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Line and boundary tensions at the wetting transition: Two fluid phases
on a substrate

S. Perkovic, E. M. Blokhuis, and G. Han
Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853

(Received 11 August 1994; accepted 19 September)1994

We develop and analyze a mean-field model free energy that describes two fluid phases on a
substrate in order to calculate tfrumerically exact line and boundary tensions, on approach to the
first-order wetting transition. A theory based on the van der Waals theory of gas—liquid interfaces is
used. We implement a multigrid algorithm to determine the two-dimensional spatial variation of the
density across the three-phase and boundary regions, and hence, the line and boundary tensions. As
the wetting transition is approached, the tensions approach the same, finite, positive limit with
diverging slopes. We compare our results with those of recent related workd9® American

Institute of Physics.

I. INTRODUCTION the ay interface where no such layer is present. The line of

. ) prewetting transitiongdashed curve in Fig.)3 called the
Two bulk fluid phasesr and 8 on a substrate, at equi-  hrewetting line, meets the three-phase coexistence line

librium, can meet at a common line of contact with nonzeroy,ngentially? Along the prewetting line, as the wetting tran-
contact angle¢*partially wet” state) (Fig. 1). If the surface  jtion is approached, thg-like layer increases in thickness

ey ) : on : . .
tensiono®” of the ay interface is the largest of the three ) it hecomes macroscopically thick exactly at the wetting
tensionss”?, o, and ¢””, wheres*# and o*” are the sur- .o naition

face tensions of the3 and Sy interfaces, respectively, the In the partially wet state, the three two-phase interfaces
condit.ion.for mechanical equilibrium of the partially wet aet at a common line of contact—the three-phase contact
state is given b line. The inhomogeneity in density associated with that line
o< 5B+ P, (1.1) gives rise to an excess free energy over that in the bulk
phases and in the interfaces. That excess free energy per unit
When the contact anglé of the 5 phase becomes O, t  |ength of the three-phase contact line is the line tension
phase spreads on the substrate(wet stat¢ (Fig. 2. The  Rejated tor is the boundary tensiom, . When two surface
equilibrium condition for the wet state is given by phases coexist at the prewetting transition, they do so by
oY= g+ gP7. (1.2)  creating a one-dimensional boundary between them. The in-
homogeneity in density associated with such a line gives rise
The transition between the former partially wet and the lattegy g0 excess free energy, which, per unit length of that line,
wet state is called a wetting transition. In Fig. 3, we show gqefines the boundary tension.
generic phase diagram of a system of two fluid phases on a The values of the line and boundary tensions at the wet-
substrate that can undergo a first-order wetting transitionjng transition have been studied with different models, by
The variablesu; and u, are any two thermodynamic fields, several authord:® Varea and Robledostudied a spin-1/2
such as the temperature and the chemical potential. The soliging model within the mean-field approximation in a system
curve represents states where the three bulk phasgsand  \yhere one of the phases was a wall. In their work, they
v coexist. TheéW point denotes the wetting transition. Below gqjyed the Euler—Lagrange equation for the magnetization,
it, on the coexistence curve, the partially wet states are the'borresponding to minimizing the free energy of the system,
modynamically stable. Above thé/ point, on the coexist- and then obtained the line and boundary tensions. They con-
ence curve, the wet states are stable. The first-order characig@tured thatr and 7, diverge at the wetting transition. In a
of the wetting transition extends in the two-phase region tqater work, using more precise calculations, they argued that

the left of the coexistence curve, where only tieand y . s finite at the wetting transition, and approaches it with a
phases are stable as bulk. There, the dashed curve represegjigerging slope

states of coexistence of two surface phases—one that con- At the same time, calculations efand 7, for continuous

sists of a thin, microscopic layer of &like phase at thery  systems have been performed with two different phenomeno-
interface and one where ther(_e is no such layer. This coexisfpgical approaches. At a more microscopic level, a phenom-
ence of twoay interfaces, of different structure, but of equal englogical theory based on the van der Waals theory of gas—
tension, is called a prewetting transition. It is a first-order|iquid interfaces is used to calculateand 7, in a system of
surface phase transition. At the prewetting transition, the sufj,ig phases at coexistence. In this theory, the line tension

face tensions of the two surface phases are idehtical is given by

o Y=g, 1.3
wherea®”” is the surface tension of they* interface con- 7= min lim f da¥—(c"+ o+ afMR|, (1.9
sisting of a thing-like layer, ando“” is the surface tension of p1.-ppRel JA
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FIG. 1. A side view of two fluid phasea and 8 on a substratey in a
partially wet stated is the contact angle that the phase forms with the
substrate. The three two-phase interfaces meet at the three-phase contact ™
line.

FIG. 3. A generic phase diagram of two fluid phases on a subsjratnd
where the integration is done over a Iarge domain of &ea wu» are any two thermodynamic fields. The solid curve is the three-phase
rﬁﬂaexistence curve. The poilif represents the wetting transition. Below the

In a plane perpendlCUIar to the three-phase contact line a point W, on the solid curve, the stable states are partially wet, and above it,

whose Slde§ are_perpend'CU|ar to the thrfee two-phase int€fsey are wet. The dashed curve, called the prewetting line, represents the
faces(see Fig. 7 in Sec. )l The distancer is the length of locus of prewetting transitions, where two different structures of dhe

the two-phase interfaces within the ardaln general these interface coexist. The prewetting line meets the three-phase coexistence line
lengths are different for thery, a8, and By interfaces, so a 2ngentially at the wetting transitiow.

more general equation than Ed..4) is available. However,

for simplicity, we keep these three lengths eqdais a local

excess free-energy density that is a functional of the densitiesiants andr*”, ¢*, and o®” are the surface tensions of the
P1s P2,---,ppn Of the system’sy components. It is assumed t0 4y, o8, andBy interfaces, respectively. They are defined, far

be of the following form’ from the three-phase contact line, as follolws:
W =F( )+ L > m Vp-V (1.5
= P1:P2,---sP Y m;;Vpi-Vpj, . . *®
1Pz mo2 M o= min f dz v, (1.6
P1Ly--es Pn -

whereF is a local excess free-energy density in an environ-

ment of homogeneous density and the dot product of thgynere v is defined as in Eq(1.5 and is a function ofz
gradient termsV p; and V p; describes the local excess free- gione, where is the direction perpendicular to the individual
energy density due to the inhomogeneity in the densities ifhterfaces. Therefore, the gradient operdiois one dimen-
the interfacial and contact line regions. The gradient operatogional in thez direction.
V is two dimensional, in the plane perpendicular to the three- Using the van der Waals theory, Szleifer and Widom
phase contact line. There is no variation in the densities iRg|culated the line tensionin a two-component system of
the direction parallel to the contact line. The ;’s are con-  three fluid phases at coexistence by describing the two den-
sities with approximate, but qualitatively correct functional
forms with variational parameters. The values of these pa-
rameters were determined by minimizing Efj4). They cal-
o ¢ culatedr as a function of the contact angteof the wetting
‘ phase, up t@=13°. They argued that possibly diverges as
| 1/6, as the wetting transition is approach@d-0).
| By adding a positive thermodynamic fieldto describe
J the deviation of the system from three-phase coexistence,
| Perkovig Szleifer, and Widorhextended the model of Szlei-
| fer and Widom to calculate the boundary tensignas the
‘I wetting transition is approached along the prewetting line.
Within the van der Waals theory, the boundary tensigrs

