
Linda in Space-Time:

An Adaptive Coordination Model
for Mobile Ad-Hoc Environments

Mirko Viroli1, Danilo Pianini1, and Jacob Beal2

1 Alma Mater Studiorum – Università di Bologna, Italy
{mirko.viroli,danilo.pianini}@unibo.it

2 Raytheon BBN Technologies, USA
jakebeal@bbn.com

Abstract. We present a vision of distributed system coordination as a
set of activities affecting the space-time fabric of interaction events. In
the tuple space setting that we consider, coordination amounts to con-
trol of the spatial and temporal configuration of tuples spread across
the network, which in turn drives the behaviour of situated agents. We
therefore draw on prior work in spatial computing and distributed sys-
tems coordination, to define a new coordination language that adds to
the basic Linda primitives a small set of space-time constructs for link-
ing coordination processes with their environment. We show how this
framework supports the global-level emergence of adaptive coordination
policies, applying it to two example cases: crowd steering in a perva-
sive computing scenario and a gradient-based implementation of Linda
primitives for mobile ad-hoc networks.

1 Introduction

A common viewpoint in developing coordination models on top of Linda [16] is
that tuples are a mechanism to reify and exchange events/data/knowledge that
are important to system coordination, and to synchronise the activities of coor-
dinated components in a parallel and/or distributed system. A tuple is, however,
a very point-wise abstraction, and applications often need to express relation-
ships articulated across the physical environment through which the computa-
tional system is distributed. There is thus a need for coordination models and
languages that raise the level of abstraction from the single tuple to a spatial
structure of tuples, without forgetting the possibility that such a structure, as
well as being distributed, may also be highly dynamic and mobile.

Such spatial coordination models have been developed in a number of pre-
vious papers [29,17,18,24]. These span multiple application contexts, such as
pervasive computing, where mobility, large system scale, and/or situatedness in-
vite the coordination space to be interpreted as a distributed substrate for spatial
data structures. These models enhance the standard tuple-space settings with
primitives for spreading tuples from nodes to their neighbors, and letting them

M. Sirjani (Ed.): COORDINATION 2012, LNCS 7274, pp. 212–229, 2012.
c© IFIP International Federation for Information Processing 2012

Linda in Space-Time 213

affect (or be affected by) the context of neighbors. Iterative spreading can then
lead to the stabilisation of given tuple structures, which find applications such as
retrieval of items of interest in mobile environments, as in the TOTA middleware
[17] or the pervasive ecosystems model [30]. These prior models, however, tend
to be either ad hoc (e.g., [24]) or tightly tied to a particular metaphor (e.g., [29]).

These approaches may also be viewed through the research lens of spatial
or amorphous computing [6], which argues that computation in a dense and
mobile system is best understood and designed in terms of spatial abstractions
(e.g., regions, partitions, gradients, trails, paths) and temporal abstractions (e.g.,
fading, growth, movement, perturbation). The Proto language [4] is an archetype
of this approach, presenting a model in which these abstraction—intrinsically
discrete because of the nature of computing devices—would actually tend toward
their continuum version as the density of the network, which we are continuing
to experience with current ICT technologies. As this research program links
geometric continuum abstractions and individual computing devices, it thus has
the potential of addressing the crucial issue of designing distributed systems
where adaptiveness globally emerges out of local interactions in a predictable
and controllable way.

Based on the above works, and on an existing trend of studies of concurrency
“in space” [12,11], we introduce a new coordination model and language aiming
at further bridging the gap between coordination and the continuum ideas of spa-
tial computing. In our model, we make situated agents interact by injecting into
the coordination substrate so-called space-time activities, namely, processes that
manipulate the space-time configuration of tuples in the network. Such activi-
ties are expressed in terms of a process-algebra like language, composing atomic
coordination primitives in the style of Linda with additional Proto-derived con-
structs that deal with spatial and temporal aspects: (i) spreading of an activity
in a node’s neighbourhood depending on its relative orientation; (ii) scheduling
an activity at the next computation round of a node; and (iii) accessing space-
time contextual information to link the configuration of tuples with the actual
physical space.
Contribution: The main contribution of this work is hence the definition of a
spatial computing coordination language, which we call στ -Linda, extending
Linda to flexibly enact coordinated activities tightly linked in space-time with
their environment. It provides more advanced mechanisms for controlling space-
time behaviour of coordination activities than those of existing coordination
middlewares such as TOTA [17], and overcomes the restrictions of Proto [4] that
make it unsuitable as an open coordination framework (as will be detailed in
Section 5).

The proposed model can be used to design coordination mechanisms that
emergently adapt to environment stimuli, such as agent interactions or changes
due to mobility and faults. We describe two applications for this model: first
we develop an adaptive crowd steering coordination service by which people in
a structured environment can be guided (by signs appearing in their personal
smartphone or public devices) towards a point of interest through the shortest

214 M. Viroli, D. Pianini, and J. Beal

path that circumvents dynamically-formed crowded areas. Second, we provide a
space-time extension of standard Linda coordination primitives (out, in and rd)
working in a distributed mobile environment, and relying on the self-organisation
pattern known as a computational gradient [2].

The remainder of this paper is organised as follows. Section 2 illustrates the
proposed model and language, Section 3 describes a formalisation expressed as
a core calculus, Section 4 presents application cases, Section 5 relates our model
with prior work, and finally Section 6 concludes with final remarks.

2 Linda in Space-Time

2.1 Basic Model

Our coordination infrastructure runs on a (possibly very dense and mobile) set
of situated computational devices, e.g., located in specific points (i.e. nodes)
of the physical environment. Each node hosts software agents (the coordinated
components) and a tuple space, and has ability of interaction with nodes in the
neighbourhood—where proximity can be seen as a physical or virtual property.
Differently from Linda, in which agents interact by atomic actions (inserting,
removing and reading tuples in the local tuple space), in στ -Linda, agents inter-
act by injecting space-time activities (activities for short). These activities are
processes composing atomic Linda-like actions with additional constructs allow-
ing the activity to diffuse in space (i.e. to other nodes) and in time (i.e. to be
delayed). The net effect of an activity is hence to evolve the population of tuples
in the network, thereby affecting the distributed structures of tuples that agents
use to for global coordination.

