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Line and boundary tensions at the wetting transition: Two fluid phases
on a substrate

S. Perković, E. M. Blokhuis, and G. Han
Department of Chemistry, Baker Laboratory, Cornell University, Ithaca, New York 14853

~Received 11 August 1994; accepted 19 September 1994!

We develop and analyze a mean-field model free energy that describes two fluid phases on a
substrate in order to calculate the~numerically! exact line and boundary tensions, on approach to the
first-order wetting transition. A theory based on the van der Waals theory of gas–liquid interfaces is
used. We implement a multigrid algorithm to determine the two-dimensional spatial variation of the
density across the three-phase and boundary regions, and hence, the line and boundary tensions. As
the wetting transition is approached, the tensions approach the same, finite, positive limit with
diverging slopes. We compare our results with those of recent related work. ©1995 American
Institute of Physics.

I. INTRODUCTION

Two bulk fluid phasesa andb on a substrateg, at equi-
librium, can meet at a common line of contact with nonzero
contact angles~‘‘partially wet’’ state! ~Fig. 1!. If the surface
tensionsag of the ag interface is the largest of the three
tensionssag, sab, andsbg, wheresab andsbg are the sur-
face tensions of theab andbg interfaces, respectively, the
condition for mechanical equilibrium of the partially wet
state is given by1

sag,sab1sbg. ~1.1!

When the contact angleu of the b phase becomes 0, theb
phase spreads on theg substrate~wet state! ~Fig. 2!. The
equilibrium condition for the wet state is given by1

sag5sab1sbg. ~1.2!

The transition between the former partially wet and the latter
wet state is called a wetting transition. In Fig. 3, we show a
generic phase diagram of a system of two fluid phases on a
substrate that can undergo a first-order wetting transition.
The variablesm1 andm2 are any two thermodynamic fields,
such as the temperature and the chemical potential. The solid
curve represents states where the three bulk phasesa, b and
g coexist. TheW point denotes the wetting transition. Below
it, on the coexistence curve, the partially wet states are ther-
modynamically stable. Above theW point, on the coexist-
ence curve, the wet states are stable. The first-order character
of the wetting transition extends in the two-phase region to
the left of the coexistence curve, where only thea and g
phases are stable as bulk. There, the dashed curve represents
states of coexistence of two surface phases—one that con-
sists of a thin, microscopic layer of ab-like phase at theag
interface and one where there is no such layer. This coexist-
ence of twoag interfaces, of different structure, but of equal
tension, is called a prewetting transition. It is a first-order
surface phase transition. At the prewetting transition, the sur-
face tensions of the two surface phases are identical1

sag5sag* , ~1.3!

wheresag* is the surface tension of theag* interface con-
sisting of a thinb-like layer, andsag is the surface tension of

theag interface where no such layer is present. The line of
prewetting transitions~dashed curve in Fig. 3!, called the
prewetting line, meets the three-phase coexistence line
tangentially.2 Along the prewetting line, as the wetting tran-
sition is approached, theb-like layer increases in thickness
until it becomes macroscopically thick exactly at the wetting
transition.

In the partially wet state, the three two-phase interfaces
meet at a common line of contact—the three-phase contact
line. The inhomogeneity in density associated with that line
gives rise to an excess free energy over that in the bulk
phases and in the interfaces. That excess free energy per unit
length of the three-phase contact line is the line tensiont.
Related tot is the boundary tensiontb . When two surface
phases coexist at the prewetting transition, they do so by
creating a one-dimensional boundary between them. The in-
homogeneity in density associated with such a line gives rise
to an excess free energy, which, per unit length of that line,
defines the boundary tension.

The values of the line and boundary tensions at the wet-
ting transition have been studied with different models, by
several authors.3–8 Varea and Robledo7 studied a spin-1/2
Ising model within the mean-field approximation in a system
where one of the phases was a wall. In their work, they
solved the Euler–Lagrange equation for the magnetization,
corresponding to minimizing the free energy of the system,
and then obtained the line and boundary tensions. They con-
jectured thatt andtb diverge at the wetting transition. In a
later work, using more precise calculations, they argued that
tb is finite at the wetting transition, and approaches it with a
diverging slope.8

At the same time, calculations oft andtb for continuous
systems have been performed with two different phenomeno-
logical approaches. At a more microscopic level, a phenom-
enological theory based on the van der Waals theory of gas–
liquid interfaces is used to calculatet andtb in a system of
fluid phases at coexistence. In this theory, the line tensiont
is given by1

t5 min
r1 ,...,rn

lim
R→`

F E
A
da C2~sag1sab1sbg!RG , ~1.4!
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where the integration is done over a large domain of areaA
in a plane perpendicular to the three-phase contact line and
whose sides are perpendicular to the three two-phase inter-
faces~see Fig. 7 in Sec. III!. The distanceR is the length of
the two-phase interfaces within the areaA. In general these
lengths are different for theag, ab, andbg interfaces, so a
more general equation than Eq.~1.4! is available. However,
for simplicity, we keep these three lengths equal.C is a local
excess free-energy density that is a functional of the densities
r1, r2 ,...,rn of the system’sn components. It is assumed to
be of the following form:1

C5F~r1 ,r2 ,...,rn!1
1

2 (
i , j

mi , j“r i–“r j , ~1.5!

whereF is a local excess free-energy density in an environ-
ment of homogeneous density and the dot product of the
gradient terms“r i and“r j describes the local excess free-
energy density due to the inhomogeneity in the densities in
the interfacial and contact line regions. The gradient operator
“ is two dimensional, in the plane perpendicular to the three-
phase contact line. There is no variation in the densities in
the direction parallel to the contact line. Themi , j ’s are con-

stants andsag, sab, andsbg are the surface tensions of the
ag, ab, andbg interfaces, respectively. They are defined, far
from the three-phase contact line, as follows:1

s5 min
r1 ,...,rn

E
2`

`

dz C, ~1.6!

whereC is defined as in Eq.~1.5! and is a function ofz
alone, wherez is the direction perpendicular to the individual
interfaces. Therefore, the gradient operator“ is one dimen-
sional in thez direction.