v given by

N

f: dz(¥)-o|, 1.7)

o]
FIG. 2. A side view of two fluid phases and 8 on a substrate in a wet Tp,= Min f dx
state. p1ipp” T
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phenomenological approatfithan the van der Waals theory.
Only recently did Blokhui¥ make a connection between the
more fundamental van der Waals approach and the interface
displacement model, by studying the expression for the
boundary tensiom,. The model free energy that he used is
an extension of the van der Waals expresgibi) to a sys-
) tem that contains a substrate as the third ph4&tokhuis
B-like derived explicit expressions for the functiong(l) (not a
7/ X constant, as was assumed in RgfafdV(l) in terms of the
density profile of the one component system. The boundary
Y tension was determined using approximate forms for the
density profile. A positive, finite upper bound tg was ob-
tained at the wetting transition, with the same asymptotic
FIG. 4. A side view of two surface phases coexisting at the prewettingform for 7, near the wetting transition as in the interface
transition. On the right, a microscopic layer ofsdike phase spreads at the displacement model. ReCenﬂy, B|okh{§i$]etermined, with
ay ir_1terface, while no such layer exists at the inten‘ac_e onthe left. The  {he same model but applied to the partially wet case, the
two interfaces meet edge on to create the boundary line. . . . .
same functional form for the line tensiannear the wetting
transition as in the interface displacement model, and then a
finite, positive 7 at the wetting transition.
whereV is given by Eq.(1.5 ando by Eq. (1.6). It should In this paper, we describe the calculation of themeri-
be noted that¥ is now a function of the coordinatesandz  cally) exact line tension of the three-phase contact line
perpendicular to the boundary lin&ig. 4. The same ap- formed by two fluids on a substrate, by constraining the
proximate method was used to calculaie The values of model free energy in Ref. 3 to a three-phase equilibrium. The
the boundary tensiom, showed an apparent finite limit at presence of the substrate is treated as a boundary condition,
the wetting transition, in contrast to the apparent divergencwhich converts the system into a one-component one. Fur-
of the line tensionr from Ref. 5. thermore, we use the model free energy in Ref. 3 to calculate
Another, more phenomenological approach for determinthe exact boundary tension of the one-dimensional boundary
ing 7and 7, at the wetting transition is the interface displace-formed when two surface phases coexist. These results rep-
ment modef1° This model defines the interface displace-resent the first exact calculations of the line and boundary
mentl(x) as the height above a solid substrate, where théensions for a continuous system. Fitting the data with func-
density profile of a one-component, liquid—vapor systentional forms obtained by Indekwand Blokhuis® we find
equals a certain fixed value. The interface displacer(@)t that, at the wetting transition, the line and boundary tensions
is then a measure of the thickness of the liquid layer on there positive and finite. Within the numerical accuracy, these
substrate. The boundary tensiepis given by the following  two values are equal, as predicted by WidbiFurthermore,

b — — — — — — >

expressior?: the line and boundary tensions are lower than the upper
. o [ dl2 bounds forr, (Ref. 3 and for 7, determined from the ap-
Tb:minj dxl =2 (_ +V(I)+c0ns$ (1.8  proximate calculations.
I J=e 2 \dx In the next section, we define the model free energy that

we use to obtain the exact expressions for the interfacial
density profiles and the surface tensions of the three two-

of the excess free energy per unit area due to an increase 8 ase interfaces, and the density profiles and surface tensions

interfacial area, for small interface displacement grad|ents the two surface phases coexisting at the prewetting tran-
oy is the surface tension of the two-fluid interface afd) is Sition. In Sec. Ill, we calculate the line and boundary ten-
an excess free energy per unit area. It has its minimum vaf ions using a multigrid algorithm. In Sec. IV, we calculate
ues atV(1 =l ;) andV(I =l i), Wherel y, and g are the the functionsoy(l) and V(l), defined in the interface dis-
thicknesses of the thin and thick layers far from the boundarypl"’lc.ement modell, from our .numerllcally _obtalned density
region. Thex coordinate is parallel to the substrate. Toa- profiles. We end, in Sec. V, with a discussion of the results.
stantis chosen such that the integrand in E4.8) vanishes
asx— *o. Indekel determined that at the first-order wet-
ting transition, for short-range forces, the line and boundary; SyURFACE TENSION
tensions are positive and finite, approaching the wetting tran-
sition with a slope diverging as a function of an appropriate  In this section, we investigate the structures and tensions
thermodynamic field that measures the distance from thef the three interfaces far away from the three-phase contact
wetting transition. region, when three bulk phases coexist in a partially wet
The interface displacement model has been applied sustate. We determine, as well, the profiles and tensions of the
cessfully in determining the tensions beyond the gradienttwo surface phases that coexist at the prewetting transition. A
square approximatidh and near multicritical wetting model free energy that is an extension of the van der Waals
transitionst? as well as for exploring the universal properties expressior(1.6) to a system that contains a substrate as the
of the first-order wetting transitiof?. However, it is a more third phase is uset’'*

An analogous expression exists for the line tenstohe
first term in the integrand of Eq1.8) describes the increase

J. Chem. Phys., Vol. 102, No. 1, 1 January 1995
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For a one-component, two fluid-phase sysié¢ine « and  The V gradient operator in Eq2.7) is one dimensional in
B phases in Fig. 1, far from the solid substjathe surface thez direction, perpendicular to the substrate. The densities
tension or excess free energy per unit asdd of the a8  and p, are defined as in Eq2.4). The bulk fieldh(h=0)

interface is given bycf. Eq. (1.6)] measures the distance from three bulk-phase coexistence.
" Whenh=0, the three phases B andy coexist withp*=—1
o B= minj dt ¥(p), (2.7 andp3=1, while forh>0, only thea and y phases coexist.
p S Then, the density of the phasep® is the density for which
where W(p) is a local excess free-energy density that is a (P) 1S minimal. For small values df, p® is given by Eq.

