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Abstract. We give criteria for finite and countable powers of a space similar
to the Michael line being Lindelöf. As applications, we give examples related
to Lindelöf property in products of spaces of Michael line type and in products
of spaces of continuous functions on separable σ-compact spaces.

All spaces considered below are assumed to be Tychonoff (= completely regular
Hausdorff). We denote by Cp(X) the space of all continuous real-valued functions
endowed with the topology of pointwise convergence on X ; this topology can be
obtained as the restriction of the Tychonoff product topology on the set RX of all
real-valued functions onX to its subset C(X) (see [Arh1]). Cp(X, 2) is the subspace
of Cp(X) consisting of all functions to 2 = {0, 1}. The symbols ω, R, I and C stand
for the set of naturals, the real line, the segment [0, 1], and the Cantor cube 2ω. If
P and Q are sets, then PQ denotes the set of all functions from Q to P ; if κ is a
cardinal, then Xκ is the κth power of X (with the Tychonoff product topology);
the projection of Xκ to its ith factor is denoted by πi. For j ∈ 2 and σ ∈ 2i, denote
σaj = σ ∪ {〈i, j〉} ∈ 2i+1. The symbol c denotes the cardinality of the continuum.
Polish spaces are separable completely metrizable spaces.

1. Holding sets

We study the following construction introduced by Bing and Hanner (see [Eng,
5.1.22]). Given a topological space X and a subset A of X , let X(A) be the space
obtained by retaining the topology at each point of A and by declaring the points
of X \A isolated. Given two subsets A and B of X , we have a natural one-to-one
mapping iAB : X(A) → X(B) (the identity mapping of the underlying setX); clearly,
iAB is continuous if A ⊂ B (only if, if the space X has no isolated points). Another
simple observation is that the diagonal in X(A)×X(B) is closed and homeomorphic
to X(A∩B); in particular, if A ∩ B = ∅, then the diagonal is closed and discrete.
Furthermore, if A is a family of subsets of X , then the diagonal of the product∏
{X(A) : A ∈ A} is closed and is homeomorphic to X(∩A).
Call a subset A of a space X holding if the space (X(A))

ω is Lindelöf. The
existence of a holding subset of I with |I \A| = c was shown in [OY] under Martin’s
Axiom.

(1.1) Theorem. Let X be a Polish space, and A a subset of X. Then the following
conditions are equivalent:
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2906 OLEG OKUNEV AND KENICHI TAMANO

(1) A is holding,
(2)

⋂
{ f−1(A) : f ∈ Ψ } 6= ∅ for any countable family Ψ of finite-to-one continu-

ous mappings of the Cantor cube C = 2ω to X.

Proof. (1)⇒ (2). Suppose there is a countable family { fn : n ∈ ω } of finite-to-one
continuous mappings from C to X such that

⋂
{ f−1

n (A) : n ∈ ω } = ∅. For each
n ∈ ω, put Bn = f−1

n (A), Yn = C(Bn) and consider the mapping gn : Yn → X(A)

that acts the same way as fn (so formally, gn = i−1
AX ◦ fn ◦ iBnC). Clearly, gn is

continuous. Furthermore, gn is closed. Indeed, let F be a closed set in C(Bn); then
it is of the form P \ L where P is closed in C and L ⊂ C \ Bn. It follows that
fn(P ) ∩ A ⊂ gn(F ) ⊂ fn(P ), and since fn(P ) is closed in X , gn(F ) is closed in
X(A). Since gn is also finite-to-one, it is perfect. Therefore, the product mapping
g =

∏
gn :

∏
{Yn : n ∈ ω } → (X(A))

ω is perfect (see [Eng, 3.7.6]).

Since
⋂
{Bn : n ∈ ω } =

⋂
{ f−1

n (A) : n ∈ ω } = ∅, the diagonal ∆ is closed
and discrete in

∏
{Yn : n ∈ ω }, so its perfect image g(∆) is a closed, uncountable

discrete subspace of (X(A))
ω . Thus, (X(A))

ω is not Lindelöf, and the proof is
complete.

(2)⇒(1). We need two lemmas for this proof. The following lemma is proved by
an obvious induction on i.

(1.2) Lemma. Let X be a separable metric space and Z an uncountable subset of
Xn such that πi(z) 6= πi(z

′) for any distinct z, z′ ∈ Z and i < n. Then for any
ε > 0 there are subsets Z0 and Z1 of Z such that

(i) Zj is uncountable,
(ii) diam(πi(Zj)) ≤ ε, and
(iii) cl(πi(Z0)) ∩ cl(πi(Z1)) = ∅

for all i < n and j ∈ 2.

Let S =
⋃
{ 2n : n ∈ ω }. Denote 2≤n =

⋃
{ 2k : k ≤ n }.