Using the van der Waals theory, Szleifer and Widom5

calculated the line tensiont in a two-component system of
three fluid phases at coexistence by describing the two den-
sities with approximate, but qualitatively correct functional
forms with variational parameters. The values of these pa-
rameters were determined by minimizing Eq.~1.4!. They cal-
culatedt as a function of the contact angleu of the wetting
phase, up tou513°. They argued thatt possibly diverges as
1/u, as the wetting transition is approached~u→0!.

By adding a positive thermodynamic fielde to describe
the deviation of the system from three-phase coexistence,
Perković, Szleifer, and Widom4 extended the model of Szlei-
fer and Widom to calculate the boundary tensiontb as the
wetting transition is approached along the prewetting line.
Within the van der Waals theory, the boundary tensiontb is
given by9

tb5 min
r1 ,...,rn

E
2`

`

dxF E
2`

`

dz~C!2sG , ~1.7!

FIG. 1. A side view of two fluid phasesa and b on a substrateg in a
partially wet state.u is the contact angle that theb phase forms with theg
substrate. The three two-phase interfaces meet at the three-phase contact
line.

FIG. 2. A side view of two fluid phasesa andb on a substrateg in a wet
state.

FIG. 3. A generic phase diagram of two fluid phases on a substrate.m1 and
m2 are any two thermodynamic fields. The solid curve is the three-phase
coexistence curve. The pointW represents the wetting transition. Below the
pointW, on the solid curve, the stable states are partially wet, and above it,
they are wet. The dashed curve, called the prewetting line, represents the
locus of prewetting transitions, where two different structures of theag
interface coexist. The prewetting line meets the three-phase coexistence line
tangentially at the wetting transitionW.
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whereC is given by Eq.~1.5! ands by Eq. ~1.6!. It should
be noted thatC is now a function of the coordinatesx andz
perpendicular to the boundary line~Fig. 4!. The same ap-
proximate method was used to calculatetb . The values of
the boundary tensiontb showed an apparent finite limit at
the wetting transition, in contrast to the apparent divergence
of the line tensiont from Ref. 5.

Another, more phenomenological approach for determin-
ing t andtb at the wetting transition is the interface displace-
ment model.6,10 This model defines the interface displace-
ment l (x) as the height above a solid substrate, where the
density profile of a one-component, liquid–vapor system
equals a certain fixed value. The interface displacementl (x)
is then a measure of the thickness of the liquid layer on the
substrate. The boundary tensiontb is given by the following
expression:6

tb5min
l
E

2`

`

dxFs0

2 S dldxD
2

1V~ l !1constG . ~1.8!

An analogous expression exists for the line tensiont. The
first term in the integrand of Eq.~1.8! describes the increase
of the excess free energy per unit area due to an increase of
interfacial area, for small interface displacement gradients;
s0 is the surface tension of the two-fluid interface andV( l ) is
an excess free energy per unit area. It has its minimum val-
ues atV( l5 l thin! andV( l5 l thick!, wherel thin andl thick are the
thicknesses of the thin and thick layers far from the boundary
region. Thex coordinate is parallel to the substrate. Thecon-
stant is chosen such that the integrand in Eq.~1.8! vanishes
asx→6`. Indekeu6 determined that at the first-order wet-
ting transition, for short-range forces, the line and boundary
tensions are positive and finite, approaching the wetting tran-
sition with a slope diverging as a function of an appropriate
thermodynamic field that measures the distance from the
wetting transition.

The interface displacement model has been applied suc-
cessfully in determining the tensions beyond the gradient-
square approximation11 and near multicritical wetting
transitions,12 as well as for exploring the universal properties
of the first-order wetting transition.13 However, it is a more

phenomenological approach3,6 than the van der Waals theory.
Only recently did Blokhuis3 make a connection between the
more fundamental van der Waals approach and the interface
displacement model, by studying the expression for the
boundary tensiontb . The model free energy that he used is
an extension of the van der Waals expression~1.7! to a sys-
tem that contains a substrate as the third phase.14 Blokhuis
derived explicit expressions for the functionss0( l ) ~not a
constant, as was assumed in Ref. 6! andV( l ) in terms of the
density profile of the one component system. The boundary
tension was determined using approximate forms for the
density profile. A positive, finite upper bound totb was ob-
tained at the wetting transition, with the same asymptotic
form for tb near the wetting transition as in the interface
displacement model. Recently, Blokhuis15 determined, with
the same model but applied to the partially wet case, the
same functional form for the line tensiont near the wetting
transition as in the interface displacement model, and then a
finite, positivet at the wetting transition.

In this paper, we describe the calculation of the~numeri-
cally! exact line tension of the three-phase contact line
formed by two fluids on a substrate, by constraining the
model free energy in Ref. 3 to a three-phase equilibrium. The
presence of the substrate is treated as a boundary condition,
which converts the system into a one-component one. Fur-
thermore, we use the model free energy in Ref. 3 to calculate
the exact boundary tension of the one-dimensional boundary
formed when two surface phases coexist. These results rep-
resent the first exact calculations of the line and boundary
tensions for a continuous system. Fitting the data with func-
tional forms obtained by Indekeu6 and Blokhuis,3 we find
that, at the wetting transition, the line and boundary tensions
are positive and finite. Within the numerical accuracy, these
two values are equal, as predicted by Widom.16 Furthermore,
the line and boundary tensions are lower than the upper
bounds fortb ~Ref. 3! and for t, determined from the ap-
proximate calculations.

In the next section, we define the model free energy that
we use to obtain the exact expressions for the interfacial
density profiles and the surface tensions of the three two-
phase interfaces, and the density profiles and surface tensions
of the two surface phases coexisting at the prewetting tran-
sition. In Sec. III, we calculate the line and boundary ten-
sions using a multigrid algorithm. In Sec. IV, we calculate
the functionss0( l ) and V( l ), defined in the interface dis-
placement model, from our numerically obtained density
profiles. We end, in Sec. V, with a discussion of the results.

II. SURFACE TENSION

In this section, we investigate the structures and tensions
of the three interfaces far away from the three-phase contact
region, when three bulk phases coexist in a partially wet
state. We determine, as well, the profiles and tensions of the
two surface phases that coexist at the prewetting transition. A
model free energy that is an extension of the van der Waals
expression~1.6! to a system that contains a substrate as the
third phase is used.3,14

FIG. 4. A side view of two surface phases coexisting at the prewetting
transition. On the right, a microscopic layer of ab-like phase spreads at the
ag interface, while no such layer exists at theag interface on the left. The
two interfaces meet edge on to create the boundary line.