In our model, each node undergoes the following computation round : (i) it
sleeps, remaining frozen; (ii) it wakes up, gathers all incoming activities (con-
tained in messages received either from neighbour nodes or from local agents)
and executes them; (iii) it executes the continuation of the activity executed in
previous computation round; (iv) spreads asynchronous messages to neighbour-
hood; and (v) schedules an activity continuation for next round. The node then
sleeps again, returning to the beginning of the cycle. The duration of the com-
putation round is dictated by the underlying infrastructure, and could possibly
change over time or from device to device (as in [1]). We only assume that it is
long enough for executing steps (ii-iii-iv) above. This particular computational
model for a tuple space has many similarities with the platform assumptions of
the Proto language [4,27], which we adopt for its facility of situating computa-
tions in space-time—a thorough comparison is reported in Section 5.

2.2 The Coordination Language

A key role in the proposed coordination model is played by the concept of space-
time activities. We here incrementally describe their features by presenting a
surface language for their specification.

Linda in Space-Time 215

Primitive Actions. We being with three basic Linda actions for manipulating
the tuple space: “out tuple”, “in tuple”, “rd tuple”. These respectively insert,
remove and read a tuple from the local tuple space. A tuple is a ground first-order
term in our model—similarly to [22]. Read and removal specify a template (a
term with variables, denoted as literals starting with an upper-case letter) that
should be syntactically matched with the retrieved tuple. Read and removal
are predicative: they are non-blocking and yield a negative result if no matching
tuple is found. To these, we add a fourth primitive, “eval pred”, which evaluates
the predicate expression pred.

When such actions are defined for an activity injected by an agent, and are
executed in the tuple space where the agent is situated in, then a notification
result is shipped to the agent—although, following the spirit of [8], we shall not
discuss internal aspects of agent interactions in this paper.

Protocols. Primitive actions can be sequentially composed in a protocol-like
manner. Other standard operators of parallel composition and choice could be
orthogonally added, but are not discussed in this paper for brevity. Additionally,
in, rd and eval define branches leading to two different continuations, one for
positive and one for negative outcome of the predicative action. Three examples
of activities are:

out t(1,2,3); out t(a,1+2,b)

in r(X,2,3) ? out r(X,2,3) : out r(0,2,3)

(in r(X,2,3) ? (eval X=1 ? out r(X,2,3) : 0) : 0); out ok

The first expression inserts tuple t(1,2,3) and then t(a,3,b). Note that tuples
are evaluated before being used in actions: evaluation amounts to computing the
result of (mathematical) expressions used in a tuple’s arguments.

The second expression removes any tuple matching r(X,2,3) (variable X is
bound to the value of first argument, and this substitution propagates through
the remainder of the activity). If it succeeds (? branch) the tuple is inserted
back, otherwise (: branch) a new tuple r(0,2,3) is inserted.

The third example attempts to remove any tuple matching r(X,2,3). If it
succeeds and X = 1 then it inserts it back, otherwise it does nothing (0). Indepen-
dently of the outcome of such a removal, tuple ok is then inserted. We may also
omit the denotation of a “:” branch when it leads to the execution of empty pro-
cess 0, writing e.g. “(in r(X,2,3) ? eval X=1 ? out r(X,2,3)); out ok”
in place of the third example above.

Definitions. When desired, one can equip the specification of an activity with
definitions (which can possibly be recursive), in the style of agent definition
in π-calculus. These have the form “N(x1,...,xn) is activity”, which define
activity as having name N and arguments x1,. . .,xn. For instance, after declara-
tion

in-out(T) is (in T; out T)

216 M. Viroli, D. Pianini, and J. Beal

we have for instance that activity “in-out(r(1,2,3))” behaves just like
“in r(1,2,3); out r(1,2,3)”, namely, the tuple is added if it is not already
there. Note that since no branches are used for the removal operation, this in
turn is equivalent to “(in r(1,2,3)?0:0); out r(1,2,3)”, or, similarly, to
“in r(1,2,3)?out r(1,2,3):out r(1,2,3)”.

Time. The language provided so far is still point-wise in space and time. We
now expand it, beginning by adding construct next to situate activities in time.
Executing action “next P” (where P is the protocol – also called process –
defining an activity), amounts to scheduling P for execution at the next com-
putation round of the current node. Special variable $delay can be used in P
and evaluates to the amount of time passed in between the current computation
round and the previous one. Similarly, variable $this can be used to denote the
identifier of the node on which it is evaluated. Useful examples of definitions
(along with a brief descriptions of them) are then the following ones:

% When a tuple matching T is found, it is removed and replaced with T2

chg(T,T2) is (in T ? out T2 : next chg(T,T2))

% Inserts a tuple time(T,X), updated as time X passes

rep(T) is (out time(T,0); next rep2(T))

rep2(T) is (in time(T,Y); out time(T,Y+$delay); next rep2(T))

% Inserts tuple T that is removed after X time units elapse

outt(T,X) is (in-out(T); eval X<=0 ? in T : next outt(T,X-$delay))

Note that by the use of next in conjunction with a recursive definition, chg
actually declares an activity with a duration in time, which will be stopped only
when a tuple matching T is eventually found. Concerning the use of $delay, we
then observe that – in the spirit of a Proto-style space-time computing model –
as the average duration of computation rounds tends to zero, activity rep tends
to define a continuous update of tuple time(T,X) as time X passes, and similarly,
outt(T,X) tends to remove tuple T precisely as time X passed.