(1.3) Lemma. Let X be a separable metric space. Suppose F is an uncountable
subset of Xω. Then there are a family {Fσ : σ ∈ S } of uncountable subsets of F
and a function φ : S → 2 = {0, 1} satisfying the following conditions:

(i) Fσ ⊂ Fτ for any σ, τ ∈ S with τ ⊂ σ;
(ii) If φ(σ|i) = 0, then πi(y) = πi(y

′) for any σ ∈ S, y, y′ ∈ Fσ and i ≤ |σ|;
(iii) If φ(σ|i) = 1, then πi(y) 6= πi(y

′) for any σ ∈ S, distinct y, y′ ∈ Fσ and
i ≤ |σ|;

(iv) diam(πi(Fσ)) ≤ 1/2|σ| for any σ ∈ S and i < |σ|; and
(v) clX(πi(Fσa0)) ∩ clX(πi(Fσa1)) = ∅ if σ ∈ S, i ≤ |σ| and φ(σ|i) = 1.

Proof of Lemma 1.3. We will define {Fσ : σ ∈ 2n } and φ| 2n : 2n → 2 by induction
on n.

Let us first define F∅ and φ(∅). If π0(F ) is uncountable, then take an uncountable
subset F∅ of F such that π0(y) 6= π0(y′) for any distinct y, y′ ∈ F∅, and put φ(∅) = 1.
Otherwise, take an uncountable subset F∅ of F such that π0(y) = π0(y′) for all
y, y′ ∈ F∅ and put φ(∅) = 0.

Assume that {Fσ : σ ∈ 2≤n } and φ| 2≤n are already defined so that they satisfy
(i)–(v) for all σ, τ ∈ 2≤n. Let σ ∈ 2n and j ∈ 2; we need to define Fσaj and φ(σaj).
By (iv) of our inductive assumption and Lemma 1.2, we can take uncountable
subsets Z0 and Z1 in Fσ so that the diameters of πi(Z0) and πi(Z1) do not exceed
1/2n+1 and cl(πi(Z0)) ∩ cl(πi(Z1)) = ∅ for all i ≤ n with φ(σ|i) = 1. If πn+1(Zj)
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is uncountable, then let Fσaj be an uncountable subset of Zj such that πn+1(y) 6=
πn+1(y′) whenever y 6= y′, y, y′ ∈ Fσaj and put φ(σaj) = 1. Otherwise, let Fσaj
be an uncountable subset of Zj such that πn+1(y) = πn+1(y′) for all y, y′ ∈ Fσaj ,
and put φ(σaj) = 0. Now it is easy to check that {Fσ : σ ∈ 2n+1 } and φ|2n+1

satisfy the desired conditions.

Let us now return to the proof of the theorem. Suppose (2) holds, but A is
not a holding set. Since X(A) is an Eberlein-Grothendieck space (see [Ok1, 1.11–
1.12]), and the class of Eberlein-Grothendieck spaces is countably productive [Arh1],
Y = (X(A))

ω is an Eberlein-Grothendieck space. By the Baturov’s theorem [Bat],
the Lindelöf number of Y coincides with the extent. Since Y is not Lindelöf, there
is an uncountable discrete set F in Y .

Note that for some i ∈ ω, the projection πi(F ) is uncountable, because F is
an uncountable closed discrete set in the product

∏
{ πi(F ) : i ∈ ω }. We assume

without loss of generality that π0(F ) is uncountable and π0(y) 6= π0(y′) whenever
y, y′ ∈ F , y 6= y′.

Fix a complete metric on X , and let Fσ, σ ∈ S and φ : S → 2 be as in Lemma 1.3.
By the above note and the construction of φ, we have φ(∅) = 1. For each f ∈ 2ω,⋂
{ clXω (Ff |n) : n ∈ ω } is a singleton; this follows from conditions (i) and (iv) in

Lemma 1.3 and the completeness of X . Define yf by

{yf} =
⋂
{ clXω (Ff |n) : n ∈ ω }.

Suppose that i ∈ ω, σ ∈ 2i and φ(σ) = 1. For each f ∈ 2ω with f ⊃ σ, put
ψiσ(f) = yf(i). By the conditions (iv) and (v) of Lemma 1.3, ψiσ is a one-to-one
continuous mapping from Cσ = {f ∈ 2ω : σ ⊂ f } to X . Put Ci =

⋃
{Cσ : σ ∈

2i, φ(σ) = 1 } and define a function ψi : Ci → X by ψi|Cσ = ψiσ for all σ ∈ 2i

with φ(σ) = 1. Take a finite-to-one continuous retraction r from 2ω to its clopen
subset Ci and put ψ′i = ψi ◦ r.

By the assumption (2), there is a function

f ∈
⋂
{ψ′−1

i (A) : i ∈ ω, φ(σ) = 1 for some σ ∈ 2i }

(the family intersected in the right-hand side here is nonempty, because φ(∅) = 1).
Let us show that yf is a limit point for F in (X(A))

ω, in contradiction with F

being closed discrete. Let U =
⋂
{ π−1

i (Ui) : i < n } be a basic neighborhood of yf
in (X(A))

ω. Take k ∈ ω such that if x ∈ X , i < n, |πi(yf )− x| ≤ 1/2k and Ui is a
neighborhood of yf (i) in X , then x ∈ Ui. Put m = max{k, n} and σ = f |m. Let
i < n; two cases are possible.