402 Perković, Blokhuis, and Han: Wetting transition: Two fluid phases

J. Chem. Phys., Vol. 102, No. 1, 1 January 1995



For a one-component, two fluid-phase system~thea and
b phases in Fig. 1, far from the solid substrate!, the surface
tension or excess free energy per unit areasab of the ab
interface is given by@cf. Eq. ~1.6!#

sab5min
r
E

2`

`

dt C~r!, ~2.1!

whereC~r! is a local excess free-energy density that is a
functional of the local densityr5r(t), and is assumed to be
of the following form @cf. Eq. ~1.5!#:

C~r!5 f ~r!1 1
2~“r!2, ~2.2!

with f (r) given by

f ~r!5 1
2~r221!2. ~2.3!

The gradient operator“ is one dimensional in thet direction
which is perpendicular to theab interface. There is no varia-
tion in the density in the directions parallel to the interface.
The distancet, gradient operator“, densityr, and free en-
ergiessab, C, and f are scaled appropriately so that they are
all dimensionless. The densityr is a relative density and so
can be negative. Atab coexistence, the density of thea and
b phases arera521 andrb51.

When a solid substrate is present as the third phase~the
g phase in Fig. 1!, the surface tension or excess free energy
per unit areasfs of the fluid–solid interface, far from the
three-phase contact line, is given by3,14

s f s5min
r
E
0

`

dz@C~r!#1F~r1!, ~2.4!

whereC~r! is given in Eq.~2.2! andF~r1! is a phenomeno-
logical term that accounts for the fluid–solid interactions and
is assumed to be of the following form:14

F~r1!52h1r12
1
2gr1

2. ~2.5!

The densityr1[r(z50) is the equilibrium density at the
solid substrate, far from the three-phase contact region;z is
the coordinate perpendicular to the solid substrate;r(z) is
the local fluid density; and the phenomenological parameters
h1 andg are the surface field and the surface enhancement
parameters, respectively. The temperature dependence ofh1
and g has been studied both theoretically14 and
experimentally.17 We restrict ourselves to the case ofh1>0
only.3 As in Eq. ~2.1!, the distances, densities, and energy
densities in Eq.~2.4! are scaled so that they are all dimen-
sionless.

For a system of two surface phases at coexistence~Fig.
4!, the surface tension or the excess free energy per unit area
s of the interfaces, far from the boundary region, is obtained
as an extension of Eq.~2.4!

s5min
r
E
0

`

dz@Cb~r!#1F~r1!, ~2.6!

whereF~r1! is given in Eq.~2.5! andCb(r) is given by

Cb~r!5 f ~r!2 f ~ra!1 1
2~“r!2, ~2.7!

with

f ~r!5 1
2~r221!21hr. ~2.8!

The“ gradient operator in Eq.~2.7! is one dimensional in
thez direction, perpendicular to the substrate. The densitiesr
and r1 are defined as in Eq.~2.4!. The bulk fieldh(h>0)
measures the distance from three bulk-phase coexistence.
Whenh50, the three phasesa, b andg coexist withra521
andrb51, while for h.0, only thea andg phases coexist.
Then, the density of thea phasera is the density for which
f (r) is minimal. For small values ofh, ra is given by Eq.
~2.3! in Ref. 3.

Far from the three-phase contact line~Fig. 1!, the surface
tensionsab of the ab interface is obtained by minimizing
Eq. ~2.1! with respect to the densityr; i.e., by solving the
Euler–Lagrange equation

]2r

]t2
5 f 8~r!, ~2.9!

with the appropriate boundary conditions in thea and b
phasesra521 andrb51. The prime denotes the first deriva-
tive with respect to the argument.

The surface tensionssag andsbg of the ag andbg in-
terfaces are obtained by minimizing Eq.~2.4! with respect to
the densityr; i.e., by solving the Euler–Lagrange equation

]2r

]z2
5 f 8~r!, ~2.10!

with the appropriate boundary conditions at the solid sub-
strate

]r

]zU
z50

5F8~r1!, ~2.11!

and in thea andb phasesra521 andrb51.
The solutions to Eqs.~2.9! and~2.10! with the appropri-

ate boundary conditions are the equilibrium density profiles,
which can be determined analytically

rag~z!52tanh~z2z0!, ~2.12!

rbg~z!5
1

tanh~z1z1!
, ~2.13!

rab~ t !52tanh~ t !, ~2.14!

where the coordinatet is defined as

t[2x sinu1z cosu. ~2.15!

The coordinatex is parallel to the solid substrate andu is
the contact angle that theb phase forms with the substrate
~Fig. 1!.

The constantsz0 andz1 are defined as functions of the
model’s two parametersg andh1 ,

tanh~z0!52 1
2g2 1

2~g
224h114!1/2, ~2.16!

1

tanh~z1!
5 1

2g1 1
2~g

214h114!1/2. ~2.17!

Substituting the interfacial density profiles~2.14! in Eqs.
~2.1! and~2.12! and~2.13! in Eq. ~2.4!, one obtains the sur-
face tensions of the interfaces~far from the three-phase con-
tact region!
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sag5
2

3
2

g

12
~g226h116!2

1

12
~g224h114!3/2,

~2.18!

sbg5
2

3
2

g

12
~g216h116!2

1

12
~g214h114!3/2,

~2.19!

sab5
4

3
. ~2.20!

From Eqs. ~2.18!–~2.20!, using Young’s equation,
say5sbg1sab cosu, to relate the contact angleu to the
surface tensions, the contact angleu is

cosu5
3

4
gh11

1

16
@~g214h114!3/22~g224h114!3/2#.

~2.21!

By comparing the values of the two termssag andsab1sbg

at different values ofg and h1 , we are able to determine
which of the two three-phase thermodynamic states is
stable—the partially wet state or the wet state. The values of
g and h1 for which sag5sab1sbg determine the wetting
transition. In Fig. 5, we show the phase diagram of this three
bulk phase system. In the region below the solid curve, par-
tially wet states are thermodynamically stable, while above
the solid curve, wet states are the thermodynamically stable
ones. The solid curve itself is the locus of wetting transitions.
For g.22, it is the locus of first-order wetting transitions,
while for g,22, the solid curve represents the locus of
continuous wetting transitions. The pointg522, h152 is a
~surface! tricritical point.

