
Received May 24, 2020, accepted June 10, 2020, date of publication June 15, 2020, date of current version June 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3002270

LinCos-Softmax: Learning Angle-Discriminative
Face Representations With Linearity-Enhanced
Cosine Logits

WEI-FENG OU 1, LAI-MAN PO 1, (Senior Member, IEEE),

CHANG ZHOU 1, (Graduate Student Member, IEEE), YU-JIA ZHANG1,
LI-TONG FENG2, YASAR ABBAS UR REHMAN3, (Member, IEEE),
AND YU-ZHI ZHAO1, (Graduate Student Member, IEEE)
1Department of Electrical Engineering, City University of Hong Kong, Hong Kong
2SenseTime, Hong Kong
3TCL Corporate Research Corporation, Ltd., Hong Kong

Corresponding author: Wei-Feng Ou (weifengou2-c@my.cityu.edu.hk)

ABSTRACT In recent years, the angle-based softmax losses have significantly improved the performance of

face recognition whereas these loss functions are all based on cosine logit. A potential weakness is that the

nonlinearity of the cosine function may undesirably saturate the angular optimization between the features

and the corresponding weight vectors, thereby preventing the network from fully learning to maximize the

angular discriminability of features. As a result, the generalization of learned features may be compromised.

To tackle this issue, we propose a Linear-Cosine Softmax Loss (LinCos-Softmax) to more effectively learn

angle-discriminative facial features. The main characteristic of the loss function we propose is the use of an

approximated linear logit. Compared with the conventional cosine logit, it has a stronger linear relationship

with the angle on enhancing angular discrimination through Taylor expansion. We also propose an automatic

scale parameter selection scheme, which can conveniently provide an appropriate scale for different logits

without the need for exhaustive parameter search to improve performance. In addition, we propose a margin-

enhanced Linear-Cosine Softmax Loss (m-LinCos-Softmax) to further enlarge inter-class distances and

reduce intra-class variations. Experimental results on several face recognition benchmarks (LFW, AgeDB-

30, CFP-FP,MegaFace Challenge 1) demonstrate the effectiveness of the proposedmethod and its superiority

to existing angular softmax loss variants.

INDEX TERMS Face recognition, loss function, feature representations, cosine logits, softmax.

I. INTRODUCTION

In recent year, due to the advances of deep convolutional

neural networks (CNNs) [1]–[3], the availability of large-

scale face training data [4], [5] and sophisticated loss func-

tion designs [13], [20]–[22], [30], face recognition has

achieved significant progress. Currently, face recognition

mainly involves two types of applications, namely face iden-

tification and face verification. Face identification aims to

recognize the identity of a target face from a set of registered

faces, while face verification aims to verify whether two faces

belong to the same identity. Basically, these identification and

The associate editor coordinating the review of this manuscript and
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verification processes are based on the matching of facial

features extracted by a CNN network. Therefore, it is crit-

ical that the trained CNN network must be able to extract

discriminative facial features to achieve outstanding recog-

nition performance. To achieve this, in recent years, a large

amount of literature has focused on the design of various

loss functions to enforce strong intra-class compactness and

large inter-class differences in the feature space to enhance

generalization. Existing loss functions for deep representa-

tion learning roughly fall into two categories: metric learning-

based methods and classification-based methods.

The methods based on metric learning aim to learn a

feature representation that maps similar faces as close as

possible and maps dissimilar faces as apart as possible. They
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usually achieve this by imposing some distance constraints

to a pair or a triplet of samples in the feature space to push

similar samples together and pull dissimilar samples apart.

For example, contrastive loss [11], [12] constructs training

sample pairs to minimize the distance of intra-class pairs

whilemaximizing the distance of inter-class pairs. In contrast,

the triplet loss [13] employs triplet training samples to train

the network. A triplet consists of an anchor sample, a positive

sample and a negative sample. The network is trained to

ensure that the anchor-negative distance is larger than the

anchor-positive distance by a given margin. Recently, Sohn

proposed an N-pair loss [43], which generalizes the triplet

loss to allow joint comparisons between multiple negative

examples. Chen et al. further improved the generalization

capability of features by proposing a quadruplet network [44]

to apply more complex constraints on the features. In addi-

tion, Song et al. proposed a lifted structure loss [45] for

deep metric learning by lifting the vector of pairwise distance

within a batch to the matrix of pairwise distances, achieving

improved feature representation. Besides, Wu et al. [15] pro-

posed a distance-weighted sampling method with a simple

margin-based loss by selecting more informative and sta-

ble examples, thereby achieving excellent performance. One

disadvantage of the metric learning-based approach is that

they require to construct tuples of training samples, and the

number of tuples grows rapidly with the size of the training

data, a large proportion of which is trivial, which leads to

slow and unstable convergence. Although using some sample

mining techniques [13]–[15] can relieve this problem, they

actually introduce additional complexity and make the train-

ing process more difficult.