Space. To situate activities in space we introduce construct neigh. Executing
action “neigh P” amounts to sending a broadcast message containing P to all
neighbours, which will then execute P at their next computation round. Special
variable $distance is also introduced, which evaluates to the estimated distance
between the node that sent the message and the one that received it. Similarly,
variable $orientation can be used to denote the relative direction from the
receiver to the sender (e.g., as a vector of coordinates [11]). Some examples are
as follows:

% Broadcasts tuple T in the neighbourhood

bcast(T) is (neigh out T)

% Broadcasts tuple T in the neighbourood but only within range R

Linda in Space-Time 217

bcastr(T,R) is (neigh (eval $distance<R ? out T))

% Gossips tuple T in the whole network within range R

goss(T,R) is (eval R>=0 ? (in-out(T); neigh goss(T,R-$distance)))

Of particular interest is the last definition, which spreads one copy of T to all
the nodes whose hop-by-hop distance from the source is smaller than R. As in
the case of time, as devices become increasingly dense, and their distance tends
to zero, the set of devices holding tuple T will actually form a continuous sphere
with radius R around the origin of goss.

Note that it is an easy exercise to define processes dealing with both space and
time—as will be developed in Section 4. For instance, one can define a process
gosst that adds temporal aspects to the goss example, such as to make the
sphere of tuples created by goss all disappear following a timeout. In the sense
of spatial computing interpretation [4], the definition of gosst(T,R,TO) would
be the definition of a geometric space-time activity called “sphere of tuple T

with radius R and timeout TO”—useful to limit the spatial and temporal extent
of some advertised information.

Finally. We conclude by introducing a construct named finally, used to sim-
plify the task of structuring the activities executed at a given round. Executing
action “finally P” makes activity P executed in the current round, but only
when all the others actually completed. A typical use of this construct is to start
an aggregation activity for incoming messages only when all of them have been
processed, as in the following equivalent specification of gossiping:

gossf(T,R) is (eval R>=0 ? (out T; neigh gossf(T,R-$distance);

finally clean(T)))

% Cleans multiple copies of T, leaving just one of them

clean(T) is (in T ? (in-out(T); clean(T)))

Messages spread by gossiping cause the receiver to execute the gossf activ-
ity, which inserts tuple T, further spreads messages, and finally schedules the
clean(T) process for a later time. Only when all such messages have been pro-
cessed in a round (and there are typically more than one) will the set of all clean
activities be executed . The result of their execution is that only one tuple T will
remain in the tuple space. The finally construct can thus, e.g., serve a similar
aggregation and simplification role to the *-hood constructs in Proto.

3 Core Calculus

In this section we introduce a formalisation of the proposed framework similar
in spirit to those of [8,18,28], namely, by a core calculus taking the shape of a
process algebra.

218 M. Viroli, D. Pianini, and J. Beal

3.1 Syntax

Let meta-variable σ range over tuple space (or node) identifiers, x over logic
variables, τ over real numbers used to model continuous time, and f over
function names (each with a given arity, and used either in infix of prefix
notation)—as usual we refer to functions with arity 0 as constants. Meta-
variable t ranges over terms built applying functions to variables, numbers,
identifiers, and constants, and will be written in typetext font. For simplic-
ity, we shorten special variable $orientation to ω, and neglect $distance

since it can be “compiled away” to term length(ω) where length is a function.
We let ε range over evaluations (functions) for terms, write tε for application
of ε to term t, and denote ε(σ, τ) the evaluation that (other than computing
mathematical functions) maps $this to σ and $delay to τ . For instance, we

have a($this,1+$delay)ε(id23,5.1) = a(id23,6.1). A substitution θ of vari-
ables x1, . . . , xn to terms t1, . . . , tn is expressed by notation {t1/x1, . . . , tn/xn},
and is applied to a term t by syntax tθ, e.g., a(x, 1){x/2} means a(2, 1). We
write mgs(t, t′) for the most general substitution θ such that t′θ = t—such a
notation makes no sense (as in partial functions) if mgs(t, t′) =⊥, i.e., when t is
not an instance of t′.

Given these premises, the core syntax of the model is expressed by the gram-
mar in Figure 1 (a). P defines the syntax of a process (or activity): it in-
cludes empty process 0, action prefix, predicative actions with branches, and
call of a definition. Note we skipped from this syntax the composition op-
erator “;”, which can be basically compiled away once we have action pre-
fix “.” and branching “? :”—by straightforward equivalences like 0;P ≡ P ,
(π?P : Q);R ≡ π?(P ;R) : (Q;R) and (α.P);R ≡ α.(P ;R). A space S is a
composition, by operator “ | ”, of processes and tuple sets. The topology of a

network is modelled by a composition L of connections of kind σ
t�σ′, represent-

ing proximity of node σ′ to σ with orientation vector t—e.g., expressed as term
coord(x,y,z) or the like. Finally, a system configuration C is a composition,
by operator ⊗, of nodes [S]τ,τ

′
σ (with id σ, space S, current round at time τ

and previous one at τ ′), topology L, and messages P 	 σ (with content P and
recipient σ).

Figure 1 (b) introduces a congruence relation “≡”, stating when two config-
urations are to be considered syntactically equal, and hence can be used one
in place of the other. First line introduces standard multiset-like properties of
operators “ | ” and “⊗”. Second line states that scheduling operators can be
lifted out of action prefix placed in parallel with the continuation, and can also
distribute in parallel processes. Last line states that when a finally and next

actions are in parallel composition, the latter can enter the former: this will in
fact leave scheduling policy for Q unchanged.