The surface tensionssag andsag* of the two coexisting
surface phasesag and ag* , respectively, are obtained by
solving the following Euler–Lagrange equation, associated
with the minimization of Eq.~2.6! with respect tor:

]2r

]z2
5 f 8~r!, ~2.22!

and the appropriate boundary conditions, in thea phase,
given by the value ofra that minimizes Eq.~2.8!, and at the
solid substrate

]r

]zU
z50

5F8~r1!. ~2.23!

The details of solving Eq.~2.22! have been given by
Blokhuis3 and we shall here only refer to the results. The
analytic expressions for the equilibrium interfacial density
profiles are quite elaborate and are given in Eqs.~2.6!–~2.8!
and~2.10! of Ref. 3. Inserting these expressions in Eq.~2.6!,
Blokhuis obtained the analytic expressions for the surface
tensions, given in Eqs.~2.9! and ~2.10! of Ref. 3.

By comparing the corresponding surface tensions of the
ag andag* interfaces, Blokhuis

3 determined the prewetting
transition, whensag5sag* , for g50, as a function ofh and
h1 . Figure 3 in Ref. 3 shows the prewetting line in theh2h1
thermodynamic space. Furthermore, he determined an ap-
proximate analytic prewetting lineh1(h) close to the wetting
transition,

h1,prewet5h1
w1

h

Dr1
w F logS 4~h1

w!2

h D 11G1O~h2!, ~2.24!

whereh1
w5(2)23)1/2'0.681 25 is thevalue ofh1 at the

wetting transition~for g50! andDr1
w'1.8612 is the cor-

responding density difference between theag* andag sur-
face phases, at the substrate.

In the next section, we present the calculations of the
line tension of the three-phase contact line and of the bound-
ary tension of the boundary between two surface phases, as
the first-order wetting transition is approached from two dif-
ferent directions—along the partially wet states of the three-
phase coexistence curve~the solid curve below theW point
in Fig. 3! and along the prewetting line~dashed curve in Fig.
3!. The calculations are done forg50, by varyingh1 ~andh,
for the prewetting case!. The ~first-order! wetting transition,
for g50, occurs ath1

w5(2)23)1/2 ~andh50!.3

III. LINE TENSION

The analogous expression to Eq.~1.4! for the line ten-
sion t of the three-phase contact line, using the model free
energy from Sec. II, is given by the following form:14

t5min
r
E

2`

`

dx E
0

`

dz C~r!1E
2`

`

dx@F~r1!2S~x!#,

~3.1!

where the functionsC~r! andF~r1! are as in Eqs.~2.2! and
~2.5! respectively, andS(x) is given by

S~x!5sagH~2x!1S sbg1
sab

cosu DH~x!. ~3.2!

The unit step functionH(x) is defined as follows:

FIG. 5. The phase diagram of the model system studied, whereh1 andg are
the model’s phenomenological parameters. The solid curve is the locus of
wetting transitions. Forg.22, it is the locus of first order wetting transi-
tions, while forg,22, it is the locus of continuous wetting transitions. The
point g522, h152 is a ~surface! tricritical point. In the region below the
solid curve, partially wet states are stable. Above the solid curve, the wet
states are stable.
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H~x!5H 1, x>0

0, x,0.

The function r[r(x,z) is the local density in the fluid
phases andr1[r(x,z50) is the fluid density at the solid
substrate. The surface tensionssag, sbg, andsab, and the
contact angleu are defined as functions of the parametersg
andh1 as in Eqs.~2.18!–~2.20! and~2.21!, respectively. The
gradient operator“ is two dimensional in thex andz direc-
tions, which are perpendicular to the three-phase contact
line. There is no variation in the density in the direction
parallel to the three-phase contact line.

The boundary tensiontb of the one-dimensional bound-
ary between two coexisting surface phases is given as an
extension of Eq.~3.1!

tb5min
r
E

2`

`

dx E
0

`

dz Cb~r!1E
2`

`

dx@F~r1!2s#,

~3.3!

whereCb(r) andF~r1! are as in Eqs.~2.7! and~2.5! respec-
tively, and wheres is the surface tension of the two coexist-
ing interfaces~s5sag5sag*! @Eq. ~2.6!#.

In earlier works,3–5 the problem of minimizing function-
als of the forms~3.1! and ~3.3!, with respect to a two-
dimensional functionr(x,z), was approached by approxi-
mating r(x,z) with a qualitatively correct functional form
with variational parameters, whose values are obtained by
minimization. The obtained values fort andtb are then up-
per bounds to the line and boundary tensions, respectively.

Proceeding with this approach, we assume the following
functional form for the densityr(x,z), for the partially wet
system (h50),

r~x,z!52tanh$z cos@u f ~x!#2x sin@u f ~x!#2z0@12 f ~x!#%

1@coth~z1z1!21# f ~x!, ~3.4!

with

f ~x!5
1

2
tanhS x2x0

w D1
1

2
, ~3.5!

wherex0 andw are the two variational parameters, denoting
the location and width of the contact region, respectively.

The density profiler(x,z) in Eq. ~3.4! becomes the ex-
act profile of Eq.~2.12! asx→2`; the exact profile of Eq.
~2.13! as x→1`, for fixed z and the exact profile of Eq.
~2.14! as x, z→1`, for fixed t. Consequently, the exact
expressions for the surface tensionssag, sbg, andsab in Eqs.
~2.18!–~2.20! are retrieved. The densities of the bulka andb
phases,ra521 and rb51 emerge from Eq.~3.4! as well.
However, expression~3.4! is approximate everywhere else.

With r(x,z) as in Eq. ~3.4!, the minimization of Eq.
~3.1! with respect tox0 andw, for given values of the mod-
el’s parametersg andh1 , yields an upper bound to the line
tension. These results are shown in Fig. 6 as solid squares.

Using the same approach, Blokhuis3 calculated the upper
bound to the boundary tension. These results are plotted as
open squares in Fig. 6. Blokhuis determined that the value of
the boundary tension at the wetting transition is 1.602 and
that close to the wetting transition,tb51.60224.503h1/2.