On the other hand, the classification-based methods utilize

an additional classifier after the embedding layer to train

the network as a classification problem, and only retains the

embedding network as a feature extractor during the testing

phase. It has been shown that training a classification task

with a large number of face identities is helpful to learn robust

features [16]. Our work is also based on the classification-

based method. The most straightforward way is to use soft-

max loss for classification training, such as DeepID [16],

DeepFace [17] and VggFace [18]. These pioneering works

explored the feasibility of using CNN for face feature extrac-

tion and achieved promising performance. However, the soft-

max loss only learns a feature space with overlapped decision

boundaries between different classes, so it is not reliable

when generalizing it to unseen samples with large varia-

tions. In order to solve this problem, various literatures have

tried to reformulate the softmax loss by imposing margin

constraints to increase inter-class distances and reduce intra-

class variations. For example, SphereFace [20] pioneered the

concept of angular margin to enhance the angular discrimina-

tion of face features by a multiplicative angular margin. This

method achieved a significant performance improvement

compared to the softmax loss. Recently, CosFace [21] and

AM-Softmax [23] proposed the use of additive cosine margin

to enhance angular discrimination, thereby further improving

the performance of face recognition. Moreover, ArcFace [22]

proposed an additive angular margin and incorporated differ-

ent types of margin into a unified framework to obtain face

features with high discriminative ability. Recently, Chen et al.

proposed a virtual softmax [46] by injecting a dynamic virtual

negative class into original softmax loss to enlarge inter-class

margin and compress intra-class distribution.

In addition, some literatures have found the benefits of

normalizing the features and weights of the classifier in

improving feature discriminative power [24]–[27]. The nor-

malization eliminates the influence from the length of the fea-

tures and weights during training, thus the network can focus

on optimizing the cosine similarity between features and

class vectors to boost angular discrimination. For instance,

Ranjan et al. introduced a L2-constrained softmax [26] loss

to restrict the features on a hypersphere with a fixed radius,

which can significantly improve the performance of face

verification. Similarly, NormFace [24] normalized both fea-

ture vectors and weight vectors to optimize cosine similarity

instead of the inner products in the softmax loss, thereby

effectively improving the angular discrimination of the fea-

tures. Besides, the adaptive selection of the scale and margin

hyper-parameters were studied in [28], [29], [47]. Zhang et al.

studied the settings of scale and angular margin parameter

in cosine-based softmax losses and proposed AdaCos [29]

to adaptively scale cosine logits to enhance the supervision

during training. Liu et al. proposed an adaptive margin soft-

max [28] to adaptively adjust the margins for different classes

to tackle the problem of imbalanced training data in face

recognition. Recently, Wang et al. proposed a mis-classified

vector guided softmax loss [47] for face recognition to guide

the discriminative feature learning by assigning adaptive fea-

ture margins for different classes.

Compared with the tight coupling of angular constraints

and softmax loss, some literatures tried to design separa-

ble regularization terms to achieve joint supervision, so that

multiple regularization effects can be applied to features for

improving generalization. For example, Center Loss [30] uses

the L2 distance between features and class centers as an

auxiliary supervisory signal to reduce the intra-class vari-

ation of the features, and the softmax loss is responsible

for enlarging the inter-class dispersion. Recently, He et al.

proposed a D-Softmax [48] by dissecting the softmax loss

into independent intra- and inter-class objectives and tuned

each part to the best state, which significantly accelerated the

training process with only a minor sacrifice in performance.

Zhang et al. designed a Range Loss [37] joint with softmax

loss to overcome the long tail effect of real-world data for

face recognition. Similar multi-task losses included Marginal

loss [34], Ring loss [38], Center invariant loss [36], Git

loss [35], Feature contraction loss [40], RegularFace [32],

UniformFace [33] as well as Gaussian mixture loss [39], etc.

Despite the excellent performance achieved by the

angle-based softmax loss variants in recent years, one poten-

tial weakness is that the angle is nonlinearly mapped by a

cosine function. The nonlinearity of the cosine function may
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lead to insufficient angular optimization between features and

corresponding class weights. As a result, the angular discrim-

inability of the features may be compromised, resulting in a

reduced generalization ability.