3.2 Operational Semantics

We define operational semantics by transitions C
λ−→ C′, where labels λ can have

the syntax described in Figure 1 (a). Label “·” means a silent action internal

Linda in Space-Time 219

t ::= x | σ | τ | f | f(t1, . . . , tn) Terms
P,Q,R ::= 0 | α.P | π?P : Q | D(t1, . . . , tn) Process

α ::= out t | �P Action
� ::= next | neigh | finally Scheduling operator
π ::= rd t | in t | eval t Predicative action
T ::= 0 | t | (T | T) Tuple set
S ::= 0 | T | P | (S | S) Space

L ::= 0 | σ t�σ | (L | L) Topology

C,D ::= 0 | [S]τ,τ ′
σ | P � σ | L | (C ⊗ C) Configuration

λ ::= · | σ!P | στ?P | P � σ | L : L Labels

“ | ” and “⊗” are commutative, associative, and absorb 0
(�P).Q ≡ Q | �P �(P | Q) ≡ (�P) | (�Q) �0 ≡ 0

finally P | next Q ≡ finally (P | next Q)

(STR)
C ≡ C′ C′ λ−→ D′ D′ ≡ D

C
λ−→ D

(SND)
C

σ!P−−→ C′

(σ
t�σ′)⊗ C

σ!P−−→ C′ ⊗ (P{t/ω} � σ′)⊗ (σ
t�σ′)

(BRO)
(σ

t�σ′) /∈ C P �≡ 0

[S|neigh P]τ,τ
′

σ ⊗ C
σ!P−−→ C ⊗ [S]τ,τ

′
σ

(REC)
C

στ?P |Q−−−−−→ C′

(P � σ)⊗ C
στ?Q−−−→ C′

(NEW)
P � σ /∈ C τ2 > τ1

[T |next Q]τ1,τ0σ ⊗C
στ2?P−−−−→ C ⊗ [T |P |finally Q]τ2,τ1σ

(FIN)
−

[T |finally P]τ,τ
′

σ ⊗C
·−→ C ⊗ [T |P]τ,τ

′
σ

(RUN) S〈P 〉 ε(σ,τ−τ ′)
↪−−−−−−→ S′〈P ′〉

[S|P]τ,τ
′

σ ⊗ C
·−→ C ⊗ [S′|P ′]τ,τ

′
σ

(MOV)
−

L⊗ C
L:L′−−−→ C ⊗ L′ (AGN)

−
C

P�σ−−−→ C ⊗ (P � σ)

(OUT) S〈out t.P 〉 ε
↪−→ (S | tε)〈P 〉

(IN1) (S | t′)〈in t?P : Q〉 ε
↪−→ S〈Pθ〉 if θ = mgs(t′, tε)

(IN2) S〈in t?P : Q〉 ε
↪−→ S〈Q〉 if �t′ ∈ S and mgs(t′, t) �=⊥

(RD1) (S | t′)〈rd t?P : Q〉 ε
↪−→ (S | t′)〈Pθ〉 if θ = mgs(t′, tε)

(RD2) S〈rd t?P : Q〉 ε
↪−→ S〈Q〉 if �t′ ∈ S and mgs(t′, t) �=⊥

(EV1) S〈eval t?P : Q〉 ε
↪−→ S〈P 〉 if tε = true

(EV2) S〈eval t?P : Q〉 ε
↪−→ S〈Q〉 if tε �= true

(D) S〈D(t1, . . . , tn)〉 ε
↪−→ S〈P{tε1/x1, . . . , t

ε
n/xn}〉 if D(x1, . . . , xn) is P

Fig. 1. (a) Grammar, (b) Congruence, (c) Global semantics and (d) Local semantics

220 M. Viroli, D. Pianini, and J. Beal

to a node σ; “σ!P” means device σ is broadcasting a message with content P ;
“στ?P” means device σ starts a new computation round at (its local) time τ
and still needs to gather messages with content P (at the top level it will take
the form στ?0); “P 	σ” means an agent is injecting process P in the tuple space
σ; and “L : L′” means (sub)topology L changes to L′ to reflect some mobility
or failure in the system. Semantic rules are shown in Figure 1 (c).

Rule (STR) defines classical structural congruence. Rules (BRO) and (SND)
recursively handle broadcasting (mostly in line with [26]), namely, create mes-
sages for all neighbours as soon as a process P is scheduled for broadcasting. Rule
(SND) recursively selects a neighbour σ′ at orientation t, and creates a message
for it in which orientation variable ω is substituted with t. Rule (BRO) is the
fixpoint: when all neighbours have been handled, scheduling action neigh P is
removed. Note we do not send empty messages.

Similarly, rules (REC) and (NEW) recursively handle the reception of all
messages when a new computation round starts. Rule (NEW) states that, given
node σ in which Q is the process to execute at the next round, when a new round
starts at time τ2 and with overall incoming messages P , then the new process to
start with is “P |finally Q”, since we prescribe messages to be handled before Q
as already described in previous section. Also note that this rule updates round
times τ1, τ0 to τ2, τ1, and that it activates only when all incoming messages have
been actually handled. Rule (REC) recursively gathers all incoming messages:
it takes one with content P and proceeds recursively adding P to the set Q of
messages considered so far.

Rule (FIN) handles semantics of finally P construct, by simply stating that
when this is the only activity in a node, we can simply execute P—note
all “finally-scheduled” processes can be gathered together (along with “next-
scheduled” ones) because of congruence. Rule (RUN) handles one-step execution

of a process, by simply deferring the task to transition relation
ε
↪−→, defined in

Figure 1 (d)—its rules are quite straightforward, as they correspond to the stan-

dard semantics of Linda primitives in their predicative version [8]. Note that
ε
↪−→

takes the evaluation function to use, initialised in rule (RUN) with the proper
value of $this and $delay. Finally, rule (MOV) addresses topological changes
due to mobility or failures, and rule (AGN) models the injection of a process by
an agent in the local node.

We conclude stating isolation and progress properties. First property allows
one to reason about the execution of an activity into a node without considering
its environment. Namely, we have that nodes get affected by the external envi-
ronment only at the time a new computation round starts (because of reception
of messages), otherwise they proceed in isolation possibly just spawning new
messages.

Property 1. If C⊗ [S]
τ0,τ

′
0

σ
λ−→ C′ ⊗ [S′]τ,τ

′
σ with S �≡ S′ then λ is either ·, σ!P , or

στ?P . In the former two cases (namely, unless we change computation round),
τ0 = τ , τ ′0 = τ ′, and C′ ≡ C ⊗ Cm (where Cm is either 0 or a broadcast),

and moreover, for each D we have also D ⊗ [S]
τ0,τ

′
0

σ
λ−→ D ⊗ [S′]τ0,τ

′
0

σ ⊗ Cm, i.e.,
computation is independent of the environment.