(2.3 in Ref. 3.
Far from the three-phase contact liffég. 1), the surface
tensiono®? of the af interface is obtained by minimizing

functional of the local densitg=p(t), and is assumed to be
of the following form[cf. Eq. (1.5]:

W (p)="f(p)+3(Vp)? (22 Eq. (2.1) with respect to the density; i.e., by solving the
with f(p) given by Euler—Lagrange equation

f(p)=2(p*~1)% 2.3 Pp_,

=t 29 —z=1"(p), 2.9

- =
The gradient operatd¥ is one dimensional in thedirection at
which is perpendicular to theg interface. There is no varia- with the appropriate boundary conditions in theand B
tion in the density in the directions parallel to the interface.phaseg®=—1 andp®=1. The prime denotes the first deriva-
The distancd, gradient operatoV, densityp, and free en- tive with respect to the argument.
ergiesc®”, ¥, andf are scaled appropriately so that they are  The surface tensions®” and o®” of the ay and By in-
all dimensionless. The densipyis a relative density and so terfaces are obtained by minimizing H§.4) with respect to
can be negative. A3 coexistence, the density of theand  the densityp; i.e., by solving the Euler—Lagrange equation
B phases arg®=—1 andp?=1. ,

When a solid substrate is present as the third pkihse a_P:f,( ) (2.10
y phase in Fig. }, the surface tension or excess free energy  dz° Pl ’
per unit areas™ of the fluid—solid interface, far from the

three-phase contact line, is given®t§ with the appropriate boundary conditions at the solid sub-

strate

o'o= minJm dZ¥(p)]+P(p1), (2.9 ap
p Jo

E :(D/(pl), (211)
=0
whereW(p) is given in Eq.(2.2) and®(p,) is a phenomeno- ’

logical term that accounts for the fluid—solid interactions anc@nd in thea and 8 phaseg®=—1 andpf=1.

is assumed to be of the following forffi: The solutions to Eq92.9) and(2.10 with the appropri-
L ate boundary conditions are the equilibrium density profiles,

®(p1)=—hip1—329p3. (2.9 which can be determined analytically

Thg densityp;=p(z=0) is the equilibrium density a.t.the p?(2)= —tanhz—z,), (2.12

solid substrate, far from the three-phase contact regios;

the coordinate perpendicular to the solid substrate) is s 1

the local fluid density; and the phenomenological parameters P "(2)= m' (213

h, andg are the surface field and the surface enhancement

parameters, respectively. The temperature dependenteg of p®A(t)=—tannt), (2.19

and g has been studied both theoreticifly and

experimentally.’ We restrict ourselves to the caseof=0 where the coordinateis defined as

only? As in Eq. (2.1), the distances, densities, and energy  t=—x sinf+z cos. (2.19
densities in Eq(2.4) are scaled so that they are all dimen- ) ) ) ]
sionless. The coordinatex is parallel to the solid substrate amdis

For a system of two surface phases at coexistéRize the contact angle that thé phase forms with the substrate

4), the surface tension or the excess free energy per unit ard§i9- D ] ]
o of the interfaces, far from the boundary region, is obtained ~ 1he constantg, andz, are defined as functions of the

as an extension of E42.4) model’s two parameterg andh,,
” tanh(zy) = — 39— 3(g?— 4h, +4)/2, (2.1
0=minf0 dZ4¥y(p)]+P(p1), (2.6
p
— =19+ Lg%+ 4h, +4)'2. 2.1

where®(p,) is given in Eq.(2.5) and¥(p) is given by tanh(z)  ° 2 1t4) 219

Vo (p)=Ff(p)—f(p9+%Vp)? 2.7 Substituting the interfacial density profild2.14 in Egs.
with (2.1) and(2.12 and(2.13 in Eg. (2.4), one obtains the sur-

face tensions of the interfacéfar from the three-phase con-
f(p)=3(p?—1)%+hp. (2.9  tact region

J. Chem. Phys., Vol. 102, No. 1, 1 January 1995



404 Perkovic, Blokhuis, and Han: Wetting transition: Two fluid phases

2

J P,
=10, (222

hy
and the appropriate boundary conditions, in taephase,
given by the value op® that minimizes Eq(2.8), and at the
solid substrate

2 1 ap

72, =@ (py). (2.23

=0

1t ] The details of solving Eq.2.22 have been given by
Blokhuis® and we shall here only refer to the results. The
analytic expressions for the equilibrium interfacial density
o . . . . . . profiles are quite elaborate and are given in E§%)—(2.8)

-4 -3 -2 - 0 1 2 3 and(2.10 of Ref. 3. Inserting these expressions in Ey6),
Blokhuis obtained the analytic expressions for the surface
tensions, given in Eqg2.9) and(2.10 of Ref. 3.

FIG. 5. The phase diagram of the model system studied, Vmeaedg are By Companng the Correspondlng Surface tens|ons Of the
the model's phenomenological parameters. The solid curve is the locus of . : . .
wetting transitions. Fog>—2, it is the locus of first order wetting transi- @y and ayr |nterfg;:es,I)Z}I/B*Iokhuf%determlned th_e prewetting
tions, while forg< —2, it is the locus of continuous wetting transitions. The transition, whenr**=¢“"", for g=0, as a function oh and
pointg=—2, h;=2 is a(surface tricritical point. In the region below the  h;,. Figure 3 in Ref. 3 shows the prewetting line in the h;
solid curve, partially wet states are stable. Above the solid curve, the Wefhermodynamic space. Furthermore, he determined an ap-
states are stable. . . . - ’ .
proximate analytic prewetting linke,(h) close to the wetting
transition,

+1|+0(h?), (2.24

2 g 1 h 4(h7)?
=315 (g2—6h,+6)— E (g2—4h,+4)372, h1 prewer= 1+ ApY {log( h

3 1
(2.18

whereh¥'=(2v3—3)'2~0.681 25 is thealue ofh; at the
2 g 1 wetting transition(for g=0) and Ap{'~1.8612 is the cor-
Uﬁy=§_ 12 (9°+6h;+6)— 12 (g*+4hy+4)%2, responding density difference between trgc and ay sur-
(2.19 face phases, at the substrate.
In the next section, we present the calculations of the
oP=_ (2.20 line tension of the three-phase contact line and of the bound-
3 ary tension of the boundary between two surface phases, as
From Egs. (2.18—(2.20, using Young's equation, the first-order wetting transition is approached from two dif-
o®=aP7+ o cow, to relate the contact anglé to the  ferent directions—along the partially wet states of the three-

surface tensions, the contact angrB phase coexistence Cur‘(/Ehe solid curve below th&v pOint
in Fig. 3) and along the prewetting linglashed curve in Fig.

cog)= § ghy+ i [(g2+4h,+4)32— (92— 4h, +4)3/2]. 3). The calculations are done fge=0, by varyingh, (andh,
4 16 for the prewetting cageThe (first-orde) wetting transition,

(22D for g=0, occurs ah}=(2v3—3)"2 (andh=0).2
By comparing the values of the two terra§” and o*?+ #”
at different values ofgy and h;, we are able to determine
which of the two three-phase thermodynamic states ig; | |NE TENSION
stable—the partially wet state or the wet state. The values of
g and h; for which ¢*’=0"#+¢#” determine the wetting The analogous expression to HG.4) for the line ten-
transition. In Fig. 5, we show the phase diagram of this threaion 7 of the three-phase contact line, using the model free
bulk phase system. In the region below the solid curve, parenergy from Sec. Il, is given by the following forf:
tially wet states are thermodynamically stable, while above
the solid curve, wet st_ates are the thermodyn.amically. ;tabl;,e:mmfm dx jw dz ¥ (p)+ fw dX[®(py)—3(X)],
ones. The solid curve itself is the locus of wetting transitions. p J-= 0 —
Forg>—2, it is the locus of first-order wetting transitions, (3.1
while for g<—2, the solid curve represents the locus of
continuous wetting transitions. The pompt —2,h;=2 is a
(surface tricritical point.