To tackle this issue, we propose a Linear-Cosine Soft-

max Loss to learn angle-discriminative face features more

effectively. The main novelty of the proposed loss function

is the use of a linear-cosine logit, which is designed by

performing Taylor expansion on a linear logit. The designed

linear-cosine logit has a stronger linear relationship with

the angle than the conventional cosine logit, so it helps to

enhance the angular discriminability of the learned features

and improve the generalization ability. To achieve a better

comparison and analysis of different logits, we then propose

an automatic scale hyper-parameter selection scheme, which

can automatically determine the appropriate scaling param-

eters for different logits. Under this scheme, different logits

are scaled properly within the same range, thereby helps to

analyze how the different logit curvatures affect the angular

discrimination and improve performance. As shown in Fig. 1,

the proposed linear-cosine logit achieves a smaller intra-class

angle during the training compared to the conventional cosine

logit, which promotes stronger angular discriminability of

features and leads to a better generalization performance on

the testing set. In addition, we designed a margin-enhanced

Linear-Cosine Softmax Loss by applying different types

of angular margins to the proposed Linear-Cosine Soft-

max loss to further enhance the intra-class compactness and

inter-class separability of features. Experimental results on

several well-known face recognition benchmarks showed that

the proposed Linear-Cosine Softmax Loss effectively boosts

the performance of face recognition and outperformed some

well-known angle-based softmax loss variants.

FIGURE 1. (a) Changes of intra-class angle between features and
corresponding class vectors during training using different logits which
are scaled to the same range by the proposed automatic scheme. K is the
order of Taylor expansion. (b) Performance (%) comparison of different
logits on MegaFace challenge 1.

Our major contributions can be summarized as follows:

1) We proposed a novel LinCos-Softmax Loss, which

utilizes a linear-cosine logit that has stronger linear

relationship with the angle by performing a Taylor

expansion to the linear logit to enhance the angu-

lar discriminability and generalization ability of the

learned features. We further impose different margins

to the LinCos-Softmax Loss to enhance the intra-class

compactness and inter-class separability of the learned

features.

2) We propose an automatic scaling hyper-parameter

selection scheme to automatically determine the proper

scaling parameters for different logits. Under this

scheme, different logits are scaled to the same range,

which helps to study how different logits affect the

angular discrimination and improve the performance.

3) We perform comprehensive experiments on some

well-known face recognition benchmarks (LFW [6],

CFP-FP [7], AgeDB-30 [8], MegaFace challenge

one [9]) by training on small training set (CASIA [4])

and large training set (MS1M [5]) respectively to vali-

date the effectiveness of the proposed methods.

II. METHODOLOGY

One potential disadvantage of the conventional angle-based

softmax losses is that the angle is mapped nonlinearly by

the cosine function. The nonlinearity of the cosine function

may lead to insufficient angular optimization, which will

be analyzed first in this section and then how the proposed

Linear-Cosine Softmax loss solves this problem.

A. COSINE LOGIT SOFTMAX LOSS

Generally, the cosine logit based softmax loss (Cos-Softmax)

can be defined as

Lcosi = − log
(

Pcosyi

)

(1)

where

Pcosyi
=

e
sf cosyi

∑C
j=1 e

sf cosj

(2)

represents the posterior probability of the ith sample belong-

ing to class label yi. C denotes the total number of classes. s

is a scale hyper-parameter. The cosine logit f cosj is defined as

f cosj = W T
j xi = cos θj (3)

where we have omitted the bias term for simplicity fol-

lowing [20], [22]. xi ∈ RD represents the L2-normalized

features of the ith sample. Wj denotes the j
th column of the

L2-normalized weights W ∈ RD×C . θj denotes the angle

between xi and Wj. D denotes the feature dimension.

From an angle perspective, the cosine logit is indirectly

modulated by the angle through the cosine function. The

nonlinearity of the cosine function may oversaturate the

angle, which may limit the network from learning, and thus

cannot sufficiently reduce the angle between the feature and

the corresponding weight vectors. As a result, the angular

discriminability and generalization power of features may

be compromised. To demonstrate this phenomenon, we per-

formed a gradient analysis on the partial derivatives of Lcosi

with respect to cos θyi and θyi for determining the cause of the

problem. We only analyze the case j = yi for convenience

of explanation, because it plays a major role during training

compared to j 6= yi, which is explained in Fig. 2. In the
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FIGURE 2. Changes of intra-class angle θyi
and inter-class angle θj

(j 6= yi ) between feature and weight vectors when training on CASIA. The
intra-class angle is gradually decreasing while the inter-class angles
almost stay around 90 degree during the whole training process.

rest of the paper, we may use the terms gradient, derivative

and partial derivative interchangeably for convenience. The

partial derivative of cosine logit Lcosi with respect to cos θyi is

given by

∂Lcosi

∂ cos θyi
= s

(

Pcosyi
− 1

)

(4)

This indicates that as Pcosyi
gradually approaches one, the gra-

dient of Lcosi w.r.t. cos θyi will vanish accordingly. Basically,

this is a good attribute, because if the scaling factor s is

properly selected, it means that as θyi gradually decreases

to zero, the network will converge spontaneously and stop

learning. However, the derivative of cosine logit Lcosi w.r.t.