Linda in Space-Time 221

The progress property states instead that when a computation round is com-
pleted it is necessarily composed of a next scheduling: at that point (NEW) can
surely fire for that node, starting a new computation round. This ensures that
our computations never get stuck.

Property 2. C ⊗ [S]τ,τ
′

σ
·
� and C ⊗ [S]τ,τ

′
σ

σ!P
� iff S ≡ (T | next P). In that case,

we have C ⊗ [S]τ,τ
′

σ
στ0?0−−−→ C′ ⊗ [S′]τ0,τσ for any τ0 > τ .

4 Case Studies

4.1 Adaptive Crowd Steering

As a first example we study a specification able to support the case study pre-
sented in [30,25], with the goal of showing how στ -Linda can provide support to
easily define complex, distributed and adaptive data structures, and how they
can be used in practice in a pervasive computing scenario.

Crowd-aware gradient
% creating a gradient spreading tuple T

source(T) is (in-out(source(T)); grad(T,0,$this))

% gradient process for tuple T, at distance D, coming from node S

grad(T,D,S) is grad(T,D,S,$this)

grad(T,D,S,This) is (

rd source(T)

? in-out(pre(T,0))

: in pre(T,N) ? (eval N<D

? out pre(T,N)

: (in target(T,M); out target(T,S); out pre(T,D)))

); finally (in pre(T,N)? (in field(T,M);

(rd crowd(C)

? out field(T,N-1.2*C)

: out field(T,N)); rd field(T,V); neigh grad(T,V+$distance,This)))

Fig. 2. Definitions for the crowd-aware computational gradient. At each site, if this is
the source we consolidate pre(T,0). Otherwise, we replace the pre tuple if a smaller
distance D is found, and target tuple is inserted as well. Finally, we take the remaining
pre tuple, and apply the crowd factor: the resulting distance N goes into the field

tuple.

Our reference environment is a bidimensional continuous space made of var-
ious rooms connected by strict corridors. Inside rooms and corridors, a dense
grid of computational devices (nodes) is set up. Each node hosts its own tuple
space, receives coordination activities (programmed using our spatial language)
by software agents running in it, interacts with nodes in its proximity, and has
a sensor locally injecting a tuple crowd(CrowdLevel) where CrowdLevel is an
estimation of the number of people sensed around. People want to reach a point

222 M. Viroli, D. Pianini, and J. Beal

Fig. 3. Simulation snapshots: the coloured visitors reach its POI avoiding crowd

of interest (POI) by the fastest path, and receives directions suggested by their
handheld device and/or by public displays on the walls. It is worth noting that
the fastest path does not correspond to the shortest: if everybody followed the
same way, in fact, corridors would become crowded. We want the system to be
able, relying only on local interactions, to avoid crowded paths, dynamically
adapting to any emerging and unforeseen situation. However, we will not imple-
ment algorithms to predict future situations, but rather make information about
a crowded area spread around such that it becomes a less attractive transiting
place to reach a POI.

Our strategy is to build a computational gradient injected by an agent located
in the POI. A computational gradient holds in any node the estimated distance
to the source by the shortest path [4], computed by further spreading and then
aggregating at the destination the local estimation of distance. This distributed
data structure must take into account also the crowding level, increasing esti-
mated distance where a crowd is forming, and thus deflecting people towards
longer but less crowded paths. This strategy can be encoded as in Figure 2,
where the goal is achieved by maintaining a tuple target(Poi,Id) containing
the Id of the neighbour node where to steer people to following a certain Poi.
The crowding level influences the local field generation, and is weighted using a
constant Kcrowd = 1.2. Values between 1 and 1.5 have been established as good
ones after running several simulations: more generally, the higher Kcrowd, the
more sensitive is path computation to the presence of crowd.

We implemented and ran simulations using Alchemist simulator [25], assuming
that computation rounds are fired at the same rate for all nodes, and modelling
such a rate following the Continuous-Time Markov Chain model. Four screen-
shots of a simulation run are provided in Figure 3, in which we built an envi-
ronment of fifteen rooms with an underlying grid-like network of infrastructure

Linda in Space-Time 223

nodes, an initial configuration with two groups of people, and a POI of interest
for the first group which is reachable by a path crossing a crowded area. Note
that not only every visitor reached the POI, but they all bypassed the crowded
room (even if it is part of the shortest path, the large amount of people inside
makes the whole area rather disadvantageous to walk); additionally, the visitors
group is subject to “self-crowding”, in that when a group is following a path it
forms crowded areas itself (e.g. near doors), hence people behind the group tend
to follow different paths. Further simulations we do not describe here for the
sake of space show that the above properties hold for a large set of situations,
including presence of crowds in different locations and dynamic formation and
movement of such crowds during simulation1.

4.2 Linda in a Mobile Ad-Hoc Environment

As a second case study we show a possible extension for Linda standard prim-
itives taking into account both time and spatiality. In particular, our aim is
to show how would it be possible in a mobile ad-hoc environment to specify,
along with an operation over a tuple, a spatial and temporal horizon of validity:
only retrieval operations whose horizon embraces the respective target tuple will
actually succeed. We will show an implementation for the spatio-temporal out
(stout) and the spatio-temporal in (stin) primitives—the easier case of strd
being a simple variant of stin.

The key idea is to make primitive Linda actions actually generate waveform-
like space-time data structures, with limited extent in space and dissolving as a
timeout expires. Those structures will be responsible to determine the pertinence
in space and time of each operation. An example of such a structure is realised
by the code shown in Figure 4 (top). A wave works similarly to the gradient in
Figure 2, maintaining a target tuple reifying the shortest past through a similar
specification. A main difference – other than the obvious absence of any crowd
management – is the evaluation of the age and distance, which makes the wave
disappear whenever and wherever the horizon is reached.