where the function®(p) and®(p,) are as in Egs(2.2) and
(2.5 respectively, and (x) is given by

The surface tensions®” ando*”" of the two coexisting o*B
surface phasesy and ay*, respectively, are obtained by 2()=0H(=x)+| oP7+ cos G)H(X)' 3.2
solving the following Euler—Lagrange equation, associated
with the minimization of Eq(2.6) with respect top: The unit step functior(x) is defined as follows:

J. Chem. Phys., Vol. 102, No. 1, 1 January 1995
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1, x=0 2.0 . . 5
H(x)= !
(x) 0, x<O0.
The function p=p(x,z) is the local density in the fluid ;
phases ang,=p(x,z=0) is the fluid density at the solid s | ]
substrate. The surface tension®’, ¢®”, and 0®, and the - {1
contact angle are defined as functions of the parame®@rs ., .cn Y
andh; as in Egs(2.18—(2.20 and(2.21), respectively. The 3 ]
gradient operatoV is two dimensional in th& andz direc- ol 4 Qo
tions, which are perpendicular to the three-phase contact o §§.
line. There is no variation in the density in the direction ° o
parallel to the three-phase contact line. ° "
The boundary tension, of the one-dimensional bound- .
ary between two coexisting surface phases is given as an s ons Toe o0 oo i
extension of Eq(3.1) Y = hy
szminf dx j dz ‘I’b(p)-f-f dX P (pq) — 0], FIG. 6. A plot of the approximatésquares and exact(circles line and
p J== 0 - boundary tensions vh}—h, for g=0 and h{=0.681 25. Thewetting
(3,3) transition occurs ah}—h,;=0. The solid circles and squares represent the

) data for the line tension, while the open ones represent the data for the
whereWV(p) and®(p,) are as in Eqs(2.7) and(2.5) respec-  boundary tension. The approximate results are upper bounds to the exact

tively, and wherear is the surface tension of the two coexist- line and boundary tensions. The error bars are the standard deviations from
ing interfaceso=c*"=0""") [Eq. (2.6)]. the mean.
In earlier works>~® the problem of minimizing function-
als of the forms(3.1) and (3.3), with respect to a two-
dimensional functiorp(x,z), was approached by approxi- In Fig. 6, the data are plotted agairst—h;,. In the same
mating p(x,z) with a qualitatively correct functional form figure, we show the numerically exact values foand
with variational parameters, whose values are obtained bysolid and open circles, respectivglyhich will be deter-
minimization. The obtained values ferand 7, are then up-  mined below. The approximate calculations do indeed yield
per bounds to the line and boundary tensions, respectively.upper bounds to the line and boundary tensions. The differ-
Proceeding with this approach, we assume the followingence between the exact boundary tension and the upper
functional form for the density(x,z), for the partially wet  bound to the boundary tension is at most 1% and usually
system h=0), even smaller, suggesting that the minimizing density profile
_ oy _ _ is close to the functional form of the approximate density
p(x.2)=—tanH{z cog Of (x)]=x sinL 61 (x)] = 2o[ 1 =FO) I} profile It should be kept in mind though, that small devia-
+[coth(z+z;)—1]f(x), (3.4  tions in the density profile away from the minimizing density
profile only contribute quadratically to a change in the value

with of the boundary tension. Next, we proceed to calcuteaad
1 X—Xo| 1 7y, exactly using a multigrid algorithm.
fx)=3 tanl‘( ) +5 (3.9 The line tensiorr is obtained by minimizing E¢(3.1) to
yield the Euler—Lagrange equation

wherex, andw are the two variational parameters, denoting
the location and width of the contact region, respectively. V,=2p°+2p=0, (3.6
The density profilep(x,z) in Eq. (3.4) becomes the ex- where V is two dimensional, and the following boundary
act profile of Eq.(2.12 asx— —«; the exact profile of Eq. condition:
(2.13 asx— +o, for fixed z and the exact profile of Eq.
(2.14 asx, z—+=, for fixed t. Consequently, the exact —hl—gp|2:0=a—p ) (3.7
expressions for the surface tensierf€, ¢*?, ando*? in Egs. z|,_,
(2.18—(2.20 are retrieved. The densities of the bulland 8
phasesp®=—1 and p’=1 emerge from Eq(3.4) as well.
However, expressiofB.4) is approximate everywhere else. -1, Z—+x
Wit_h p(x,z) as in Eq.(3.4), the minimization of Eq. p=1 —tanhz—z,), X— — 00, (3.9
(3.1 with respect tax, andw, for given values of the mod- —tanh(t)— 1+ cothz+2y), X+
el's parameterg andh,, yields an upper bound to the line 1
tension. These results are shown in Fig. 6 as solid squareswherez, andz, are defined in Eqg2.16) and(2.17), respec-
Using the same approach, Blokhtislculated the upper tively, andt is defined in Eq(2.15.
bound to the boundary tension. These results are plotted as Since the integral in Eq3.1) converges sufficiently fast
open squares in Fig. 6. Blokhuis determined that the value agiisx— * o andz— + o, we can substitute it with an integral
the boundary tension at the wetting transition is 1.602 anaver a large, but finite domain. The sides of this irregular
that close to the wetting transitiom,= 1.602—-4.50%"2. domain must be perpendicular to the three two-phase inter-

Three more boundary conditions are given by
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FIG. 7. A side view of two fluid phasea and 8 on a substratey in a
partially wet stated is the contact angle that th@ phase forms with the
substratey. The x axis is parallel to the substrate, while theaxis is per-
pendicular to it. The boxed region is the area over which the integration in
Eqg. (3.1) is performed to calculate the line tension. 10

faces in order for the line tensionto be invariant to the G, 8. Density profilep(x,z) of the partially wet system ag=0 and
change of location of the three-phase contact (ifig. 7). It h,=0.63.

is in this domain that the Euler—Lagrange equati@mb)

needs to be solved for the densjiy However, in practice, . ) )

the Euler—Lagrange equation is solved for the density in &2€- The largest spacirig, used was,=0.045. InFig. 8,
rectangular or square domain, with the line tensioralcu- we show an example of a two-dimensional density profile

lated from Eq.(3.1) by substituting the value of the density P(X,2) in a partially wet system, obtained as the solution of
in the irregular domain only. the Euler—Lagrange equati@8.6), using the multigrid algo-

The Euler—Lagrange equati¢.6) is a nonlinear partial ithm, for g=0 andh,=0.63.From such a density profile,
differential equation with one Neumann conditih7) and  the line tensionr is obtained from Eq(3.1). As we shall
three Dirichlet boundary condition®.8). Traditional meth- ~demonstrate below, highly accurate results for the line ten-
ods of solution use relaxation methodsich as the Jacobi or sion far from the wetting transition are obtained, while the
Gauss—Seidel methodso iteratively solve the discretized acCuracy decreases as the wetting transition is approached.

form of Eq. (3.6) for the densityp. However, the relaxation The boundary tension, is calculated by minimizing Eq.
becomes very slowly convergent in the limit when the grid(3-3 With respect t@ to obtain the Euler—Lagrange equation
spacingh,—0. In order to speed up the convergence of a V§—2p3+ 2p—h=0, (3.9
traditional relaxation method, a multigrid algorithm is used.