θyi is given by

∂Lcosi

∂θyi
= −s

(

Pcosyi
− 1

)

sin θyi (5)

This equation indicates that this gradient w.r.t. θyi is

weakened by the term sin θyi , which is resulted from the

derivative of the cosine function. Unfortunately, this is

undesirable because the factor Pcosyi
− 1 already well guar-

antees the vanishing of the gradient as θyi approaches zero.

The additional decaying factor may cause excessive gradi-

ent reduction and insufficient optimization of the intra-class

angle, thereby compromising the angular discriminability of

features accordingly.

B. LINEAR LOGIT SOFTMAX LOSS

The cosine logit is indirectly modulated by the angle through

the cosine function, which can cause a harmful factor from the

perspective of angle θyi . Based on this observation, it seems

reasonable to use a linear logit which is directly modulated

by the angle so that the network can learn to reduce the

intra-class anglemore effectively. Specifically, the linear logit

is defined as

f linearj = −θj +
π

2
= − arccos

(

cos θj
)

+
π

2
(6)

where the angle is obtained by taking the arccosine because it

is not directly available. Thus, the Linear-logit Softmax Loss

(Lin-Softmax) is defined as

L lineari = − log
(

Plinearyi

)

(7)

where

Plinearyi
=

e
sf linearyi

∑C
j=1 e

sf linearj

(8)

The gradient of L lineari with respect to θyi is given by

∂L lineari

∂θyi
= −s

(

Plinearyi
− 1

)

(9)

where the undesirable factor sin θyi does not exist. However,

the gradient with respect to cos θyi is

∂L lineari

∂ cos θyi
= s

(

Plinearyi
− 1

) 1
√

1− (cos θyi )
2

(10)

This equation shows that as θyi gradually decreases, the gra-

dient is inversely amplified by the factor 1/

√

1− (cos θyi )
2.

In extreme cases, when θyi equals zero, the gradient will

tend to infinity. This is harmful because it makes the training

more difficult to converge and increases the risks of gradient

explosion.

C. LINEAR-COSINE LOGIT SOFTMAX LOSS

In order to alleviate the gradient decaying problem of cosine

logit and the gradient amplification problem of linear logit,

we proposed a new logit called linear-cosine logit, which is

a tradeoff between cosine logit and linear logit. Specifically,

we represent θj as the arccosine of cos θj, then perform a Tay-

lor expansion over the arccosine function, and approximate

the angle using the first K terms:

θj = arccos
(

cos θj
)

≈ θ̂j (11)

where

θ̂j =
π

2
−

K−1
∑

n=0

cn(cos θj)
2n+1 (12)

and

cn =
(2n)!

22n(n!)2(2n+ 1)
(13)

θ̂j is the approximated angle using K Taylor series terms and

cn are the coefficients of the Taylor series. By substituting the

original θj with the approximated angle θ̂j into (6), the linear-

cosine logit is defined as

f LinCosj = −θ̂j +
π

2
=

K−1
∑

n=0

cn(cos θj)
2n+1 (14)

Thus, the Linear-Cosine Softmax Loss (LinCos-Softmax) for

the ith sample is defined as

LLinCosi = − log
(

PLinCosyi

)

(15)
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FIGURE 3. Comparison of linear logit, cosine logit and linear-cosine logit. In (b) and (c), we only plot the range between [0, π/2] for better
viewing because the angle usually stays within this range during training (as shown in Fig. 2).

where

PLinCosyi
=

e
sf LinCosyi

∑C
j=1 e

sf LinCosj

(16)

Its gradients with respect to θyi and cos θyi are given by

∂LLinCosi

∂θyi
= −s

(

PLinCosyi
− 1

)

K−1
∑

n=0

(2n)!

22n(n!)2
(cos θyi )

2n sin θyi

(17)

∂LLinCosi

∂ cos θyi
= s

(

PLinCosyi
− 1

)

K−1
∑

n=0

(2n)!

22n(n!)2
(cos θyi )

2n (18)

Now, we have formulated three loss functions, Cos-Softmax,

Lin-Softmax, and LinCos-Softmax, as well as their par-

tial derivatives w.r.t cos θyi and θyi . To explain why the

linear-cosine logit can achieve a good trade-off between

linear logit and cosine logit, we illustrated the three logits

in Fig. 3(a) and their magnitudes of derivatives w.r.t cos θyi
and θyi in Fig. 3(b) and Fig. 3(c), respectively.