Case 1. φ(f |i) = 1.

Let τ = f |i. Since f ∈ ψ′i
−1(A) ∩ Cτ = ψiτ

−1(A), we have ψiτ (f) = πi(yf ) ∈
A. Therefore, Ui is a neighborhood of πi(yf ) in X . By (iv) in Lemma 1.3,
diam(πi(Fσ)) ≤ 1/2k. Since πi(yf ) ∈ clX(πi(Fσ)), we have πi(Fσ) ⊂ Ui.
Case 2. φ(f |i) = 0.

Since πi(Fσ) is a singleton, πi(Fσ) = {πi(yf )}, so πi(Fσ) ⊂ Ui.
Thus, we have πi(Fσ) ⊂ Ui for all i < n, whence Fσ ⊂ U . Thus, the intersection

of any neighborhood of yf with F is uncountable, so yf is a limit point for F .

(1.4) Corollary. If A is a set in a Polish space X such that |X \ A| < c, then A
is holding.
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This provides a positive answer to Question 3 in [OY]. The following statement
gives answers to Questions 1 and 2 in [OY].

(1.5) Theorem. Let X be an uncountable Polish space. Then there exists a family
of pairwise disjoint holding subsets {Aα : α < c } of X.

Proof. Let {Ψβ : β < c } be a (transfinite) sequence of countable families of con-
tinuous finite-to-one functions from C = 2ω to X in which every family appears
c times. For β < c, P ⊂ X and Q ⊂ C, denote Ψβ(Q) =

⋃
{ψ(Q) : ψ ∈ Ψβ }

and Ψ−1
β (P ) =

⋃
{ψ−1(P ) : ψ ∈ Ψβ }. Note that always |Ψβ(Q)| ≤ ω · |Q| and

|Ψ−1
β (P )| ≤ ω · |P | (because the mappings in Ψβ are finite-to-one).

Let Γ be the set of all pairs of ordinals (β, α) with α ≤ β < c; the lexicographic
order ≺ is a well-ordering on Γ. Note that all initial segments in (Γ,≺) have
cardinality < c. Let us construct by induction on (β, α) sequences Aβα of subsets of
X and xβα of points of C, so that for all (β, α) ∈ Γ,

(1) Aβα = Ψβ({xβα}), and

(2) xβα ∈ C \
⋃
{Ψ−1

β (Aδγ) : (δ, γ) ∈ Γ, (δ, γ) ≺ (β, α) }.
Thus, at the step (β, α) we pick a point xβα in C \

⋃
{Ψ−1

β (Aδγ) : (δ, γ) ≺ (β, α) }
and put Aβα = Ψβ({xβα}) (the choice of xβα is possible, because the cardinality
of the union does not exceed ω · |β| < c). Clearly, Aβ1

α1
∩ Aβ2

α2
= ∅ whenever

(β1, α1) 6= (β2, α2). Since every countable family Ψ of finite-to-one continuous
functions from C to X occurs in the sequence c times, for any α < c there is β < c

such that Ψ = Ψβ and α ≤ β, so by (1), xβα is in
⋂
{ψ−1(Aβα) : ψ ∈ Ψ }. Hence, the

sets Aα =
⋃
{Aβα : α ≤ β < c } are disjoint holding subsets of X .

(1.6) Corollary. If X is an uncountable Polish space, then there is a holding set
A ⊂ X such that |X \A| = c.

We call a space analytic if it is a continuous image of ωω [RJ].

(1.7) Corollary. Every uncountable analytic space X contains a holding set A
with |X \A| = c.

Proof. Let X be an uncountable analytic space. Then X contains a homeomorphic
copy F of the Cantor cube C (this follows, for example, from Arhangel’skĭı’s gener-
alization of the Hurewicz theorem, [Arh3]). By Corollary 1.6, there is a set A0 ⊂ F
that is holding in F with |F \A0| = c. Put A = A0∪ (X \F ). Then X \A = F \A0

has cardinality c, and we only need to check that (X(A))
ω is Lindelöf. We have

X(A) = (X \ F ) ∪ F(A0), and X \ F is a Borel set in X , hence analytic. Therefore,
the next lemma ends the proof.

(1.8) Lemma. If Y = Z ∪ T where Zω is Lindelöf and T is analytic, then Y ω is
Lindelöf.

Proof of Lemma 1.8. Clearly, Y is a continuous image of the disjoint union Z⊕ωω,
so it suffices to prove that (Z⊕ωω)ω is Lindelöf. The latter space is homeomorphic
to a closed subspace of (Z ⊕ ω)ω, so we need to prove that this power is Lindelöf.

Consider two cases.

Case 1. Z is compact. Then Z⊕ω is σ-compact, so its countable power is Lindelöf.