The idea of this method is to transfer the solutjpfrom a
fine grid onto a coarser grid via a restriction operator, onc

where V is two dimensional, and the following boundary
gondition on the solid substrate:

the convergence rate of the iteratig@noothing method on ap
the fine grid becomes too slow, while it is still good on the —h1—9P|z=o=E . (3.10
coarser grid. This process is repeated until the coarsest grid z=0

is reached, where usually the solution can be obtained exFhree more boundary conditions are given by E3) in
actly. At that point, the solutiop is brought back onto the Ref. 3 for the density in thex phase and Eq(2.6) [along
finest grid via a prolongation operator. with Egs. (2.7)—(2.10] in Ref. 3 for the density profiles of
We use a nonlinear multigrid method—the full approxi- the ay and ay* interfaces. We do not want to reproduce
mation storage algorithniFAS).!® The smoothing at each them here due to their length and awkwardness, so we refer
grid level is achieved with a red—black Gauss—Seidel relaxthe reader to Ref. 3 for the explicit expressions.
ation method. The prolongation operator is a bilinear inter-  The integrand in Eq(3.3) approaches 0 sufficiently fast
polation and the restriction operator uses a half-weightingasx— * o~ andz— + for the integral to converge. There-
restriction. We determine the two-dimensional density profilefore, we can substitute the limits of the integration with those
p(X,2) in two domain geometries: a square domain of 513of a large, but finite square or rectangular domain containing
X513 grid points and a rectangular domain of 5257 grid  the one-dimensional boundary and whose two sides are per-
points on the finest grid, keeping the grid spacingcon-  pendicular to the two surface phas€sg. 9). The boundary
stant. The advantage of the rectangular domain over the&ension is then determined by solving the Euler—Lagrange
square one is that the number of iterations necessary for coequation(3.9) in such a domain. The FAS multigrid algo-
vergence is much smaller. The number of grid points in onegithm is used in this case as well. The largest square domain
dimension, on the finest grid, is"2+ 1, whereNG is the  that we use consists of 25257 grid points, while the larg-
number of discretization grids. Because of the restriction orest rectangular domain has 54357 points. The largest
the number of points on the finest grid, giveliG and the spacinghg is 0.078. In Fig. 10, we show an example of a
domain size, the spacify, is not independent of the domain two-dimensional density profile(x,z) in a system of two
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FIG. 9. A side view of two coexisting surface phases at the prewetting os . .
transition. Thex axis is parallel to the substrate, while thexis is perpen- -0.18 -0.12 -0.08 0.00 0.06 0.12
dicular to it. The rectangular region represents the area over which the " =

integration in Eq(3.3) is done to calculate the boundary tension.

FIG. 11. A plot of the(numerically exact line and boundary tensions vs
hY—h; for g=0 and h}=0.681 25. Thewetting transition occurs at

; — hY—h,;=0. The data are fitted with functional forms described in the text.
surface phases at coexistence fpr0, h,=1.202, and The solid circles at the top of the curves denote the values of the line and

h:O.B.SubstiFuting that density in E¢3.3), one obtains the  poundary tensions at the wetting transition obtained from the fits. At the
boundary tension, . Highly accurate results are obtained for wetting transition, the tensions are finite and edudthin numerical errors

the boundary tension away from the wetting transition, whilerw=1.50 andr, ,=1.57.

the accuracy decreases close to the wetting transition.

In Fig. 11, two sets of data are plotted agaih$th,, o N .
where h? is the value of the parametér, at the wetting solid circles on the curves in Fig. Jlwe fit the calculated
transition [for the plotted datag=0 and h¥~0.681 25 values for the line and boundary tensions with the following

(Ref. 3]. The data on the right curve represent the values of XPressions:

the exact line tension of the three-phase contact line calcu- w " 1 w "
lated with the multigrid algorithm. The smallest angidor =1~ 7-(hy —hy)~* log ("—hy) +cy(hy—hy)
which we obtain a result is 1.51°, which is much smaller than v (3.11)

the 13° angle obtained by Szleifer and Widbim their cal-
culation of . The data points on the left curve of Fig. 11 @nd

repr_esent the_ \_/alu_es of the exact boundary tensgo_ms the o= Tow— T+,hh1/2+ c,h, (3.12
wetting transition is approachedh{—h;—0), the line ten-
sion 7 and the boundary tensiar, increase in magnitude. To
obtain the value of-and r, at the wetting transitiofithe two

wherer,,, 7_, andc, are fitting parameters for the line ten-
sion, andr,,,, 7., andc, are fitting parameters for the
boundary tension. The best fits are obtained with the follow-
ing values of the fitting parameters:

rw=1.50, 7.=0.725, c,=—1.83,
7-b,W::I--57; 7'+'h:3-97, c,=3.28.

The forms in Egs(3.11) and(3.12 have been derived ana-
lytically by Indeke(§ using an interface displacement model,
and by Blokhuis**® within the van der Waals theory. In their
work, the second correction terms in E¢8.11) and(3.12
are omitted. Here, however, since very close to the wetting
transition data are extremely difficult to obtain, we need to
rely on data further away from the wetting transition to ob-
tain a reasonable fit, and so we include the second correction
terms. The fact that Indekeu and Blokhuis obtained the same
functional forms forr and 7, near the wetting transition with
quite different approaches suggests that E@l1l) and
(3.12 are the appropriate fitting forms. In order to compare
the values ofr and 7, , the values ofr, are plotted, in Fig.
11, as a function oh}—h; after making use of Eq3.12
and the equation for the prewetting lihg(h).2

The line and boundary tensions approach a finite value at

FIG. 10. Density profilx(x,2) of the system at the prewetting transition at the W?tting tranSition W_ith an inﬁn_ite slope. At the yvgtting
g=0,h;=1.202, anch=0.3. transition, the line tension=1.50, is almost equalwithin

1.2

p(x,2)
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the numerical errgrto the value of the boundary tension These error bars are centered at the values of the line tension
m,=1.57, as iexpected® The small difference between the from the multigrid method, as shown in Fig. 6. We have
values forr and 7, at the wetting transition attests to the chosen to keep the line tension values as those determined by
accuracy of the multigrid method. the multigrid method, rather than the average line tension
We now make further comparisons of our results withfrom Egs.(3.1) and (3.15), since the density profile, ob-
those by Indekéand Blokhuis® Inverting and substituting tained from the multigrid algorithm, is, within the numerical
the approximate analytic prewetting limg(h) [Eq. (2.24]  accuracy, the solution of the Euler—Lagrange equat®6)
in EQ. (3.12, ash—0 so that only the first order correction and hence gives the best estimate of the line tension. When
in Eq. (3.12 is used, the following expression fat, as a  no error bars are shown in Fig. 6, the valuesrdfom Eqgs.
function of h}—h, is obtained: (3.1 and(3.15 are essentially identical. In Fig. 6, far from
the wetting transition, there is essentially no difference be-