From Fig. 3(a), we can observe that linear-cosine logit

using different K terms all live between the linear logit and

cosine logit as a trade-off between them. In Fig. 3(b), the

derivative magnitude of cosine logit w.r.t θyi decays more

rapidly than the other logits as the angle decreases from

π/2 to 0. This could prevent the intra-class angle θyi from

being optimized sufficiently and reduce generalization power.

Comparatively, the linear-cosine logit decays slower than the

cosine logit as θyi decreases, thus can optimize θyi more

sufficiently to achieve more compact intra-class distribution.

Moreover, Fig. 3(c) shows that the derivative magnitude of

linear logit w.r.t cos θyi increases rapidly as θyi decreases from

π/2 to 0. In extreme cases, it will tend to infinity when

θyi becomes zero. This could increase the risks of gradient

explosion and make the training unstable. Comparatively, the

linear-cosine logit grows much slower than the linear logit

and is always bounded as θyi decreases, thus can avoid the

gradient explosion problem.Hence, we can see that the linear-

cosine logit can reach a good trade-off between linear logit

and cosine logit by overcoming both of their disadvantages.

In fact, the cosine logit and linear logit can be considered

as special cases of the linear-cosine logit, corresponding to

K = 1 and K = ∞ respectively.

D. AUTOMATIC SCALE PARAMETER SELECTION

In previous sections, we discussed different softmax loss

variants from a gradient perspective, but did not discuss

how to choose the scaling hyper-parameter s involved in

these loss functions. The scaling hyper-parameter has a sig-

nificant impact on the gradient of the loss with respect to

network parameters, thereby greatly affecting the network

optimization process and the final recognition performance.

Therefore, it is important to choose s properly. Furthermore,

as shown in Fig. 3(a), different logit functions have different

output ranges, and it is more reasonable to compare them in

the same range by considering the scaling of s together. This

helps to better analyze the influence of curvature of different

logits. The choice of the scaling hyper-parameter s usually

relies on heuristic trials, which are both time consuming and

inconvenient to use. The automatic selection of s has been

discussed in [29]. Inspired by these efforts, we designed a

simple scheme to automatically determine this scale parame-

ter for different logits, so that their scale ranges are the same.

In general, we have

Pyi =
e
sf yi

∑C
j=1 e

sf j
(19)

In this probability expression, we have omitted the name

of the logit in the super-script of Pyi and fyi because the

following discussion applies to all the logits introduced in

previous sections. Based on the findings that θj ≈ π/2 for

j 6= yi during the whole training (see Fig. 2) and fj
∣

∣

θj=
π
2
= 0,

we can simplify Pyi as

Pyi =
e
sf yi

esfyi + C − 1
(20)

We want to find a suitable s such that Pyi properly spans

over the whole range of [0, 1] as θyi decreases from π/2
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TABLE 1. Scale parameter for different logits determined by the
proposed scheme.

FIGURE 4. (a) Scaled logits by our automatic scheme; (b) The
corresponding Pyi

for the scaled logits; (c) Changes of intra-class angle
θyi

during training for different K ; (d) Performance comparison of using
different scales for cosine logit (K = 1), the dash line corresponds to the
scale determined by our proposed scheme, and the other scales are
empirically traversed with s = 5, 10, 15, 20, 25. Experiments are
conducted on CASIA with C = 10575 classes.

to zero during training. Since Pyi
∣

∣

θyi=
π
2
≈ 1

C
≈ 0 (the

number of training classes C is usually very large in deep

face recognition), we can simply require Pyi to be close to

one, when θyi = 0. Specifically, we can set up the following

equation:

Pyi
∣

∣

θyi=0
= η (21)

where η is another hyper-parameter close to one and we use

η = 0.999 in all our experiments. By solving (21), s can be

automatically determined as

s =

(

log
η

1− η
(C − 1)

)

/ fyi
∣

∣

θyi=0
(22)

By using this simple equation, we can automatically deter-

mine an appropriate scale s for different logits. The scales

for different logits are shown in Table 1, when trained on

CASIA with C = 10575 classes, and the scaled logits and

corresponding probabilities Pyi are illustrated in Fig. 4(a) and

Fig. 4(b), respectively.We can see fromFig. 4(a) that different

logits are scaled in the same range. As K increases, Fig. 4(b)

shows that the proposed linear-cosine logit will apply more

penalty for the same angle θyi to boost angular discrimination.

This can be further validated from Fig. 4(c), which shows that

a largerK achieves a smaller intra-class angle during training.