In Fig. 6, the data are plotted againsth1
w2h1 . In the same

figure, we show the numerically exact values fort and tb
~solid and open circles, respectively!, which will be deter-
mined below. The approximate calculations do indeed yield
upper bounds to the line and boundary tensions. The differ-
ence between the exact boundary tension and the upper
bound to the boundary tension is at most 1% and usually
even smaller, suggesting that the minimizing density profile
is close to the functional form of the approximate density
profile.3 It should be kept in mind though, that small devia-
tions in the density profile away from the minimizing density
profile only contribute quadratically to a change in the value
of the boundary tension. Next, we proceed to calculatet and
tb exactly using a multigrid algorithm.

The line tensiont is obtained by minimizing Eq.~3.1! to
yield the Euler–Lagrange equation

“r
222r312r50, ~3.6!

where“ is two dimensional, and the following boundary
condition:

2h12gruz505
]r

]zU
z50

. ~3.7!

Three more boundary conditions are given by

r5H 21, z→1`

2tanh~z2z0!, x→2`

2tanh~ t !211coth~z1z1!, x→1`

, ~3.8!

wherez0 andz1 are defined in Eqs.~2.16! and~2.17!, respec-
tively, andt is defined in Eq.~2.15!.

Since the integral in Eq.~3.1! converges sufficiently fast
asx→6` andz→1`, we can substitute it with an integral
over a large, but finite domain. The sides of this irregular
domain must be perpendicular to the three two-phase inter-

FIG. 6. A plot of the approximate~squares! and exact~circles! line and
boundary tensions vsh1

w2h1 for g50 and h1
w50.681 25. Thewetting

transition occurs ath1
w2h150. The solid circles and squares represent the

data for the line tension, while the open ones represent the data for the
boundary tension. The approximate results are upper bounds to the exact
line and boundary tensions. The error bars are the standard deviations from
the mean.
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faces in order for the line tensiont to be invariant to the
change of location of the three-phase contact line~Fig. 7!. It
is in this domain that the Euler–Lagrange equation~3.6!
needs to be solved for the densityr. However, in practice,
the Euler–Lagrange equation is solved for the density in a
rectangular or square domain, with the line tensiont calcu-
lated from Eq.~3.1! by substituting the value of the density
in the irregular domain only.

The Euler–Lagrange equation~3.6! is a nonlinear partial
differential equation with one Neumann condition~3.7! and
three Dirichlet boundary conditions~3.8!. Traditional meth-
ods of solution use relaxation methods~such as the Jacobi or
Gauss–Seidel methods! to iteratively solve the discretized
form of Eq. ~3.6! for the densityr. However, the relaxation
becomes very slowly convergent in the limit when the grid
spacinghs→0. In order to speed up the convergence of a
traditional relaxation method, a multigrid algorithm is used.
The idea of this method is to transfer the solutionr from a
fine grid onto a coarser grid via a restriction operator, once
the convergence rate of the iterative~smoothing! method on
the fine grid becomes too slow, while it is still good on the
coarser grid. This process is repeated until the coarsest grid
is reached, where usually the solution can be obtained ex-
actly. At that point, the solutionr is brought back onto the
finest grid via a prolongation operator.

We use a nonlinear multigrid method—the full approxi-
mation storage algorithm~FAS!.18 The smoothing at each
grid level is achieved with a red–black Gauss–Seidel relax-
ation method. The prolongation operator is a bilinear inter-
polation and the restriction operator uses a half-weighting
restriction. We determine the two-dimensional density profile
r(x,z) in two domain geometries: a square domain of 513
3513 grid points and a rectangular domain of 5133257 grid
points on the finest grid, keeping the grid spacinghs con-
stant. The advantage of the rectangular domain over the
square one is that the number of iterations necessary for con-
vergence is much smaller. The number of grid points in one
dimension, on the finest grid, is 2NG11, whereNG is the
number of discretization grids. Because of the restriction on
the number of points on the finest grid, givenNG and the
domain size, the spacinghs is not independent of the domain

size. The largest spacinghs used washs50.045. InFig. 8,
we show an example of a two-dimensional density profile
r(x,z) in a partially wet system, obtained as the solution of
the Euler–Lagrange equation~3.6!, using the multigrid algo-
rithm, for g50 andh150.63.From such a density profile,
the line tensiont is obtained from Eq.~3.1!. As we shall
demonstrate below, highly accurate results for the line ten-
sion far from the wetting transition are obtained, while the
accuracy decreases as the wetting transition is approached.

The boundary tensiontb is calculated by minimizing Eq.
~3.3! with respect tor to obtain the Euler–Lagrange equation

“r
222r312r2h50, ~3.9!

where“ is two dimensional, and the following boundary
condition on the solid substrate:

2h12gruz505
]r

]zU
z50

. ~3.10!

Three more boundary conditions are given by Eq.~2.3! in
Ref. 3 for the density in thea phase and Eq.~2.6! @along
with Eqs. ~2.7!–~2.10!# in Ref. 3 for the density profiles of
the ag and ag* interfaces. We do not want to reproduce
them here due to their length and awkwardness, so we refer
the reader to Ref. 3 for the explicit expressions.

The integrand in Eq.~3.3! approaches 0 sufficiently fast
asx→6` andz→1` for the integral to converge. There-
fore, we can substitute the limits of the integration with those
of a large, but finite square or rectangular domain containing
the one-dimensional boundary and whose two sides are per-
pendicular to the two surface phases~Fig. 9!. The boundary
tension is then determined by solving the Euler–Lagrange
equation~3.9! in such a domain. The FAS multigrid algo-
rithm is used in this case as well. The largest square domain
that we use consists of 2573257 grid points, while the larg-
est rectangular domain has 5133257 points. The largest
spacinghs is 0.078. In Fig. 10, we show an example of a
two-dimensional density profiler(x,z) in a system of two

FIG. 7. A side view of two fluid phasesa and b on a substrateg in a
partially wet state.u is the contact angle that theb phase forms with the
substrateg. The x axis is parallel to the substrate, while thez axis is per-
pendicular to it. The boxed region is the area over which the integration in
Eq. ~3.1! is performed to calculate the line tension.

FIG. 8. Density profiler(x,z) of the partially wet system atg50 and
h150.63.
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surface phases at coexistence forg50, h151.202, and
h50.3.Substituting that density in Eq.~3.3!, one obtains the
boundary tensiontb . Highly accurate results are obtained for
the boundary tension away from the wetting transition, while
the accuracy decreases close to the wetting transition.