When a stin operation requiring retrieval of a tuple template T is triggered,
it will spawn a messenger activity called hermes (with Op set to in) which will
propagate to a matching tuple T’ following the corresponding wave it generated.
As soon as the tuple is found, a new hermes (with Op set to in back) is spawned
which will follow the stin gradient back. This behaviour can be coded as shown
in Figure 4 (middle).

Given these two basic bricks, the stout and stin primitives would be encoded
as in Figure 4 (bottom). For each, a tuple template, a spatial range and a validity
time must be specified. stout implementation is concise, because it just needs
to manifest itself trough a wave and make the tuple available; stin, instead,
needs also to spawn a hermes, whose goal is to retrieve a tuple and move it to
the tuple space where the operation was spawned.

1 The interested reader can download an example clip at:
http://apice.unibo.it/xwiki/bin/download/Publications/

Coord2012/museum-small.avi

http://apice.unibo.it/xwiki/bin/download/Publications/Coord2012/museum-small.avi
http://apice.unibo.it/xwiki/bin/download/Publications/Coord2012/museum-small.avi

224 M. Viroli, D. Pianini, and J. Beal

Wave-form: a space-time gradient
wave(T,Range,Ttl) is wawe(T,Range,0,$this,$this,Ttl, 0)

wave(T,Range,D,Source,Ttl,Age) is wave(T,Range,D,Source,$this,Ttl,Age)

wave(T, Range, D, Dest, This, Ttl, Age) is (

eval (Age>Ttl or D>Range)

? (in pre(T,D); in field(T,N)) % disappearing

: rd source(T)

? (in-out(pre(T,0)) % default behaviour in a source

: in pre(T,N) ? (eval N<D % choosing minimum distance

? out pre(T,N)

: (in target(T,_); out target(T,Dest);

out pre(T,D))))

); finally (in pre(T,N) ? (% consolidating target

in field(T,M); out field(T,N);

rd target(T, Dest); next wave(T,Range,D,Dest,This,Ttl,$delay);

eval Age = 0 ? neigh wave(T,Range,N+$distance,This,Ttl,0)))

Tuple retrieval
hermes(Op, T, This) is

eval This = $this

? (eval Op = in ? (in T

? (rd target(op_in(T), Dest); neigh hermes(in_back, T, Dest))

: (rd target(op_out(T), Dest); neigh hermes(in, T, Dest))))

: (eval Op = in_back ? (in in_request(T)

? out(T)

: (rd target(op_in(T), Dest); neigh hermes(in_back, T, Dest))))

Space-time Linda operations
stout(T,Range,Ttl) is out(T); wave(op_out(T), Range, Ttl)

stin(T, Range, Ttl) is out in_request(T);

wave(op_in(T), Range, Ttl);

hermes(in, T, $this)

Fig. 4. Definitions of Linda space-time operations

These new primitives allow agents to publish/retrieve information flexibly
tuning the space-time horizons, relying on lower-level gradients (and routing
paths) which adapt to the mobility of the network [2].

5 Related Work

Spatial Computing. The coordination model presented in this paper is very
much in line with the motivations and basic mechanisms proposed in spatial
computing research [6,5], and in particular by Proto [4]. Proto is a functional
language used to specify the aggregate behaviour of all nodes in a space-filling
network. It introduces specific space-time operators to situate computation in
the physical world, and these operators form the inspiration for the space-time
operators introduced in στ -Linda. For example, there is a neighbourhood prim-
itive nbr by which one can atomically compute an expression locally, spread

Linda in Space-Time 225

the result to neighbours, gather neighbours’ messages previously sent, and re-
turn their collection. In Proto, the function computing a gradient data structure
could be specified as:

(def distance-to (source) % defining a unary function distance-to

(rep d inf % d starts with value infinity

(mux source 0 % d becomes 0 in the source, otherwise..

(fold-hood* min inf % d is the minimum value taken from

(+ (nbr d) (nbr-range)) % neighbour’s d plus neighbour’s range

))))

As previously noted, the underlying execution on a node follows a cycle roughly
similar to the one we use in Section 2 [27]. To achieve a similar expressiveness to
Proto, we introduced the next and neigh constructs (playing a role similar to
Proto’s constructs rep and nbr), along with the space-time variables #distance
and #delay (similar to Proto’s constructs nbr-range and dt), and finally,
which plays a role similar to Proto’s *-hood constructs.

The main differences with respect to Proto are as follows: (i) in our model
a node stores a tuple space, whereas in Proto only a fixed tuple of values is
maintained, hence specific constructs to perform generative communication are
lacking in Proto; (ii) being purely functional, Proto cannot easily deal with state
transitions as typically required when programming coordination activities; and
(iii) in Proto all nodes run the same program, which is assumed to be installed
everywhere before computation starts (this is because the information to be
exchanged and the structure of programs has to be known at design-time for
construct nbr to properly work), whereas we assume nodes are initially empty,
and computation starts from the run-time injection of activities by agents.

On the other hand, Proto provides functionalities that we neglected at this
stage, though they are interesting for future works: Proto nodes can be pro-
grammed to move, a feature that could be interesting as a coordination metaphor
for pervasive scenarios featuring physically-mobile devices; and Proto functions
can be seen as operators applying to whole spatial structures and their behavior
can be modified by changing the region of space on which they execute, a very
important property for modularly building complex spatial computations.

It is also interesting to mention a trend in formal calculi for distribution
converging to spatial computing. 3π was developed as an extension of π-calculus
with the idea of modelling the space where processes execute as a 3-dimensional
geometric space [11]. In 3π, each process has a position and an orientation in
space (a basis), encoded in a so-called geometric data. Other than accessing
it (symbolically), a process can also send or receive geometric data through
channels and can evolve to new processes located elsewhere (i.e., movement).
From 3π we inherited the idea of letting orientation vector of a node being
accessible from a neighbour. An even more abstract approach is taken in the
Ambient calculus [12] and its derivatives – like Brane Calculi [10] and P-systems
[23] – in which processes execute in a spatial system of hierarchically nested
compartments, which could be of interest as soon as one wants to considered the
hierarchical structure of complex environments.