The choice of K involves balancing a suitable strength of

penalty between enhancing angular discrimination on train

data and maximizing feature generalization. In our exper-

iments, we found K = 2 worked the best. In addition,

we also compared the performance of using different scales

for cosine logit (K = 1) in Fig. 4(d). We can find that

the scale determined by our automatic scheme (dashed line)

has higher performance than the other empirically traversed

scales in all the validation sets, demonstrating the effective-

ness of our proposed scheme. This is mainly because our

automatic selection method can select the appropriate scaling

hyper-parameter during the network optimization process to

maintain the appropriate gradient strength, thereby improving

the generalization performance.

E. MARGIN ENHANCEMENT

Recently, it has been shown that incorporating margins

with softmax loss can lead to significantly improved fea-

tures [20]–[23]. These methods can be applied to the

proposed LinCos-Softmax loss for further improvement.

We apply three types of margin to the LinCos-Softmax

loss, and we denote the margin-enhanced loss as m-LinCos-

Softmax.

Specifically, to impose the multiplicative angular margin

m1 and additive angular margin m2, we simply substitute θ̂yi
withm1θ̂yi+m2 into Eq. (14) to enforce extra angular penalty.

Then, we further impose the additive cosine margin by sub-

stituting cos θyi with cos θyi − m3 into Eq. (14) to enforce

extra cosine penalty. Note that the margins are only applied

to the target class logit, i.e., j = yi. Based on (12) and (14),

the margin-enhanced linear-cosine logit for the target class is

defined as

f m−LinCosyi

= f LinCosyi

∣

∣

∣

θ̂yi←m1θ̂yi+m2,cos θyi←cos θyi−m3

= m1

K−1
∑

n=0

cn(cos θyi−m3)
2n+1−

π

2
(m1−1)−m2

(23)

while for j 6= yi, f
m−LinCos
j = f LinCosj . Finally, the margin-

enhanced linear-cosine softmax loss is defined as

Lm−LinLosi = − log





e
sf m−LinCosyi

∑C
j=1 e

sf m−LinCosj



 (24)

Fig. 5 illustrates the margin-enhanced logits under different

margin settings using K = 2 as an example, where the

blue curve is the baseline logit without margin enhancement.

We can see that the margins are essentially pulling down the

baseline logit curve in certain ways to impose extra penalty,

thereby enforcing angular discrimination of features. When

m1 = 1, m2 = 0, m3 = 0, the m-LinCos-Softmax loss

reduces to LinCos-Softmax loss.
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FIGURE 5. Comparison of target logit curves under different margin
settings using K = 2.

III. EXPERIMENTS

A. EXPERIMENTAL SETTINGS

1) TRAINING DATA

We used two public training datasets, CASIA [4] and

MS1M [5], for training our models with different loss

functions. CASIA contains around 500000 images from

10575 identities. We used a cleaned subset of MS1M

by removing the label noises, leaving 3.8M images from

85K identities. All the face images were preprocessed by

MTCNN [10] for face detection and aligned by a similar-

ity transformation to adjust to a size of 112 × 112 before

feeding them to the network. Each pixel was then subtracted

by 127.5 and divided by 128 for normalization. Random

horizontal flipping was used for data augmentation.

2) NETWORK SETTINGS

Following the settings of SphereFace [20], we adopted a

20-layer ResNet-like model as our network architecture

with output feature dimension 512. This network achieves a

good trade-off between performance and model complexity.

We used SGD for network training with momentum 0.9 and

weight decay factor 0.0005. The initial learning rate was

0.1, and divided by 0.1 at 10th, 15th and 18th epoch. The

training was finished in 20 epochs. We used PyTorch for

implementation.

3) EVALUATION

We evaluate the model performance using three validation

sets, LFW [6], CFP-FP [7], AgeDB-30 [8] and a well-known

testing benchmark, MegaFace challenge 1 [9]. LFW is a

widely used face verification benchmark, containing 13222

images of 5749 identities with large variations in illumi-

nation, expression, pose, etc. Since many of today’s deep

learning-based face recognition models can easily achieve

beyond 98% verification accuracy on LFW, we used more

challenging verification benchmarks, CFP-FP and AgeDB-

30, for a better performance evaluation. The CFP dataset

is for pose-invariant face verification with 7000 images of

500 identities, while the AgeDB dataset is for age-invariant

face recognition with 16488 images of 568 identities. Fol-

lowing the unrestricted with labeled outside data protocol,

TABLE 2. Verification accuracies (%) of different methods on LFW, CFP-FP
and AgeDB-30 when training CASIA.

we evaluate verification accuracy with 10-fold cross valida-

tion on 6000 face pairs of LFW, 7000 frontal-profile face pairs

of CFP, and 6000 face pairs of AgeDB under the age differ-

ence 30. Half of the face pairs are positive pairs from the same

identity, while the other half are negative pairs from different

identities. MegaFace is a challenging testing benchmark that

can be used to evaluate face recognition models at million-

scale distractors. MegaFace challenge 1 (MF1) includes a

probe set from FaceScrub with 100K images of 530 identities

and a gallery set containing more than 1 million images

of 690K identities. We evaluate Rank-1 identification accu-

racy and verification True Positive Rate (TPR) at 10−6 False

Positive Rate (FPR) with one million distractors. The cosine

similarity is used formeasuring the similarity between feature

vectors extracted from face images.