Case 2. Z is not compact. Then Z is not countably compact, and there is a perfect
mapping p of Z ⊕ ω onto Z. The countable power of p is a perfect mapping of

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(Z ⊕ ω)ω onto Zω [Eng, 3.7.6], so from the Lindelöf property of Zω follows the
Lindelöf property of (Z ⊕ ω)ω [Eng, 3.8.8]. The lemma is proved.

(1.9) Remark. As was observed by the referee, an uncountable metrizable Q-space
cannot have holding sets with uncountable complement, so the existence of uncount-
able second-countable spaces in which every holding set has countable complement
is consistent with ZFC. It is not clear whether such spaces can be constructed in
ZFC.

(1.10) Remark. It is easy to see that a countable set A cannot be holding in an
uncountable first-countable space X . Indeed, if A is a holding set, then it follows
from Lemma 1.8 that X(A) × ωω is Lindelöf; on the other hand, it is easy to prove
that any Fσδ-set in a space Z is the projection of a closed set in Z × ωω. If X
is first countable and A is a countable subset of X , then X \ A is an uncountable
discrete Fσδ-set in X(A), so X(A) × ωω is not Lindelöf.

The cardinality of a holding set in an uncountable analytic space cannot be less
than c. Indeed, every uncountable analytic space contains c disjoint copies of the
Cantor cube, and a holding set must meet each of these copies. Moreover, the
following statement holds.

(1.11) Proposition. If X is a Polish space, A a holding set in X and B a subset
of X with |B| < c, then A \B is a holding set.

Proof. For any countable family Ψ of continuous finite-to-one functions from C
to X , since every Cantor set contains c disjoint copies of itself, the intersection⋂
{ f−1(A) : f ∈ Ψ } has cardinality c. Now if |B| < c, then the intersection⋂
{ f−1(A \B) : f ∈ Ψ } is nonempty. By Theorem 1.1, A \B is holding.

Theorem 1.1 has a “finite powers” version as follows.

(1.12) Theorem. Suppose X is a Polish space, A a subset of X, and n a natural.
Then the following conditions are equivalent:

(1) The space (X(A))
n is Lindelöf,

(2)
⋂
{ f−1(A) : f ∈ Ψ } 6= ∅ for any family Ψ of n finite-to-one continuous

mappings of the Cantor cube C = 2ω to X.
(3)

⋂
{ f−1(A) : f ∈ Ψ } 6= ∅ for any family Ψ of n one-to-one continuous map-

pings of the Cantor cube C = 2ω to X.

Proof. The implication (1)⇒(2) is proved in exactly the same way as (1)⇒(2) in
Theorem 1.1, and (2)⇒(3) is trivial. We will now prove (3)⇒(1) by induction on
n.

Suppose (3)⇒(1) is already proved for all n < m; assume for contradiction that
(3) holds for n = m, and Y m, where Y = X(A), is not Lindelöf.

As we have already mentioned in the proof of Theorem 1.1, from Baturov’s
theorem [Bat] follows that Y m has an uncountable closed discrete set F . Without
loss of generality, F has no isolated points in the topology of Xm (formally, imAI(F )
has no isolated points; we omit these obvious and cumbersome formulations and
assume that we have two topologies on the set Xm, the Polish topology and that
of Y m).

Recall that F is called m-countable [Pr1] if for any uncountable subset F1 of F
there are i < m and points x1, x2 ∈ F1 with πi(x1) = πi(x2).
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Let us consider two possible cases.

Case 1. F is m-countable.
Then there are an uncountable F1 ⊂ F and i0 < m with |πi0(F1)| = 1 (see

Lemma 1 in [Pr1]). The projection Y m → Ym\{i0} takes F1 to a closed, discrete
uncountable set in Ym\{i0} = Ym−1, in contradiction with the inductive assump-
tion.

Case 2. F is m-uncountable.

Let B be the closure of F in the topology of Xm. By Theorem 1 in [Pr1]
((i)⇒(iv)), there is a family of one-to-one continuous functions {h0, . . . , hm−1} from
C to X such that (h0(c), . . . , hm−1(c)) ∈ B for all c ∈ C. By (3), there is a point
c0 ∈ C such that hi(c0) ∈ A for i < m. The spaces Xm and Y m have the same
topology at the point (h0(c0), . . . , hm−1(c0)) ∈ Am, so this point must be a limit
point for F in Y m, a contradiction with F being closed and discrete.

(1.13) Theorem. For any n ≤ ω and an uncountable completely metrizable space
X, there exists a family {Aα : α < c} of pairwise disjoint subsets of X such that
the spaces (X(Aα))

m are Lindelöf for all m < n and α < c, but the spaces (X(Aα))
n

are not Lindelöf for any α < c.

Proof. Fix a family Φ = { gi : i < n } of continuous one-to-one functions from C
to X so that gi(C) ∩ gj(C) = ∅ whenever i 6= j, i, j < n (this is possible, because
every uncountable Polish space contains a homeomorphic copy of C ≈ C × C).
Let {Ψβ : β < c } be a sequence of all families of cardinality < n of finite-to-one
continuous functions from C to X in which every family appears c times.