In Fig. 11, two sets of data are plotted againsth1
w2h1 ,

where h1
w is the value of the parameterh1 at the wetting

transition @for the plotted data,g50 and h1
w'0.681 25

~Ref. 3!#. The data on the right curve represent the values of
the exact line tension of the three-phase contact line calcu-
lated with the multigrid algorithm. The smallest angleu for
which we obtain a result is 1.51°, which is much smaller than
the 13° angle obtained by Szleifer and Widom5 in their cal-
culation of t. The data points on the left curve of Fig. 11
represent the values of the exact boundary tensiontb . As the
wetting transition is approached (h1

w2h1→0), the line ten-
siont and the boundary tensiontb increase in magnitude. To
obtain the value oft andtb at the wetting transition~the two

solid circles on the curves in Fig. 11!, we fit the calculated
values for the line and boundary tensions with the following
expressions:

t5tw2t2~h1
w2h1!

1/2 logS 1

~h1
w2h1!

D 1c1~h1
w2h1!

1/2

~3.11!

and

tb5tb,w2t1,hh
1/21c2h, ~3.12!

wheretw , t2 , andc1 are fitting parameters for the line ten-
sion, andtb,w , t1,h , and c2 are fitting parameters for the
boundary tension. The best fits are obtained with the follow-
ing values of the fitting parameters:

tw51.50, t250.725, c1521.83,

tb,w51.57, t1,h53.97, c253.28.

The forms in Eqs.~3.11! and ~3.12! have been derived ana-
lytically by Indekeu6 using an interface displacement model,
and by Blokhuis,3,15within the van der Waals theory. In their
work, the second correction terms in Eqs.~3.11! and ~3.12!
are omitted. Here, however, since very close to the wetting
transition data are extremely difficult to obtain, we need to
rely on data further away from the wetting transition to ob-
tain a reasonable fit, and so we include the second correction
terms. The fact that Indekeu and Blokhuis obtained the same
functional forms fort andtb near the wetting transition with
quite different approaches suggests that Eqs.~3.11! and
~3.12! are the appropriate fitting forms. In order to compare
the values oft andtb , the values oftb are plotted, in Fig.
11, as a function ofh1

w2h1 after making use of Eq.~3.12!
and the equation for the prewetting lineh1(h).

3

The line and boundary tensions approach a finite value at
the wetting transition with an infinite slope. At the wetting
transition, the line tensiont51.50, is almost equal~within

FIG. 9. A side view of two coexisting surface phases at the prewetting
transition. Thex axis is parallel to the substrate, while thez axis is perpen-
dicular to it. The rectangular region represents the area over which the
integration in Eq.~3.3! is done to calculate the boundary tension.

FIG. 10. Density profiler(x,z) of the system at the prewetting transition at
g50, h151.202, andh50.3.

FIG. 11. A plot of the~numerically! exact line and boundary tensions vs
h1
w2h1 for g50 and h1

w50.681 25. Thewetting transition occurs at
h1
w2h150. The data are fitted with functional forms described in the text.
The solid circles at the top of the curves denote the values of the line and
boundary tensions at the wetting transition obtained from the fits. At the
wetting transition, the tensions are finite and equal~within numerical errors!:
tw51.50 andtb,w51.57.
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the numerical error! to the value of the boundary tension
tb51.57, as isexpected.16 The small difference between the
values fort and tb at the wetting transition attests to the
accuracy of the multigrid method.

We now make further comparisons of our results with
those by Indekeu6 and Blokhuis.3 Inverting and substituting
the approximate analytic prewetting lineh1(h) @Eq. ~2.24!#
in Eq. ~3.12!, ash→0 so that only the first order correction
in Eq. ~3.12! is used, the following expression fortb as a
function ofh1

w2h1 is obtained:

tb5tb,w2t1~h12h1
w!1/2 log21/2F 1

~h12h1
w!G . ~3.13!

From Eqs.~3.12!, ~2.24!, and~3.13!, for smallh, so that only
the first two terms of Eq.~3.12! are used, we obtain

t1,h~Dr1
w!1/25t1 . ~3.14!

The ratioQ5t1/t2 is a universal amplitude ratio.13 Within
the interface displacement model10 and the van der Waals
theory,3,15Q55.515.From the fits of the line and boundary
tensions,t250.725 andt1,h53.97.Using these values and
Eq. ~3.14!, we obtain for the universal amplitude ratio
Q57.47. Wewill discuss the apparent disagreement be-
tween these two values in the Discussion section.

As a test of the accuracy of the line and boundary ten-
sions obtained with the multigrid algorithm, we calculatet
and tb using expressions analogous to the Kerins–Boiteux
formula,19 applied to a two-fluid system on a solid substrate.
The line tensiontK–B is ~Appendix B!

tK–B5E
2`

`

dx E
0

`

dzF12 ~“r!22 f ~r!G , ~3.15!

and the boundary tensiontb
K–B is ~Appendix A!

tb
K–B5E

2`

`

dx E
0

`

dzF12 ~“r!22 f ~r!1 f ~ra!G ,
~3.16!

where f (r) is defined as in Eq.~2.3! for the partially wet
case~3.15! and as in Eq.~2.8! for the prewet case~3.16!.
Another formula for the boundary tensiontb is also obtained
~Appendix A!

tb5E
2`

`

dx E
0

`

dzS ]r

]xD
2

. ~3.17!

The integrals in Eqs.~3.15!–~3.17! are not variational
integrals. The densityr in these expressions is the equilib-
rium profile. The line tensiontK–B obtained from Eq.~3.15!
and the boundary tensionstb

K–B obtained from Eq.~3.16! and
tb from Eq.~3.17! are not extrema whenr is the equilibrium
profile.

The difference in the values for the line tensions ob-
tained from Eqs.~3.1! and ~3.15! describes, qualitatively,
how close the density profiler, obtained with the multigrid
algorithm, is to its equilibrium profile. When the difference is
small, the density profile is close to its equilibrium profile
and the line tension is close to its exact value. We have used
the line tension values from Eqs.~3.1! and ~3.15! to deter-
mine the average line tension and its standard deviation.