226 M. Viroli, D. Pianini, and J. Beal

Traditional Coordination Models. Our approach relates to the idea of en-
gineering the coordination space of a distributed system by some policy “inside”
the tuple spaces, following e.g. the pioneer work of programmable tuple spaces
like TuCSoN [22] or Mars [9]—and subsequent coordination frameworks such as
those of coordination artifacts [20,19]. Though our coordination activities can be
mapped to a certain extent on top of those fully-expressive programming mod-
els, we believe they are different in spirit in at least two ways: first, we foster
the idea that agents inject the desired behaviour (which is not to be seen as
a program for the space), and second, we push forward the idea of space-time
computations which the above works typically neglect.

The KLAIM language and core calculus [18] extend the tuple-space concept
with several notions that are related to our approach. KLAIM has a networked
tuple-space model very similar to ours, since nodes host a tuple space, processes,
and has interaction ability with a (virtual) neighbourhood; it also supports the
idea of executing processes in a remote location, with a mechanism by which
a process explicitly mentions the location of the action to be executed. Our
approach differs in the use of broadcasts for node-to-node communication, in
its ability of controlling temporal evolution and spatial location of a process
continuation, and in the use of computation rounds for tuple spaces. It is an
interesting future work to see to which extent KLAIM can be seen as a lower
level model to describe our space-time activities, or vice versa.

The application example shown in Section 4.2 is also related to Geo-Linda
[24], another example of spatial coordination approach combining the tuple ma-
nipulation of LINDA with the geometric addressing concepts of SPREAD [13].
In Geo-Linda, tuples are read and published over an assortment of geometric
primitives, such as boxes, spheres, cylinders, and cones, all defined relative to
a device. The language also introduces primitives to detect coarse movement of
devices through the appearance or disappearance of tuples.

Self-organisation in Tuple Spaces. As described in [21], applications of coor-
dination models and languages – and especially space-based ones – are inevitably
entering the realm of self-organisation, where complexity of interactions becomes
the key to make desired properties appear by emergence. Given the intrinsic diffi-
culty of designing emergence, most approaches mimic nature-inspired techniques
to organise and evolve tuples according to specified rules.

Among the many existing approaches, one that is very related to ours is
TOTA (Tuples On The Air) [17], a tuple-based middleware supporting field-
based coordination for pervasive-computing applications. In TOTA each tuple,
when inserted into a node of the network, is equipped with a content (the tuple
data), a diffusion rule (the policy by which the tuple has to be cloned and diffused
around) and a maintenance rule (the policy whereby the tuple should evolve due
to events or time elapsing). Compared with the language proposed here, and
although TOTA was an evident inspiration to the idea of building dynamic and
distributed structures of tuples, we observe a number of differences: (i) TOTA
is a middleware and defines no true language or primitives to program spatial
structures (content and maintenance rule are programmed directly in Java and

Linda in Space-Time 227

can access and manipulate the whole tuple space); (ii) TOTA has no specific
mechanisms to keep track of physical space and time, for it only has a concept
of “spreading to the neighbourhood”, which allows to estimate distance in terms
of number of hops to the source. TOTA could be possibly used as an underlying
framework for implementing our language, provided additional ability to perceive
the physical world are added.

A chemical-inspired self-organisation model is instead studied in [28,29].
There, tuples are associated with an activity level, which resembles chemical con-
centration and measures the extent to which the tuple can influence the state
of system coordination—e.g., a tuple with low activity level would be rather
inert, hence taking part in coordination with very low frequency. Chemical-like
reactions following the CTMC model, properly installed into the tuple space,
evolve activity level of tuples over time in the same way chemical concentration
is evolved in chemical systems, and provide a diffusion mechanism that is shown
to provide spatial notions like gradients as well. The SAPERE approach in [30]
adds to this model the notion of semantic matching and tailors it to the perva-
sive computing context. We believe that, as density and speed of nodes grows,
our language can be used to approximate the behaviour of those chemical rules.

6 Conclusions and Future Work

The current trend in ICT will shortly bring us distributed systems of huge size,
density, mobility and opennes. Following the direction of a good deal of recent
works – including [17,6,11] and many others – we claim that this will require
to elect the notion of “spatial coordination” as first-class abstraction in coordi-
nation models and languages, and distributed systems in general. The present
paper is a first exploration in the direction of filling the gap between Linda-based
and spatial computing models, obtained by a coordination model incorporating
– though in an innovative guise – mechanisms for the space-time situation of
processes [4], used to realise adaptive coordination mechanisms. We argue that
the proposed language can be rather easily implemented on top of those existing
coordination middleware providing basic features of space-to-space interaction
and space programmability, such as TuCSoN [22], Klava [7] and TOTA [17]. We
also plan to implementation further case studies of self-organisation, according
e.g. to the pattern-based approaches in [15,14].

Another interesting thread of future research activities will be devoted to clar-
ify what would be a good notion of expressiveness, and what would be a minimal
set of primitives for fully-expressive space-time computation—a problem already
stated in [3] for the spatial computing settings. Accordingly, we plan to use the
presented language to define basic calculi in the style of the one presented here,
which would be able to model higher-level languages like, e.g., the eco-law lan-
guage for pervasive service ecosystems [30], and paving the way towards formal
methods for the predictability and control of emergent adaptation in collective
systems.

228 M. Viroli, D. Pianini, and J. Beal

Acknowledgments. This work has been supported by the EU FP7 project
“SAPERE - Self-aware Pervasive Service Ecosystems” under contract No.
256873.