As in the proof of Theorem 1.5, if Ψ is a family of function from C to X , P ⊂ C
and Q ⊂ X , we denote by Ψ(P ) the set

⋃
{ f(P ) : f ∈ Ψ }, and by Ψ−1(Q),⋃

{ f−1(Q) : f ∈ Ψ }.
Put Γ = { (β, α) ∈ c × c : α ≤ β }; the lexicographic order ≺ is a well-ordering

on Γ whose all initial segments have cardinality < c. Similarly to the proof of
Theorem 1.5, we may construct by transfinite induction on (β, α) ∈ Γ sequences
Aβα of subsets of X and xβα of points of C, so that for all (β, α) ∈ Γ,

(1) Aβα = Ψβ({xβα}), and

(2) xβα ∈ C \
⋃
{Ψ−1

β ΦΦ−1(Aβ
′

α′) : (β′, α′) ≺ (β, α) }.
The sets Aα =

⋃
{Aβα : β < c, β ≥ α } are disjoint, and the spaces (X(Aα))

m are
Lindelöf for all m < n by Theorem 1.12 (Theorem 1.1 if n = ω).

Let us now fix an α < c and check that
⋂
{ g−1

i (Aα) : i < n } = ∅, so condition
(2) of Theorem 1.12 (of Theorem 1.1 if n = ω) fails, and (I(Aα))

n is not Lindelöf.

Suppose for contradiction that x ∈
⋂
{ g−1

i (Aα) : i < n }. Then gi(x) ∈ Aα,
and there are βi < c, i < n such that gi(x) ∈ Aβiα = Ψβi({xβiα }). Since the
images of C under gi, i < n are disjoint, we have gi(x) 6= gj(x) whenever i 6= j.
Furthermore, |Ψβ(xβα)| < n for all (β, α) ∈ Γ (because |Ψβ | < n); it follows that

(βj , α) ≺ (βk, α) for some j, k < n. But then xβkα ∈ Ψ−1
βk

Φ(x), and x ∈ Φ−1(A
βj
α ), so

xβkα ∈ Ψ−1
βk

ΦΦ−1(A
βj
α ), in contradiction with property (2) of the construction.

(1.14) Remark. The existence of a single set A ⊂ R as in Theorem 1.13 (for any
n ≤ ω) may also be derived from Theorems 1 and 2 in [La].
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2. Examples related to function spaces

It is well known [Zen], [Vel] that all finite powers of a space X are hereditarily
separable if and only if all finite powers of Cp(X) are hereditarily Lindelöf. On the
other hand, ifX is separable, andCp(X) is a Lindelöf Σ-space, thenX has countable
network (this follows from II.6.9 and II.6.21 in [Arh1]). In [Pol] it is proved that
if X is a separable, scattered compact space whose nth derivative space is empty
for some α < ω1 and Cp(X) is Lindelöf, then X is metrizable (recall that the αth

derivative space X(α) of a space X is defined inductively by the rules X(0) = X ,
X(α+1) = (X(α))′ and X(α) =

⋂
{X(β) : β < α } if α is a limit ordinal; here Z ′

denotes the set of all nonisolated points of Z). Reznichenko proved (see [Arh1])
that if MA+¬CH holds, then every separable compact spaceX with Lindelöf Cp(X)
is metrizable. Probably, this, together with several related results [AU], [Sip] led
Arhangel’skĭı to the question [Arh1]: Suppose X is a separable compact space, and
Cp(X) is Lindelöf. Must X be hereditarily separable?

The following example shows that the above statements related to separable
compact spaces are not true for separable, scattered, σ-compact spaces. An example
of a separable, σ-compact space X such that Cp(X) is Lindelöf but X contains an
uncountable discrete set has been obtained in [OY]; the example depended on the
existence of a holding set with uncountable complement in I, which was shown in
[OY] under Martin’s Axiom. Now we have a holding subset of I with an uncountable
complement in ZFC, so the example can be constructed in ZFC. We modify slightly
the construction of [OY] to obtain a scattered space. Let us first recall two useful
notions [Arh1].

A subset S of Cp(X) generates the topology of X (or is a generating set of
functions) if the sets f−1(U), where f ∈ S and U is an open set in R, form an open
subbase for the topology of X . Thus, a set of continuous functions S is generating
if and only if for any point x ∈ X and a closed set F in X with x /∈ F there
are n ∈ ω, functions f1, . . . , fn ∈ S and open subsets of R, U1, . . . , Un such that
x ∈

⋂n
i=1 f

−1
i (Ui) ⊂ X \ F . Obviously, a set of functions on a compact space X

is generating if and only if it separates points of X ; in particular, if X is compact
and S is a dense subset of Cp(X), then S is generating.