B. LOGIT FUNCTION EVALUATION

In this section, we conducted an ablation study on dif-

ferent logits. Specifically, we studied the effectiveness of

the proposed linear cosine logit with and without mar-

gin enhancement respectively. Under non-margin setting,

the scale parameter was determined by our proposed auto-

matic scheme for different logits. Under margin setting,

we empirically used a fixed scale parameter s = 20 for differ-

ent logits for simplicity instead of using the automatic scaling

scheme. This is because using various margin settings will

significantly change the logit curves, making the automatic

and joint determination of both scale and margin parameters

more complicated, which is out of the scope of this work. The

results for training on CAISA are summarized Table 2 and

Table 3, the results for training on MS1M are summarized

in Table 4, and the CMC/ROC curves of different methods

are illustrated in Fig. 6.

From Table 2 and Table 3, we can clearly see that under

non-margin setting (row 1 ∼ row 5), the proposed LinCos-

Softmax outperformed both Lin-Softmax and Cos-Softmax

significantly in all the evaluation sets. The performance of

LinCos-Softmax decreased gradually as K increased from

2 to 4. The best performance is obtained for K = 2, with an

improvement of around 5% compared to Cos-Softmax and

an improvement of around 6% compared to Lin-Softmax in
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TABLE 3. Identification and verification performance (%) on MegaFace
challenge 1 when training on CASIA.

TABLE 4. Identification and verification performance (%) on MegaFace
challenge 1 when training on MS1M.

FIGURE 6. CMC and ROC curves of different K settings on MegaFace
challenge 1 for training on CASIA and MS1M respectively.

MegaFace identification. This showed that the linear cosine

logit can achieve a good trade-off between cosine logit and

linear logit to improve feature representation. Under margin

enhancement with identical margin settings (the last two rows

of Table 2 and Table 3), the m-LinCos-Softmax still obtained

a higher performance for K = 2 than K = 1, with an

around 0.5% improvement of MegaFace identification and

a 0.6% improvement of MegaFace verification for K = 2

compared to K = 1. These results showed that our proposed

linear-cosine logit can effectively improve performance under

both margin and non-margin settings.

The results for training on MS1M in Table 4 further

demonstrated the superiority of our proposed linear cosine

logit, which obtained a 0.79% improvement of MegaFace

identification over the cosine logit under non-margin setting

and a 1.54% improvement under identical margin settings.

We also observed that the Lin-Softmax obtained a signif-

icantly lower performance than Cos-Softmax and LinCos-

Softmax. This is due to the negative impact of the gradient

amplifying problem of the linear logit. Hence, selecting a

proper K to achieve an appropriate trade-off between cosine

logit and linear logit to enhance the angular discriminabil-

ity and generalization capability of features is important.

We found that K = 2 worked best in most cases.

In addition, the CMC and ROC curves in Fig. 6 also

demonstrated a consistently larger envelop of LinCos-Softmax

using K = 2 than those of Cos-Softmax and Lin-Softmax

under non-margin settings. Similarly, the m-LinCos-Softmax

using K = 2 also obtained a larger CMC and ROC envelop

than using K = 1 under identical margin enhancement

settings. These results again validated the effectiveness of the

proposed linear-cosine logit.

C. MARGIN ENHANCEMENT EVALUATION

In this section, we evaluate the effectiveness of margin

enhancement under the proposed Linear Cosine Softmax

Loss framework. We compared the performance of m-

LinCos-Softmax loss using different margin settings with the

baseline LinCos-Softmax without margin enhancement for

K = 2, and the results of training on CASIA and MS1M

are summarized in Table 5.

We can clearly see that the m-LinCos-Softmax loss

obtained significant performance improvement compared to

the baseline LinCos-Softmax in all the margin settings.

Although the performance on LFW is close to saturation,

obvious performance gains can be observed in other eval-

uation sets. An improvement of over 8% in MegaFace

identification and an improvement of over 6% in MegaFace

verification is achieved for all the margin settings when train-

ing on CASIA, while a performance gain of more than 4% in

MegaFace identification is obtained when training onMS1M.