References

1. Bachrach, J., Beal, J., Fujiwara, T.: Continuous space-time semantics allow adap-
tive program execution. In: IEEE SASO 2007, New York, pp. 315–319. IEEE (July
2007)

2. Beal, J.: Flexible self-healing gradients. In: Proceedings of the 2009 ACM Sympo-
sium on Applied Computing, SAC, pp. 1197–1201. ACM (2009)

3. Beal, J.: A basis set of operators for space-time computations. In: Self-Adaptive and
Self-Organizing Systems Workshop (SASOW 2010), pp. 91–97 (September 2010)

4. Beal, J., Bachrach, J.: Infrastructure for engineered emergence on sensor/actuator
networks. IEEE Intelligent Systems 21(2), 10–19 (2006)

5. Beal, J., Dulman, S., Usbeck, K., Viroli, M., Correll, N.: Organizing the aggregate:
Languages for spatial computing. CoRR, abs/1202.5509 (2012)

6. Beal, J., Michel, O., Schultz, U.P.: Spatial computing: Distributed systems that
take advantage of our geometric world. ACM Transactions on Autonomous and
Adaptive Systems 6, 11:1–11:3 (2011)

7. Bettini, L., Nicola, R.D., Pugliese, R.: Klava: a java package for distributed and
mobile applications. Softw., Pract. Exper. 32(14), 1365–1394 (2002)

8. Busi, N., Gorrieri, R., Zavattaro, G.: On the expressiveness of Linda coordination
primitives. Inf. Comput. 156(1-2), 90–121 (2000)

9. Cabri, G., Leonardi, L., Zambonelli, F.: MARS: A programmable coordination
architecture for mobile agents. IEEE Internet Computing 4(4), 26–35 (2000)

10. Cardelli, L.: Brane Calculi. Interactions of Biological Membranes. In: Danos, V.,
Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer,
Heidelberg (2005)

11. Cardelli, L., Gardner, P.: Processes in Space. In: Ferreira, F., Löwe, B., Mayordomo,
E., Mendes Gomes, L. (eds.) CiE 2010. LNCS, vol. 6158, pp. 78–87. Springer,
Heidelberg (2010)

12. Cardelli, L., Gordon, A.D.: Mobile ambients. Theoretical Computer Science 240(1),
177–213 (2000)

13. Couderc, P., Banatre, M.: Ambient computing applications: an experience with
the spread approach. Hawaii International Conference on System Sciences, HICSS
2003 (January 2003)

14. Fernandez-Marquez, J.L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., Arcos,
J.L.: Self-organising design patterns. Natural Computing (to appear, 2012)

15. Gardelli, L., Viroli, M., Omicini, A.: Design Patterns for Self-organising Systems.
In: Burkhard, H.-D., Lindemann, G., Verbrugge, R., Varga, L.Z. (eds.) CEEMAS
2007. LNCS (LNAI), vol. 4696, pp. 123–132. Springer, Heidelberg (2007)

16. Gelernter, D.: Generative communication in Linda. ACM Trans. Program. Lang.
Syst. 7(1), 80–112 (1985)

17. Mamei, M., Zambonelli, F.: Programming pervasive and mobile computing appli-
cations: The tota approach. ACM Trans. Softw. Eng. Methodol. 18(4), 1–56 (2009)

18. Nicola, R.D., Ferrari, G.L., Pugliese, R.: Klaim: A kernel language for agents in-
teraction and mobility. IEEE Trans. Software Eng. 24(5), 315–330 (1998)

Linda in Space-Time 229

19. Omicini, A., Ricci, A., Viroli, M.: An algebraic approach for modelling organisation,
roles and contexts in MAS. Applicable Algebra in Engineering, Communication and
Computing 16(2-3), 151–178 (2005)

20. Omicini, A., Ricci, A., Viroli, M.: Coordination Artifacts as First-Class Abstrac-
tions for MAS Engineering: State of the Research. In: Garcia, A., Choren, R.,
Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.) SELMAS 2005.
LNCS(LNAI), vol. 3914, pp. 71–90. Springer, Heidelberg (2006)

21. Omicini, A., Viroli, M.: Coordination models and languages: From parallel comput-
ing to self-organisation. The Knowledge Engineering Review 26(1), 53–59 (2011);
Special Issue 01 (25th Anniversary Issue).

22. Omicini, A., Zambonelli, F.: Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)

23. Paun, G.: Membrane Computing: An Introduction. Springer-Verlag New York, Inc.,
New York (2002)

24. Pauty, J., Couderc, P., Banatre, M., Berbers, Y.: Geo-linda: a geometry aware
distributed tuple space. In: IEEE 21st International Conference on Advanced Net-
working and Applications (AINA 2007), pp. 370–377 (May 2007)

25. Pianini, D., Montagna, S., Viroli, M.: A chemical inspired simulation framework
for pervasive services ecosystems. In: Proceedings of the Federated Conference on
Computer Science and Information Systems, pp. 667–674. IEEE Computer Society
Press (2011)

26. Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc
networks. Sci. Comput. Program. 75(6), 440–469 (2010)

27. Viroli, M., Beal, J., Casadei, M.: Core operational semantics of Proto. In: 26th
Annual ACM Symposium on Applied Computing, SAC 2011, Tunghai University,
TaiChung, Taiwan, March 21-25. ACM (2011)

28. Viroli, M., Casadei, M.: Biochemical Tuple Spaces for Self-organising Coordination.
In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521,
pp. 143–162. Springer, Heidelberg (2009)

29. Viroli, M., Casadei, M., Montagna, S., Zambonelli, F.: Spatial coordination of
pervasive services through chemical-inspired tuple spaces. ACM Transactions on
Autonomous and Adaptive Systems 6(2), 14:1–14:24 (2011)

30. Viroli, M., Pianini, D., Montagna, S., Stevenson, G.: Pervasive ecosystems: a co-
ordination model based on semantic chemistry. In: Ossowski, S., Lecca, P., Hung,
C.-C., Hong, J. (eds.) 27th Annual ACM Symposium on Applied Computing, SAC
2012, Riva del Garda, TN, Italy, March 26-30. ACM (2012)

	Linda in Space-Time: An Adaptive Coordination Model for Mobile Ad-Hoc Environments
	Introduction
	Linda in Space-Time
	Basic Model
	The Coordination Language

	Core Calculus
	Syntax
	Operational Semantics

	Case Studies
	Adaptive Crowd Steering
	Linda in a Mobile Ad-Hoc Environment

	Related Work
	Conclusions and Future Work
	References

