpressed in EAC tissues and EAC cell lines.  We 

found that the cell proliferation and colony formation 

were decreased after LINC00857 knockdown with 
siRNA in EAC cells. The cell apoptosis was also 

induced upon LINC00857 knockdown, indicating 
LINC00857 may be involved in EAC tumor growth. 

Metastasis is another important malignant behavior of 

 

 
 

Figure 3. SiRNA-mediated knockdown of LINC00857 inhibits EAC cell migration and invasion. (A) Migration was decreased after 

LINC00857 siRNA transfection of OE33 and FLO1 cells. (B) The bar chart represented the count number of migration cells. (C) Invasion was 

decreased after LINC00857 siRNA transfection of OE33 and FLO1 cells. (D) The bar chart represented the count number of invasion cells. 

Values represented the mean ± s.d. from three independent experiments. *p < 0.05, **p < 0.01.  
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Figure 4. Proteins and mRNA regulated by LINC00857. (A) Protein levels of p53, Cleavage of PARP, MET, STAT3, c-Myc and CREB were 

regulated by LINC00857 siRNA in OE33 and FLO cells, GAPDH was used as a protein loading control. (B and C) QRT-PCR showing the mRNA 

expression of MET, STAT3, c-Myc and CREB in OE33 and FLO1 cells. GAPDH was used as control.  

 

 
 

Figure 5. Model of LINC00857 in EAC. (A and B) WST-1 assays were used to determine the cell viability for MET and STAT3 siRNA 

transfecting OE33 and FLO1 cells. Values represented the mean ± s.d. from three independent experiments. *p < 0.05, **p < 0.01. (C) Model 

of LINC00857 modulating the cells proliferation, migration, invasion and induced apoptosis via MET, STAT3, c-Myc and CREB proteins in EAC.  
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cancer and is the most troublesome problem in tumor 
prognosis and therapy. LncRNAs have been reported to 

involve in the regulation of tumor metastasis such as 
MALAT-1 [43] and HOX antisense intergenic RNA 

(HOTAIR) [44]. We found that the cell migration and 

invasion ability of EAC cells were significantly 
decreased after the knockdown of LINC00857, 

suggesting LINC00857 may be involved in the regulator 

of metastasis in EAC.  
 

LINC00857 induces tumorigenesis through complicated 
mechanisms, involving activation of signaling pathways 

that regulate cell survival and proliferation. Previous 

studies have shown that downregulation 

of LINC00857 was able to restrain HCC cell migration 

and invasion capacity via enhancing epithelial-

mesenchymal transition (EMT) process [41]. 

LINC00857 knockdown decreased protein expression 

of cyclin D1 and cyclin E1 in GC cells [39]. Wang [37] 

shows that LINC00857 mediated tumor progression 

via cell cycle regulation in lung cancer. In this 

study, mechanistically, we found that multiple 
oncogenic proteins such as MET, STAT3, c-Myc and 

CREB were decreased upon LINC00857 knockdown in 

EAC cells. Knockdown MET or STAT3, the cell 
proliferation were also decreased indicating these two 

proteins may be involved in LINC00857 signaling in 
regulation of EAC cell proliferation. According to 

recently reports, Stat3 /c-Myc signaling pathways 

induced tumor development in gastric cancer [45].  
c-Met strongly increased the level of transgenic c-Myc 

that was expressed via a constitutive CMV promoter in 
large-cell medulloblastoma [46]. These results are 

supporting evidence that LINC00857 abrogation 

induced apoptosis and decreased migration and invasion 
ability maybe through the inhibition of MET or STAT3 

signaling. 

 
In summary, LINC00857 influenced tumor cell 

proliferation, colony formation, apoptosis, as well as 
migration and invasion which may be via affecting 

MET/STAT3/c-Myc/CREB oncoproteins (Figure 5C). 

These findings suggested that LINC00857 is a 
functional lncRNA in human EAC cells and plays an 

important role in EAC progression. 
 

MATERIALS AND METHODS 
 

Cell culture 

 

EAC cell lines OE19, OE33 and FLO1 were purchased 

from Sigma Chemical (St Louis, Missouri, USA), and 
the European Collection of Cell Culture (Porton Down, 

UK), respectively. All media were supplemented with 

10% fetal bovine serum (Invitrogen, San Diego, 
California, USA), unless otherwise stated. 

Esophageal cancer specimen  

 

Esophageal adenocarcinoma tissues and paired non-
tumor tissues were obtained from patients undergoing 

cancer surgery during the period from 1995 to 2013 at 

the University of Michigan Health System. None of the 
patients included in this study received any preoperative 

radiation or chemotherapy. All the patients provided 

informed consent, and all experimental protocols were 
approved by the University of Michigan Institutional 

Review Board and Ethics Committee. Resected 
specimens were frozen in liquid nitrogen and then 

stored at -80°C until use. Frozen tissues for regions 

containing a minimum of 70% tumor cellularity defined 
by cryostat sectioning were utilized for RNA isolation. 