We also compared the angle distribution of face pairs

on LFW and AgeDB-30 between with margin enhancement

and without margin enhancement when trained on MS1M

in Fig. 7. We can observe that the m-LinCos-Softmax loss

achieved a more compact angle distribution with smaller

overlapping confusion regions compared to its non-margin

counterpart LinCos-Softmax, further verifying the effective-

ness of margin enhancement under our proposed loss frame-

work. In addition, we also illustrated the training process

in Fig. 8 by showing the performance convergence on differ-

ent validation sets during training. It showed that the proposed

m-LinCos-Softmax loss using various margin combinations

can converge without difficulty when trained on both CASIA

and MS1M. Besides, it also demonstrated an obvious per-

formance gain by the margin enhancement compared to the

baseline blue curve without using margins.
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TABLE 5. Performance (%) comparison of LinCos-Softmax and m-LinCos-Softmax using different margin settings for K = 2.

TABLE 6. Performance (%) comparison of the proposed methods and state-of-the-art loss functions.

FIGURE 7. Angle distributions of face pairs on LFW and AgeDB-30 when
trained on MS1M. Left column: LinCos-Softmax (K = 2); Right column:
m-LinCos-Softmax (s = 20, m1 =1, m2 =0, m3 =0.2, K = 2).

D. COMPARING WITH STATE-OF-THE-ART METHODS

In this section, we compared our proposed method with

several well-known face recognition benchmarks. The per-

formance comparison results for training on CASIA and

MS1M are summarized in Table 6, and the corresponding

CMC and ROC curves of different methods are illustrated

in Fig. 9. For m-LinCos-Softmax, we use s = 20, K = 2,

m1 = 1, m2 = 0, m3 = 0.2. For Center loss [30],

we use a weight factor of 0.002 for the center loss term. For

SphereFace [20], we use a margin of 3. For CosFace [21]

and ArcFace [22], we use a margin of 0.2 and a scale of 20.

FIGURE 8. Performance convergence of m-LinCos-Softmax on LFW and
AgeDB-30 during the training process on CASIA and MS1M using various
margin settings.

For MV-AM-Softmax [47], we use a margin of 0.2, a scale

of 20 and t = 0.1 with fixed weights. We can find that the

proposed m-LinCos-Softmax obtained a superior or competi-

tive performance compared to the state-of-the-art angle-based

softmax loss variants, SphereFace, CosFace, ArcFace, and

MV-AM-Softmax. Comparing m-LinCos-Softmax with Cos-

Face, 0.5% improvement was obtained for MegaFace iden-

tification when trained on CASIA while 1.5% improvement

can be obtained when training on MS1M. Actually, the Cos-

Face can be considered as a special case of the m-LinCos-

Softmax loss forK = 1. Comparing m-LinCos-Softmax with

ArcFace, 2.6% improvement is obtained in MegaFace iden-

tification for CASIA and a 0.8% improvement is obtained

for MS1M. Comparing with MV-AM-Softmax, 1.33% and

0.61% improvements inMegaFace identification are obtained

for CASIA and MS1M respectively. The CMC and ROC

curves in Fig. 9 also showed that our proposed m-LinCos-

Softmax had a larger envelop than the other losses, showing

that the proposed method can effectively improve the perfor-

mance of face recognition.
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FIGURE 9. CMC and ROC curves of the proposed methods and state-of-the-art loss functions on MegaFace challenge 1.

TABLE 7. A comparison of the proposed loss with relevant face
recognition benchmarks on LFW.

In Table 7, we also listed a performance comparison on

LFW with more relevant methods based on their reported

results. We can find that our method obtained a compet-

itive performance compared with various face recognition

benchmarks. Although our method did not obtain the best

performance on LFW, it did achieve a good trade-off in terms

of performance, training size as well as model complexities.

IV. CONCLUSIONS

In this paper, we proposed a Linear-Cosine Softmax Loss to

effectively learn angle-discriminative face features. By using

a linearity-enhanced cosine logit derived by Taylor expan-

sion, our proposed loss function can more sufficiently opti-

mize the angle between the feature and the corresponding

weight vectors to enhance angular discriminability of fea-

tures and achieve better generalization. We also designed

an automatic scale parameter selection scheme, which can

automatically determine an appropriate scale without exhaus-

tive parameter tuning to save time and improve performance.

In addition, we further improved our method by applying

margin enhancement to the proposed loss framework. Experi-

mental results on well-known face recognition dataset (LFW,

AgeDB-30, CFP-FP, MegaFace) showed that the proposed

linear cosine logit can effectively improve the performance of

face recognition models under both margin and non-margin

settings, and the margin enhancement can bring significant

performance improvements to obtain a superior performance

than the well-known angular softmax loss variants. Finally,

mining angular discriminative information in the feature

space to improve feature representation is a very promising

approach, we will continue this direction in our future study.
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