Let Y be a subspace of Cp(X). The evaluation mapping ΦXY : X → Cp(Y ) is
defined by the rule:

ΦXY (x)(f) = f(x) for all x ∈ X and f ∈ Y .

The evaluation mapping coincides with the diagonal product ∆{ f : f ∈ Y } : X →
RY (see [Eng, 2.3]); it is easy to check that ΦXY embeds X in Cp(Y ) if and only if
the set of functions Y generates the topology of X .

(2.1) Theorem. There exists a separable, σ-compact space X such that X(3) = ∅,
Cp(X)ω is Lindelöf, and X has an uncountable discrete subspace.

Proof. Let A be a holding set in I with |I \ A| = c. For each r ∈ I, denote
by χr the characteristic function of the one-point set {r}, and consider the set of
functions ZA = {χr : r ∈ I \ A } ∪ {0} where 0 is the zero function on I; clearly,
ZA ⊂ Cp(I(A)). Furthermore, ZA is a compact space with one nonisolated point,

because any neighborhood of 0 in RI contains all but finitely many points of ZA.
Fix a dense countable subset S of Cp(I) (such a set exists, because Cp(I) has

countable network; see [Arh1]), and put YA = S ∪ ZA (endowed with the topology
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of subspace of RI). Note that YA generates the topology of I(A). Finally, put
X = XA = (YA)(ZA) (so we make the points of S isolated, with the possible

exception of 0). Clearly, X is a separable, σ-compact space and X(3) = ∅, so we
only need to check that Cp(X)ω is Lindelöf.

Consider the evaluation mapping ΦI(A)YA : I(A) → Cp(YA) and put MA =

ΦI(A)YA(I(A)) ∪ {χs : s ∈ S } ∪ {0} ⊂ RYA . The set MA is a union of the space

ΦI(A)YA(I(A)), which is homeomorphic to I(A) because YA generates the topology of
I(A), and a compact set K = {χs : s ∈ S } ∪ {0}. By Lemma 1.8, Mω

A is Lindelöf.
The topology on the set YA generated by the set of functions MA is that of XA;

thus, MA ⊂ Cp(XA), and the evaluation mapping ΦXAMA embeds XA in Cp(MA).
Let M+

A be the disjoint union of MA and a singleton; by Lemma 1.8, (M+
A )ω

is Lindelöf. Furthermore, Cp(M
+
A ) = Cp(MA) × R; since XA embeds in Cp(MA),

XA × ω admits an embedding in Cp(M
+
A ). By Corollary 2.8 in [Ok1], Cp(X)ω =

Cp(XA)ω = Cp(XA × ω) is Lindelöf, and the proof is complete.

One of the most intriguing questions in the theory of function spaces in pointwise
topology is whether the Lindelöf property of Cp(X) implies the Lindelöf property
of Cp(X)×Cp(X), in particular, when X is compact (see [Arh2]). The question of
the multiplicativity of the Lindelöf property in case where the spaces are different
also makes sense; the strongest so far was an example, in a specially constructed
model of ZFC, of two Lindelöf spaces X1 and X2, each with one nonisolated point,
such that Cp(X1) and Cp(X2) are Lindelöf, but Cp(X1)× Cp(X2) is not [LM].

(2.2) Theorem. There exist separable, scattered, σ-compact spaces X1 and X2

such that Cp(X1)ω and Cp(X2)ω are Lindelöf, but Cp(X1)× Cp(X2) is not.

Proof. Let A and B be disjoint holding subsets of I. Construct the space XA as
in the proof of Theorem 2.1, and let XB be the space constructed in the same way
using the set B instead of A. The same argument as in the proof of Theorem 2.1
shows that Cp(XA)ω and Cp(XB)ω are Lindelöf. Let us check that the product
Cp(XA)× Cp(XB) contains a closed, discrete subspace of cardinality c.

The diagonal is a closed discrete set in I(A)× I(B) of cardinality c, so I(A)× I(B)

is not Lindelöf. Therefore, it suffices to check that I(A) and I(B) are homeomorphic
to closed subsets of Cp(XA) and Cp(XB). Of course, the proofs are similar, so we
will check this for Cp(XA).

Let S0 = i−1
XAYA

(S) be the dense, countable, discrete set in XA = (YA)(ZA) (we
keep the notation as in the proof of Theorem 2.1). The set S generates the topology
of I, so ΦIS : I → Cp(S) ⊂ Cp(S0) = RS is an embedding. Since I is compact,
ΦIS(I) is closed in RS .

Now let ΦI(A)XA : I(A) → Cp(XA) be the evaluation mapping and R : Cp(XA)→
Cp(S0) = RS the restriction mapping. Since XA generates the topology of I(A),
the space T = ΦI(A)XA(I(A)) is homeomorphic to I(A), and since S0 is dense in

XA, R is (continuous) one-to-one. Furthermore, a simple verification shows that
R ◦ΦI(A)XA = ΦIS ◦ iAI (recall that iAI : I(A) → I(I) = I is the natural bijection).