 
Cell Proliferation Assays 

 

Cells were plated at a density of 1000 cells per well 
onto 96-well plates. LINC00857 siRNA and control 

siRNA were added at 24 hrs and 48 hrs.  Cell 

proliferation was measured at 96 hrs-120 hrs after 
siRNA transfection using WST-1 reagent (Roche, 

Mannheim, Germany) according to manufacturer’s 
instructions. All experiments were performed in 

triplicate. 

 
RNA isolation and qRT-PCR 

 
Total RNA was isolated from tissues or cultured cells 

using miRNeasy Mini kit (Qiagen) according to the 

manufacturers' instructions.  One microgram of total 
RNA was used for the reverse transcription reaction in a 

final volume of 20 μL with random primers under 

standard conditions using High Capacity cDNA Reverse 
Transcription kit (Thermo Fisher Scientific). 1 μL of the 

corresponding cDNA was used for subsequent qRT-
PCR reactions using Power SYBR Green master Mix 

(Thermo Fisher Scientific) according to the 

manufacturer’s instructions. The expression of GAPDH 
was used to normalize the results. The PCR 

amplification was performed for 40 cycles of 95°C for 

15 sec and 60°C for 60 sec on StepOne Real-Time PCR 
System (Thermo Fisher Scientific). All reactions were 

run in triplicate and data were analyzed using the 
comparative cycle threshold (CT) method. The primer 

sequences are summarized in Table 1. 

 
Cell migration and invasion assay 

 
Migration and invasion capabilities of the esophageal 

cells were measured in transwell chamber system. Sixty 

microliters of diluted extracellular matrix (ECM) gel 
solution was added into the upper chambers (Costar 

Inc., USA). For migration assay, the same method was 

used without ECM membrane on the upper chamber. The
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Table 1. Primer sequences used in this study. 

Gene name Primer ID Primer Sequence (5'->3') Product size 

LINC00857 Lnc1 F CCCCTGCTTCATTGTTTCCC 131 

LINC00857 Lnc1 R AGCTTGTCCTTCTTGGGTACT  

MYC MYC F CAGCGACTCTGAGGAGGAAC 131 

MYC MYC R TGTGAGGAGGTTTGCTGTGG  

STAT3 STAT3_F TGGCCCAATGGAATCAGCTAC 200 

STAT3 STAT3_R CTGCTGGTCAATCTCTCCCA  

MET MET F CAACCCGAATACTGCCCAGA 99 

MET MET R CCGGGACACCAGTTCAGAAA  

CREB CREB F GCACTATTGCCCCTGGAGTT 127 

CREB CREB R CTACGACACTCTCGAGCTGC  

GAPDH GAPDH gcF GTCAAGGCTGAGAACGGGAA 158 

GAPDH GAPDH gcR AAATGAGCCCCAGCCTTCTC  

 

chamber was incubated at 37 °C for 4 h. Next, a density 
of 1×105 per well cells was seeded in 100-μl medium 
with 1% FBS. The lower level chambers of the 

transwells were filled with 500 μl RPMI and DMEM 
containing 10% FBS. To allow cell migration, the 

transwells were then incubated at 37 °C with 5 % CO2 

for 24-48 h. After incubation, a cotton swab was used to 
carefully remove the cells in the upper chamber. Cells at 

the bottom of the ECM gel-coated membrane were fixed 
and stained with paraformaldehyde and crystal violet. 

The crystal violet was dissolved in 200 μl glacial acetic 
acid and incubated at room temperature for 30 min. 
 

Colony formation assay 

 

Esophageal cells were cultured with siRNA mock and 

LINC00857 siRNA and then seeded in a six-well plate 
at a density of 200 cells / well. After a 2-week period of 

incubation at 37 °C, 0.1 % crystal violet (Sigma-

Aldrich) and 20 % methanol were used as dye solution 
to fix and stain the colonies. The number of colonies 

was counted in each well. Clones containing more than 
50 cells were counted using a grid. Three independent 

experiments were performed. The formula for the 

colony formation ratio was as follows: Ratio = Numbers 
of Colony/Initiative Cells × 100%. 

 
Western blotting 

 
Cells were harvested 72 h after siRNA transfection. 

Lysis, electrophoresis and target protein visualisation 

were performed as described previously [37]. Total cell 
lysates were prepared with sample buffer and boiled at 

95 °C for 5 min. The samples were transferred to SDS–
PAGE at 80 V for 3 h and then transferred to PVDF 

membranes for another 3 h. After incubation with 
specific antibodies for STAT3, FAK, PARP, c-Myc, 

CREB, MET, AKT, ERK1/2 and GAPDH at 4 °C 

overnight, the membranes then were washed by 1% 
TBST for three times, incubated with secondary 

antibodies for 1 h, and the membranes were developed 

using ECL and exposed to X-ray film.  
 

Statistical analysis 

 

Data were analyzed using GraphPad Prism 7 (GraphPad 

software) and R software. All data are continuous 
variables and follow a normal distribution. The other 

data such as proliferation were evaluated by unpaired 
Student’s t-test. All values were expressed as mean±SD. 

Statistical significance was noted at p<0.05. Three 

independent triplicated experiments were performed for 
cell biological assays, unless otherwise stated. 
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