These error bars are centered at the values of the line tension
from the multigrid method, as shown in Fig. 6. We have
chosen to keep the line tension values as those determined by
the multigrid method, rather than the average line tension
from Eqs.~3.1! and ~3.15!, since the density profiler, ob-
tained from the multigrid algorithm, is, within the numerical
accuracy, the solution of the Euler–Lagrange equation~3.6!
and hence gives the best estimate of the line tension. When
no error bars are shown in Fig. 6, the values oft from Eqs.
~3.1! and ~3.15! are essentially identical. In Fig. 6, far from
the wetting transition, there is essentially no difference be-
tween the line tensions obtained with the multigrid algorithm
~3.1! and the ones obtained from the Kerins–Boiteux for-
mula ~3.15!: the density profiler obtained as the solution to
Eq. ~3.6! is the equilibrium profile. As the wetting transition
is approached, discrepancies start to occur, and very close to
the wetting transition, they are significant, as demonstrated
by the large error bars. Such discrepancies occur because of
the increase in the inhomogeneous area associated with the
three-phase contact line as the wetting transition is ap-
proached, and the subsequent difficulty in obtaining accurate
results for large domains, i.e., large spacinghs . This problem
can be solved by using fast computers with large memories
to accommodate larger grid sizes, necessary to obtain accu-
rate results.

In the same figure~Fig. 6!, we show the standard devia-
tion from the average boundary tension calculated from Eqs.
~3.3!, ~3.16!, and ~3.17! as error bars centered around the
values oftb from the multigrid algorithm. Here again, the
same kind of analysis and conclusions apply as for the par-
tially wet case.

IV. SURFACE POTENTIAL

An important quantity for the understanding of the wet-
ting behavior of a liquid phase on a substrate is the so-called
surface potential.20–23The surface potential is usually given
as a function of the height of the liquid–vapor interface~the
ab interface! above the substrate, and measures the surface
free energy when the interface is constrained to be at a cer-
tain height l different from its equilibrium heightl eq. The
heightl is defined as the value ofz where the density profile
crosses the value zero. The system is as the system depicted
in Fig. 2, but now one has to keep in mind that the location
of theab interface may vary. Different forms of the surface
potential can be derived using different methods of con-
straining the interface at a certain height. In this section, we
will briefly review some of these forms for the surface po-
tential and compare them with the surface potential that is
derived from our numerical results for the density profile
along the prewetting line. Furthermore, we present the nu-
merical form of the surface tension of the liquid–vapor in-
terface as a function of the heightl , s0( l ). The precise defi-
nition of s0( l ) is given below.

The surface potential is derived from the surface free
energy@cf. Eqs.~2.6! and ~2.7!#

Fs@r#5E
0

`

dzF12 S ]r

]zD
2

1 f ~r!2 f ~ra!G1F~r1!.

~4.1!
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Two forms of the surface potential were recently proposed.
The first one is by Fisher and Jin22 and is derived by mini-
mizing Eq. ~4.1! and adding a Lagrange multiplier of the
form lr(z)d(z2 l ) to obtain

VFJ~ l ![min
r

@Fs~r!1lr~z!d~z2 l !2s#. ~4.2!

The addition of a Lagrange multiplier of this form fixes the
density to be zero at heightl . In the above expression, we
have also subtracted the surface free energys defined as the
equilibrium surface free energy. The surface potential then
has the property thatV( l eq!50. The density profile that re-
sults from the minimization with the above constraint is,
however, nonanalytic. The first derivative with respect toz is
discontinuous atz5 l wheneverl is not equal tol eq.

A second form for the surface potential was proposed by
Bukmanet al.23 In their analysis, they choose to constrain
the surface free energy in Eq.~4.1! by fixing the adsorption.
Hence,

VB~ l ![min
r

FFs~r!1lE
0

`

dz~r2ra!2sG . ~4.3!

Unfortunately, the resulting density profile does not become
equal to the vapor densityra when z goes to infinity. The
authors resolve this by allowing a discontinuity in the second
derivative in at most one point. As in the previous case, the
profile is thus nonanalytic. An important advantage of this
approach is that it is very natural to constrain the height of
the interface by fixing the adsorption. Also, the adsorption
itself is physically a much more relevant variable than the
height l which is sometimes, as we will see later, ill defined.

A third form of the surface potential is defined by the
following constraint:22

V2~ l ![min
r

FFs~r!1lE
0

`

dz~r2ra!22sG . ~4.4!

Although the addition of the term with the Lagrange multi-
plier of this form is not well motivated physically, the sur-
face potential thus defined does not suffer the aforemen-
tioned drawbacks of the other surface potentials. The density
profile is analytic and, furthermore, the surface potential can
be calculated explicitly. The above surface potential was
used by Blokhuis3 to calculate the upper bound to the bound-
ary tension at the wetting transition and along the prewetting
line.

The surface potential is an important quantity whenever
one is interested in the behavior of the wetting system when
the location of the liquid–vapor interface is somehow forced
out of its equilibrium location. For instance, the surface po-
tential is important to describe thermal fluctuations of the
liquid–vapor interface or, also, for the calculation of the line
tension or boundary tension. In the latter case, the surface
potential has two equal minima when the height equals the
height of the thin or thick films, indicative of the coexistence
of the thin and thick films along the prewetting line. In fact,
an essential part of the boundary tension is due to the fact
that the surface potential is larger than zero when
l thin,l, l thick . We now want to turn the analysis around. We
have obtained the numerically exact density profiles along

the prewetting line and we now want to calculate the form of
the surface potential that would have yielded such a profile.
It should be kept in mind that this numerically obtained sur-
face potential can only be obtained exactly along the prewet-
ting line while the surface potentials described by the above
formalisms can be obtained anywhere in the phase diagram.

In order to obtain, as we will call itVnum( l ), we first
show how it is derived from the full expression for the free
energy per unit length of the boundary line@cf. Eq. ~3.3!#

FL@r#5E
2`

`

dx E
0

`

dzF12 S ]r

]xD
2

1
1

2 S ]r

]zD
2

1 f ~r!

2 f ~ra!G1E
2`

`

dx@F~r1!2s#. ~4.5!

Introducing l (x) as a variable to replacex, this is rewritten
as3

FL@ l #5E
2`

`

dxH 12 s0~ l !F ddx l ~x!G21V~ l !J , ~4.6!

where

s0~ l ![E
0

`

dzF ]

] l
r~ l ,z!G2,

~4.7!