Hence T = R−1(ΦIS(I)), so T is closed in Cp(XA). The proof is complete.

It is easy to see that the diagonal in the product X(A)× (X \A) (the topology of
the second factor is that of the subspace of X) is a closed, discrete set of cardinality
|X \ A|. It follows that there is a set A ⊂ I such that (I(A))

ω is Lindelöf, but
I(A) × (I \A) is not.
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(2.3) Lemma. Let Y be a separable, metrizable space. Then there is a countable
space M such that Y is homeomorphic to a closed subspace of Cp(M).

Proof. Let K be a metrizable compactification of Y and B a countable base for
K. For any U, V ∈ B with cl(U) ⊂ V choose a continuous function fUV : K → I
so that f(U) ⊂ {1} and f(K \ V ) ⊂ {0} and put F = { fUV : U, V ∈ B, cl(U) ⊂
V }∪{0}. Clearly, the family of functions F is countable; endow it with the topology
of subspace of Cp(K).

Put M = R(F) where R : Cp(K)→ Cp(Y ) is the restriction mapping. Since Y
is dense in K, the mapping R0 = R|F : F →M is a continuous bijection. It follows
that the dual mapping R∗0 : Cp(M)→ Cp(F) (defined by the rule R∗0(g) = g ◦R0

for all g ∈ Cp(M); see [Arh1]) is an imbedding.
Clearly, F generates the topology of K and M generates the topology of Y ,

so the evaluation mappings ΦYM : Y → Cp(M) and ΦKF : K → Cp(F) are
imbeddings. Let us check that ΦYM(Y ) is closed in Cp(M). The space K is
compact, so ΦKF(K) is closed in Cp(F), and it is sufficient to check the equality

ΦYM (Y ) = R∗0
−1(ΦKF (K)), or the equivalent equality R∗0(ΦYM (Y )) = ΦKF (K)∩

R∗0(Cp(M)).
Let i : Y → K be the imbedding. It is easy to check from the definitions of the

evaluation mapping and the dual mapping that R∗0 ◦ ΦYM = ΦKF ◦ i. It follows
that R∗0(ΦYM (Y )) ⊂ ΦKF(K) ∩R∗0(Cp(M)).

Now suppose g0 ∈ ΦKF(K) \ R∗0(ΦYM(Y )); let us show that g0 /∈ R∗0(Cp(M)).
Suppose for contradiction that g0 = R∗0(h0) for some h0 ∈ Cp(M). Since g0 ∈
ΦKF(K), we have g0 = ΦKF(x0) for some x0 ∈ K, and from g0 /∈ R∗0(ΦYM (Y ))
follows x0 /∈ Y . Fix a sequence {Un : n ∈ ω } of sets in B so that cl(Un+1) ⊂ Un
and

⋂
{Un : n ∈ ω } = {x0} and put fn = fUnUn+1 , f ′n = fn|Y for all n ∈ ω. Then

the zero function is a limit point for the set of functions F = { f ′n : n ∈ ω } ⊂ M .
Since g0 = ΦKF (x0), we have g0(0) = 0 and g0(fn) = fn(x0) = 1. By the definition
of R∗0, we have h0(0) = g0(0) = 0 and h0(f ′n) = g0(fn) = 1, so h0 is discontinuous
at 0, a contradiction. The lemma is proved.

As an immediate consequence, we get the following statement.

(2.4) Theorem. There are a separable, scattered, σ-compact space X and a count-
able space M such that Cp(X)ω is Lindelöf and Cp(X)× Cp(M) contains a closed
discrete set of cardinality c.

(2.5) Remarks. 1. It is well known that if X is separable metrizable and X \A is
uncountable, then X(A)× (X \A) is nonnormal (the diagonal of A and A× (X \A)
cannot be separated).

A similar argument shows that if A and B are disjoint subsets of X , A is un-
countable and X(B) Lindelöf, then X(A) ×X(B) is not normal. Thus, the products
in Theorems 2.2 and 2.4 are also nonnormal.

2. If M is countable, then Cp(M) is separable metrizable. Thus, Theorem 2.4
provides, in particular, an example of locally convex linear topological spaces, one
of which is Lindelöf and the other second-countable, whose product is nonnormal
and has a closed discrete subset of cardinality c.

In [Pol] an example of a separable scattered compact spaceX such that Cp(X, 2)n

is Lindelöf for any n < ω, but Cp(X, 2)ω is not Lindelöf is constructed under CH.
No such example is possible in ZFC: it is shown in [Ok2] that if MA+¬CH, X is
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separable compact, Y ⊂ Cp(X) and all finite powers of Y are Lindelöf, then Y has
countable network. Theorem 1.13 can be used to construct a σ-compact example:

(2.6) Theorem. There is a scattered, separable, zero-dimensional σ-compact space
X such that for any n < ω, Cp(X, 2)n is Lindelöf, but Cp(X, 2)ω is not Lindelöf.