To=Tpw— 7+ (hy—h}) 2 log~1/2 ik (3.13  tween the line tensions o_btained with the m_ultigrid _algorithm
(hy=hy) (3.2) and the ones obtained from the Kerins—Boiteux for-
From Eqs(3.12), (2.24), and(3.13, for smallh, so that only mula(3.1_5): the der_1_sit3_/ profilep_obtained as th_e solutio_n_to
the first two terms of Eq(3.12 are used, we obtain !Eq. (3.6) is the equmbrlum _prof|le. As the wetting transition
w2 is approached, discrepancies start to occur, and very close to
T n(App) =T (314  the wetting transition, they are significant, as demonstrated

The ratioQ=r,/7_ is a universal amplitude ratié.Within by the large error bars. Such discrepancies occur because of
the interface displacement mofelnd the van der Waals the increase in the inhomogeneous area associated with the
theory®15Q=5.515.From the fits of the line and boundary three-phase contact line as the wetting transition is ap-
tensions;_=0.725 andr, ,=3.97.Using these values and proached, and the subsequent difficulty in obtaining accurate
Eq. (3.14, we obtain for the universal amplitude ratio results for large domains, i.e., large spadmg This problem
Q=7.47. Wewill discuss the apparent disagreement be-can be solved by using fast computers with large memories
tween these two values in the Discussion section. to accommodate larger grid sizes, necessary to obtain accu-

As a test of the accuracy of the line and boundary tenfate results. . _ _
sions obtained with the multigrid algorithm, we calculate !N the same figuréFig. €), we show the standard devia-
and 7, using expressions analogous to the Kerins—Boiteuxion from the average boundary tension calculated from Egs.
formulaZ® applied to a two-fluid system on a solid substrate.(3-3, (3.16, and (3.17) as error bars centered around the
The line tension™2 is (Appendix B values of r, from the multigrid algorithm. Here again, the

same kind of analysis and conclusions apply as for the par-
™B= f dx f dz
— 0

(3.15 tially wet case.
and the boundary tensior§® is (Appendix A

TE_BZJ dXJ dz
—» 0

where f(p) is defined as in Eq(2.3) for the partially wet
case(3.195 and as in Eq(2.8 for the prewet cas¢3.16).
Another formula for the boundary tensiag is also obtained

1 2
5 (Vp)=f(p)

IV. SURFACE POTENTIAL

An important quantity for the understanding of the wet-
E (Vp)2—f(p)+ f(pa)}, ting behavior qf a_liquid phase on a subgtrqte is the so?called
2 surface potentid®~2* The surface potential is usually given
(3.1 as a function of the height of the liquid—vapor interfatiee
af interfacg above the substrate, and measures the surface
free energy when the interface is constrained to be at a cer-
tain heightl different from its equilibrium height,. The

(Appendix A heightl is defined as the value afwhere the density profile
crosses the value zero. The system is as the system depicted
o o ap\? in Fig. 2, but now one has to keep in mind that the location
o= f,x dx fo dz( 5) . (3-17  4f the a3 interface may vary. Different forms of the surface

potential can be derived using different methods of con-
The integrals in Eqs(3.19—(3.17) are not variational  straining the interface at a certain height. In this section, we
integrals. The density in these expressions is the equilib- will briefly review some of these forms for the surface po-
rium profile. The line tension~® obtained from Eq(3.15  tential and compare them with the surface potential that is
and the boundary tensionf ® obtained from Eq(3.16 and  derived from our numerical results for the density profile
, from Eq.(3.17) are not extrema whepis the equilibrium  along the prewetting line. Furthermore, we present the nu-
profile. merical form of the surface tension of the liquid—vapor in-
The difference in the values for the line tensions ob-terface as a function of the heightoo(l). The precise defi-
tained from Egs.(3.1) and (3.19 describes, qualitatively, nition of o(1) is given below.
how close the density profilg, obtained with the multigrid The surface potential is derived from the surface free
algorithm, is to its equilibrium profile. When the difference is energy[cf. Egs.(2.6) and (2.7)]
small, the density profile is close to its equilibrium profile . 2
and Fhe line t_en5|on is close to its exact value. We have used FS[P]:f dz +(p)—F(p%
the line tension values from Eq&3.1) and (3.15 to deter- 0
mine the average line tension and its standard deviation. 4.1

+®(py).

1(dp
21z
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Two forms of the surface potential were recently proposedthe prewetting line and we now want to calculate the form of
The first one is by Fisher and 3fnand is derived by mini- the surface potential that would have yielded such a profile.
mizing Eq. (4.1 and adding a Lagrange multiplier of the It should be kept in mind that this numerically obtained sur-
form Ap(2) 6(z—1) to obtain face potential can only be obtained exactly along the prewet-
o ting line while the surface potentials described by the above

VFil):rTn[FS(p)H\p(z)a(z_l)_a]' @2 formalisms can be obtained anywhere in the phase diagram.

In order to obtain, as we will call iv/,,,(l), we first
show how it is derived from the full expression for the free
energy per unit length of the boundary lifgf. Eq. (3.3)]

The addition of a Lagrange multiplier of this form fixes the
density to be zero at height In the above expression, we
have also subtracted the surface free energlefined as the

equilibrium surface free energy. The surface potential then w 1{ap ap\2

has the property tha¥(l.)=0. The density profile that re- L[p]—f dx j dz = (ax + > E) +f(p)

sults from the minimization with the above constraint is, - 0

however, nonanalytic. The first derivative with respect te w

discontinuous az=1 whenever is not equal td . —f(p%) +J dXP(pq)—o]. 4.5

A second form for the surface potential was proposed by
Bukmanet al?® In their analysis, they choose to constrain ) ) o )
the surface free energy in E6#.1) by fixing the adsorption. Insgroducmgl(x) as a variable to replace this is rewritten

a

Hence,
43 R [ o5

Unfortunately, the resulting density profile does not become
equal to the vapor density” when z goes to infinity. The where
authors resolve this by allowing a discontinuity in the second .
derivative in at most one point. As in the previous case, thQTO(|)Ef d
profile is thus nonanalytic. An important advantage of this 0
approach is that it is very natural to constrain the height of 4.7
the interface by fixing the adsorption. Also, the adsorptlon * 1|90 2
itself is physically a much more relevant variable than the V( )=f dz[ 219z p(1,2)| +1(p)=1(p%)
heightl which is sometimes, as we will see later, ill defined.
A third form of the surface potential is defined by the
following constraint?

2
Vg(l)=min

p

Fs<p>+xf: dz(p—p™) o] ® 10

+V(I)], (4.6)

2

P
ZEP(LZ)

+®(py)—o.

The functionoy(l) denotes the surface tension against sur-
face area fluctuations of the liquid—vapor interface located at
» height 1 32224 When | is large compared to some typical
s(P)'H\JO dZ(P—Pa)Z_U}- (44 interaction range of the liquid with the substratg(l) is
expected to become equal to 4/3, the surface tension of the
Although the addition of the term with the Lagrange multi- free liquid—vapor interface. The definition &f(l) in Eq.
plier of this form is not well motivated physically, the sur- (4.7) is similar to those given in Eq$4.2—(4.4), the only
face potential thus defined does not suffer the aforemerdifference being the way in which the liquid—vapor interface
tioned drawbacks of the other surface potentials. The densitig constrained to be at a certain heightinserting the nu-
profile is analytic and, furthermore, the surface potential camnmerical profile into the above expression fé¢l), gives us
be calculated explicitly. The above surface potential waghe desiredV,(l). The result is plotted in Fig. 12, for the
used by Blokhuito calculate the upper bound to the bound-caseh=0.2. As anindication of the numerical accuracy of
ary tension at the wetting transition and along the prewettinghe obtained/, (1), we have also calculatéd,. (1) using
line. a different but equivalent expression, the derivation of which
The surface potential is an important quantity wheneveiis given in Appendix Alcf. Eq. (A11)]. The difference be-
one is interested in the behavior of the wetting system whetween the two result@¢he open circles and crosses in Fig) 12
the location of the liquid—vapor interface is somehow forcedis an indication of the numerical accuracy. The line in Fig. 12
out of its equilibrium location. For instance, the surface po-is V(1) and within the numerical accuracy, it is clearly al-
tential is important to describe thermal fluctuations of theways lower than the numerical results. Notice that we have
liquid—vapor interface or, also, for the calculation of the line not plottedV (1) for | <O sincel is not well-defined in that
tension or boundary tension. In the latter case, the surfacease. In Fig. 13, we have enlarged the boxed portion of Fig.
potential has two equal minima when the height equals thd2 and included the results &fg(l) (squares and V,(l)
height of the thin or thick films, indicative of the coexistence (solid circles besidesVg(l) (triangleg. The numerical re-
of the thin and thick films along the prewetting line. In fact, sults are always very close to the three modelsvf@n and
an essential part of the boundary tension is due to the faeven quantitatively correct results can be expected when
that the surface potential is larger than zero wherthese three models are used to calculate the boundary ten-
linin<<I <linick - We now want to turn the analysis around. We sion. When the surface potential is plotted as a functioh of
have obtained the numerically exact density profiles alongt is expected, as can also be seen from Figs. 12 and 13, that

Vy(l)=min| F
p
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FIG. 12. The surface potential as a functionl dér h=0.2 on the prewet-  FIG. 14. The surface potential as a functionlofor h=0.2 on the prewet-

ting line. The solid curve is the surface potential as proposed by Fisher anting line. The boxes, solid circles, and triangles are the values of the surface
Jin V{1). The crosses and open circles are the numerically calculated valpotentialsVg(I'), V,(I'), and Vg(I'), respectively. The crosses and open
ues of the surface potential. The box shows the region that is depicted inircles are the numerically calculated values of the surface potential.

Fig. 13.

entiated with respect to a numerically obtaidedhen, sec-

VeAl) would give the lowest curve, but when the surfacegngly, the square of the result is numerically integrated over
potential is plotted vs the adsorptibhit is expected thatthe 7 The numerical error of the result is expected to be of the
surface potential by Bukmaet al** is going to be the low-  order of the wiggles for largein Fig. 15. Only qualitatively
est. This is shown in Fig. 14. In this figure, we have plotteddoes%u) derived from Eq(4.4) agree withoo(l) obtained
the results for the surface potential from Fig. 13 as a functiotymerically. For small values of, each surface tension
of I' instead ofl. As expected, the numerical results are closeao(|) of the constrained system is significantly lower than
to all three models for the surface potential, but Néy(I')  the surface tension of the free liquid—vapor interface, while
is the lowest curve. for larger values, it is significantly higher. As a result it can

As a final point, we have numerically calculateg(l) as  pe seen that the numerically obtaineg(l) at the equilib-
given in Eq.(4.7). The result, again fon=0.2, isplotted i rjym values ofl, l,;,, and| . differ significantly from the
Fig. 15(open circles Also shown(solid curve is ao(l) that  gyrface tension of the free liquid—vapor interface. This im-
is calculated by inserting the density profile that minimizespjies that if one measures, either in computer simulations or
Eq. (4.4 into Eq. (4.7). The surface tension of the free i real experiments, the surface tension against fluctuations
liquid—vapor interface is depicted by the broken line. Theof the liquid—vapor interface, that smaller values will be ob-

numerical calculation ofoy(l) from the density profile is  tained for the thinner films than for the thicker films. It
quite involved; first, the profile has to be numerically differ-

25

ao(t)

0.046
V(o)

20

0.042 |

0.038

0.034 - 05

0.030
0.75 0.80 0.85 4

FIG. 15. The surface tension as a functiorl &r h=0.2 on the prewetting
FIG. 13. Details of Fig. 12boxed regionh The boxes, solid circles, and line. The solid curve isry(l) calculated by inserting the density profile that

triangles are the values of the surface potentiglél), Vo(1), andVe(l), minimizes Eq.(4.4) into Eq. (4.7). The open circles are the numerically
respectively. The crosses and open circles are the numerically calculatezhlculated values of the surface tension. The horizontal dashed line is at the
values of the surface potential. value of the surface tension of the free liquid—vapor interface.
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20 , , , . since the exact values of the boundary tensions are nearly
equal to the upper bounds to the boundary tensiéig 6)
obtained by Blokhui$(but still slightly smalley, it might be
possible that the exact line and boundary tensions at the wet-
ting transition are close to the value of 1.602, the upper
bound to the boundary tension at the wetting transition. Set-
ting 7, andry, ,, in Egs.(3.11) and(3.12 equal to 1.602, and
fitting the other four parameters to the numerical d@e

line and boundary tensions from the multigrid algorijhm
gives 7_=1.18 andr, ,=4.34, leading toQ=5.02. Al-
though the fit is not shown, it is, again, very accurate. Since
both of these fitting procedures give excellent results, it is
concluded that our numerical data are consistent with
Q=5.515.

Tension

0.5
-0.18 -0.12 -0.06 0.00 0.06 0.12
h* = hy
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V. DISCUSSION APPENDIX: A KERINS—BOITEUX FORMULA FOR THE

In this paper, we have presentedimerically exact cal- BOUNDARY TENSION
culations of the line tepsion of the three-phase contact line |, this appendix, we derive two different, but equivalent,
and the boundary tension of the boundary between o COqmyjas for the boundary tension, along the prewetting
existing §urface phases. The approach is a van derWaaIs—Illfﬁ]e_ One of them is a close analog of the Kerins—Boiteux
theory with a model free energy that treats the substrate asgmg'® for the line tension derived for systems in which
boundary in a manner used by Nakanishi and Fi$hehe  ihe three phases are all fluid-like. It turns out that the pres-

line and boundary tensions are equaithin the accuracy of  gnce of the substrate does not affect the form of the Kerins—
the numerical methad positive, and finite at the wetting pggiteux formula in this case.