Proof. Let A be a subset of I such that all finite powers of I(A) are Lindelöf, but
the countable power is not Lindelöf (such a set exists by Theorem 1.13). As in
the proof of Theorem 2.1, let Z = {χr : r ∈ I \ A } ∪ {0}, let S be a dense
countable set in Cp(I), Y = S ∪ Z and X = Y(Z). The space X is σ-compact,
scattered, zero-dimensional and separable; exactly the same argument as in the
proof of Theorem 2.1 shows that I(A) is homeomorphic to a closed subset of Cp(X).
It follows that Cp(X)ω is not Lindelöf.

Suppose Cp(X, 2)ω is Lindelöf. Since X is zero-dimensional, Cp(X, 2) generates
the topology of X , and the evaluation mapping imbeds X in Cp(Cp(X, 2)). There-
fore, X × ω is homeomorphic to a subspace of Cp(Cp(X, 2)+) = Cp(Cp(X, 2))× R
where Cp(X, 2)+ is the free sum of Cp(X, 2) and a singleton. By Corollary 2.8 in
[Ok1], Cp(X × ω) = Cp(X)ω is Lindelöf, a contradiction.

Let us now check that all finite powers of Cp(X, 2)n are Lindelöf. We have X ⊂
Cp(MA) where MA = ΦI(A)Y (I(A))∪{χs : s ∈ S }∪{0} is constructed exactly as in
the proof of Theorem 2.1, and all finite powers of MA are Lindelöf. Furthermore,
the set Z = X ′ is compact. Obviously, the property “all finite powers are Lindelöf”
is inherited by closed subspaces, finite powers, continuous images, countable unions
and products with compact spaces. Therefore, the Lindelöf property of all finite
powers of Cp(X, 2) follows from the next lemma.

(2.7) Lemma. Let T be a space and X ⊂ Cp(T ). If the set X ′ of all nonisolated
points of X is compact, then Cp(X, 2) is a countable union of continuous images of
closed subsets of products of finite powers of T with a compact space.

Proof of the lemma. Obviously, a function φ : X → 2 is continuous if and only if it
is continuous at each point of X ′. Let us check that

Cp(X, 2) =
⋃
m∈ω

⋃
n∈ω

M(n,m)

where

M(n,m) =
⋃

(t0,...,tn−1)∈Tn
{φ ∈ 2X : for any f ∈ X ′ and g ∈ X,

if |f(ti)− g(ti)| < 1/m, i = 0, . . . , n− 1, then φ(f) = φ(g) }.
Obviously, every function in the right-hand side is continuous. Conversely, if

φ : X → 2 is continuous, then for every f ∈ X ′ there is a neighborhood of the
form U(f, l, t0, . . . , tk−1) = { g ∈ X : |f(ti) − g(ti)| < 1/l, i = 0, . . . , k − 1 } such
that φ(f) = φ(g) for all g in this neighborhood. The sets U(f, 3l, t0, . . . , tk−1) form
an open cover of the compact set X ′; fix a finite subcover U(f0, 3l0, t

0
0, . . . , t

0
k1−1),

. . . , U(fN−1, 3lN−1, t
N−1
0 , . . . , tN−1

kN−1). Put n = k1 + · · · + kN , (t0, . . . , tn−1) =

(t00, . . . , t
N−1
kN−1) and m = max(3l0, . . . , 3lN−1). Now if f ∈ X , g ∈ X ′

and |f(ti) − g(ti)| < 1/m for all i < n, then there is a k < N such that
|f(ti) − fk(ti)| < 1/m < 1/lk, for all i < n, so φ(f) = φ(fk). Furthermore,
|g(ti)−fk(ti)| ≤ |g(ti)−f(ti)|+ |f(ti)−fk(ti)| < 1/m+1/m < 1/lk, so also φ(g) =
φ(fk). Thus, for every φ ∈ Cp(X, 2) we have found m,n ∈ ω and (t0, . . . , tn−1) ∈ Tn
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such that for any f ∈ X ′ and g ∈ X , if |f(t0) − g(t0)| < 1/m, . . . , |f(tn−1) −
g(tn−1)| < 1/m, then φ(f) = φ(g), so φ is in M(n,m).

Let S(n,m) be the subset of 2X × Tn defined by

S(n,m) = {(φ, t0, . . . , tn−1) : for any f ∈ X ′ and g ∈ X,
if |f(ti)− g(ti)| < 1/m, i = 0, . . . , n− 1, then φ(f) = φ(g) }.

It is easy to see that S(n,m) is closed in 2X×Tn and thatM(n,m) is a continuous
image of S(n,m) (under the projection of 2X × Tn to the first factor).

This proves the lemma and completes the proof of Theorem 2.6.
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[AU] A. V. Arhangelskĭı and V. V. Uspenskĭı, On the cardinality of Lindelöf subspaces of func-
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[Ok1] O. G. Okunev, On Lindelöf Σ-spaces of continuous functions in the topology of pointwise

convergence, Topology Appl. 49 (1993), 149–166. MR 94b:54055
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