transition, and approach it with diverging slopes. These re- o boundary tension is given bgf. Eq. (3.3)]
sults are obtained by fitting the data ferand 7, from the ) )
multigrid calculation with the functional forms determined _ _ fw dx Jw adx &_p) R (o)=Y
—w 2 |\ dx 2\ 0z P P
+ J A (py)— 0], (AD)

by Indekelf within the interface displacement model, and by 7°~ 0
Blokhuis® within the van der Waals theory, using approxi-
mate expressions fov(l) and o, and p, respectively. To
obtain the same asymptotic forms ferand =, with two
different models, and with approximate methods, suggests ) ) ) _
that the expressions for the line and boundary tensions do n¥here the density profilp=p(x,2) is a solution of the
depend on the details of the system, and supports the univéruler—Lagrange equatidef. Eq. (3.9)]

sal character of the first order wetting transitidiwe check Pp %

this in this work by comparing the value of the universal -2+ ——>=f'(p) (A2)
amplitude ratio from Refs. 6, 3, and 18=5.515,with the

one calculated from our dat&=7.47.This is reasonable With the boundary conditiofcf. Eq. (3.10]

agreement, considering the difficulty in obtaining accurate
values for the line and boundary tensions close to the wetting > = D' (pq). (A3)
transition. This conclusion is supported by the following two z=0

analyses of different fitting procedures: In Fig. 16, wemMultiplying both sides of the Euler—Lagrange equation by

present a fit of our data for the boundary and line tension p)/(9x) and integrating over from 0 to« gives
calculated from our multigrid algorithm, obtained by assum-

ing thatr,,= 7, , andQ=5.515. The fit is agiccurate as the d
one in Fig. 11 and we find,,= 7, ,=1.54. Furthermore, 0

#p dp Ip ap

dp
X2 ox | 9z% ax X

x|

(p) 0. (A4)
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o (A11)

Next, we partially integrate the second term and write the % 1/adp\?
first and third terms as a derivative V()= fo dZE

f“’dlﬁ(&pz p %p af
A- (£ =& _
0 2 Jx |\ dx 0Z 9xdz X (p) APPENDIX B: KERINS-BOITEUX FORMULA FOR THE
LINE TENSION AT PARTIAL WETTING
dp dp\*=*  _ dpy . . . .
=75 o) TP (D) o (A5) In this appendix, we derive the analog of the Kerins—
zZ x| __ IX . 9 . ) . )
z=0 Boiteux formuld® for the line tension at partial wetting. In

where we have used the boundary condition in &®8) to order to derive this formula, it turns out to be more conve-
derive the last identity. nient to write the expression for the line tension in polar

We now write the second term on the left-hand side asoordinates I(, ¢) [cf. Eq.(3.1)]
well as the term on the right-hand side of the above equation

T ® 2
as a derivative, integrate overfrom x’ to o, and subse- T:J’ do f dr rF (‘9_’)) + _12 (’9_’) +f(p)}
quently drop the prime. We are then finally left with 0 0 2\or) 2r°\o¢
* 1/dp\2 1 /[ap\? f’”
=] =2 =] = ay | = - + + — g —g*r— k7], (Bl
fo dz 5 ((7)() 5 (az) f(p) +1(p%) |=P(py)— 0. . dr[®(p1) +P(p,)— 0~ 0*"=0""], (BI)

A6 . .
. _ ( .) wherep,;=p(r,¢=0) and p_,=p(r,¢=). The density profile
Another important formula can be derived by performing ap=p(r,¢) is a solution of the Euler—Lagrange equation

similar analysis as above, but now multiplying both sides ofwhich, in polar coordinates, reafisf. Eq. (3.6)]
the Euler—Lagrange equation byp)/(9z) and integrating

. . . 2 2
over x from —x to «. We will not do the analysis, which dp laop 1 dp
: Tt -t 55 =1(p), (B2
follows exactly the same steps as the analysis above, but we or ror rcdep
will just give the result
==®'(p,). (BI

% 1{adp\? d
J dx P
b=

1/adp\?

_E(&) +§(E) —f(p)-l—f(pa)}:O. 1 dp
(A7)

Integrating Eq(A6) overx from —o to « and Eq.(A7) over ~ Multiplying both sides of the Euler—Lagrange equation by

z from 0 tow and adding the results to the expression for the(dp)/(dr) and integrating ovetp from O to 7 gives

with the boundary conditionfcf. Eq. (3.7)]

19p
r do

=P’ (p1),

Ezgi?]iaré;ﬁgzi)zr}linBlicfﬁg\ratljtla:ves us with the analog of the fﬂ . 14 ( ap ap+ 1 dp _  dp L
0 roar \"ar| or r2 a¢? or (P) 57| =0
= (= J1(ap\? 1 [dp)\? (B4)
K-B_ N — | — = a
Th —fﬁdeJO dz 5 (&X) + 5 (&Z) f(p)+f(p)|.

Next, we partially integrate the second term and write the
(A8) first and third terms as a derivative
Another formula that we will use for the boundary tension is

- 2 2
obtained by integrating EQA6) over x from —« to « and J d [ L J ( é_p Ldp op 9
0

——r
adding the result to the expression for the boundary tensio 2rzar \" or
in Eq. (A1l) 3
szfx dx F dz(&—p) . (A9) o), o v e T )
—» 0 ox (B5)

Although this formula is even simpler than the analog of thewhere we have used the boundary conditions in (B8) to
Kerins—Boiteux formula in Eq(A8), it is only valid as an derive the last identity.
expression for the boundary tension, whereas the formula in  We now write the second term on the left-hand side as
Eq. (A8) is also valid for the line tension along partial wet- well as the term on the right-hand side of the above equation
ting. This is shown in the next Appendix. as a derivative. Next we multiply by, integrate over from

As a final point, we derive an alternative expression forr’ to « and integrate by parts to obtain
the surface potential. The surface potential is given by the

2 2 =

expression in Eq(4.7) " Aol = A (a_p —rf(p) r

19012 0 2\ or 2r \d¢ -

o0 p N _
V(l)—fO dZE(E +1(p)=f(p?) |+ P(py) — 0. Fd fmd 1(9p\2 1 [dp)2 f
(AL0) T 90 ) A2 ar] T2zl 5g) TP

Inserting Eq.(A6) into this expression gives the much sim- S
pler form =[P(p)+P(p)] - (B6)
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The terms evaluated at= in the above equation can be

combined to give the sum of the three surface tensions. This

can be seen more clearly when one introduzedR¢ and
one takes the limiR—oo,

fﬂ'R
R—xJO

1(dp\?
E(E) +f(p)

lim dz +H[P(p1)+P(p)]i=r

=g+ g4 P, (B7)

With the above equation and after interchangimgndr’,
Eq. (B6) becomes

m r 2 1
fo d¢_§ +E i
m = 1 (dp 2 1 ap
o f, do | ar HW) ‘W(%

=—®(py)—P(p,)+ 0P+ 07+ P,

Next we integrate over from 0 to and use the indentity

fooc dr f:c dr’g(r’)=fooo dr rg(r),

to finally write Eq.(B8) as

dap ap 2

or

+rf(p)}

2

+f(p)}
(B8)

(B9)

f” dé f dr r[2f<p>]=fw dr[—®(py)— B (py) +0F
0 0 0

+ o+ o). (B10)

413

o °° 1(ap\?> 1 [ap\?
T—fo d¢ fo d”HE) T(%) ‘”P)}
(B11)

This is the analog of the Kerins—Boiteux formula in polar
coordinates.
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