V~ l ![E
0

`

dzH 12 F ]

]z
r~ l ,z!G21 f ~r!2 f ~ra!J 1F~r1!2s.

The functions0( l ) denotes the surface tension against sur-
face area fluctuations of the liquid–vapor interface located at
height l .3,22,24 When l is large compared to some typical
interaction range of the liquid with the substrates0( l ) is
expected to become equal to 4/3, the surface tension of the
free liquid–vapor interface. The definition ofV( l ) in Eq.
~4.7! is similar to those given in Eqs.~4.2!–~4.4!, the only
difference being the way in which the liquid–vapor interface
is constrained to be at a certain heightl . Inserting the nu-
merical profile into the above expression forV( l ), gives us
the desiredVnum( l ). The result is plotted in Fig. 12, for the
caseh50.2. As anindication of the numerical accuracy of
the obtainedVnum( l ), we have also calculatedVnum( l ) using
a different but equivalent expression, the derivation of which
is given in Appendix A@cf. Eq. ~A11!#. The difference be-
tween the two results~the open circles and crosses in Fig. 12!
is an indication of the numerical accuracy. The line in Fig. 12
is VFJ( l ) and within the numerical accuracy, it is clearly al-
ways lower than the numerical results. Notice that we have
not plottedVnum( l ) for l,0 sincel is not well-defined in that
case. In Fig. 13, we have enlarged the boxed portion of Fig.
12 and included the results ofVB( l ) ~squares! and V2( l )
~solid circles! besidesVFJ( l ) ~triangles!. The numerical re-
sults are always very close to the three models forV( l ) and
even quantitatively correct results can be expected when
these three models are used to calculate the boundary ten-
sion. When the surface potential is plotted as a function ofl ,
it is expected, as can also be seen from Figs. 12 and 13, that
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VFJ( l ) would give the lowest curve, but when the surface
potential is plotted vs the adsorptionG, it is expected that the
surface potential by Bukmanet al.23 is going to be the low-
est. This is shown in Fig. 14. In this figure, we have plotted
the results for the surface potential from Fig. 13 as a function
of G instead ofl . As expected, the numerical results are close
to all three models for the surface potential, but nowVB(G)
is the lowest curve.

As a final point, we have numerically calculateds0( l ) as
given in Eq.~4.7!. The result, again forh50.2, isplotted in
Fig. 15~open circles!. Also shown~solid curve! is s0( l ) that
is calculated by inserting the density profile that minimizes
Eq. ~4.4! into Eq. ~4.7!. The surface tension of the free
liquid–vapor interface is depicted by the broken line. The
numerical calculation ofs0( l ) from the density profile is
quite involved; first, the profile has to be numerically differ-

entiated with respect to a numerically obtainedl , then, sec-
ondly, the square of the result is numerically integrated over
z. The numerical error of the result is expected to be of the
order of the wiggles for largel in Fig. 15. Only qualitatively
doess0( l ) derived from Eq.~4.4! agree withs0( l ) obtained
numerically. For small values ofl , each surface tension
s0( l ) of the constrained system is significantly lower than
the surface tension of the free liquid–vapor interface, while
for larger values, it is significantly higher. As a result it can
be seen that the numerically obtaineds0( l ) at theequilib-
rium values ofl , l thin , and l thick differ significantly from the
surface tension of the free liquid–vapor interface. This im-
plies that if one measures, either in computer simulations or
in real experiments, the surface tension against fluctuations
of the liquid–vapor interface, that smaller values will be ob-
tained for the thinner films than for the thicker films. It

FIG. 12. The surface potential as a function ofl for h50.2 on the prewet-
ting line. The solid curve is the surface potential as proposed by Fisher and
Jin VFJ( l ). The crosses and open circles are the numerically calculated val-
ues of the surface potential. The box shows the region that is depicted in
Fig. 13.

FIG. 13. Details of Fig. 12~boxed region!. The boxes, solid circles, and
triangles are the values of the surface potentialsVB( l ), V2( l ), andVFJ( l ),
respectively. The crosses and open circles are the numerically calculated
values of the surface potential.

FIG. 14. The surface potential as a function ofG for h50.2 on the prewet-
ting line. The boxes, solid circles, and triangles are the values of the surface
potentialsVB(G), V2(G), andVFJ~G!, respectively. The crosses and open
circles are the numerically calculated values of the surface potential.

FIG. 15. The surface tension as a function ofl for h50.2 on the prewetting
line. The solid curve iss0( l ) calculated by inserting the density profile that
minimizes Eq.~4.4! into Eq. ~4.7!. The open circles are the numerically
calculated values of the surface tension. The horizontal dashed line is at the
value of the surface tension of the free liquid–vapor interface.
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should be remarked that one should not confuses0( l ),
which is a property of only the liquid–vapor interface, with
the surface tensions of theag or ag* interface. The latter
ones will always be equal to each other along the prewetting
line.

V. DISCUSSION

In this paper, we have presented~numerically! exact cal-
culations of the line tension of the three-phase contact line
and the boundary tension of the boundary between two co-
existing surface phases. The approach is a van der Waals-like
theory with a model free energy that treats the substrate as a
boundary in a manner used by Nakanishi and Fisher.14 The
line and boundary tensions are equal~within the accuracy of
the numerical method!, positive, and finite at the wetting
transition, and approach it with diverging slopes. These re-
sults are obtained by fitting the data fort and tb from the
multigrid calculation with the functional forms determined
by Indekeu,6 within the interface displacement model, and by
Blokhuis,3,15within the van der Waals theory, using approxi-
mate expressions forV( l ) and s0, and r, respectively. To
obtain the same asymptotic forms fort and tb with two
different models, and with approximate methods, suggests
that the expressions for the line and boundary tensions do not
depend on the details of the system, and supports the univer-
sal character of the first order wetting transition.13 We check
this in this work by comparing the value of the universal
amplitude ratio from Refs. 6, 3, and 15,Q55.515,with the
one calculated from our data,Q57.47. This is reasonable
agreement, considering the difficulty in obtaining accurate
values for the line and boundary tensions close to the wetting
transition. This conclusion is supported by the following two
analyses of different fitting procedures: In Fig. 16, we
present a fit of our data for the boundary and line tension
calculated from our multigrid algorithm, obtained by assum-
ing thattw5tb,w andQ55.515. The fit is asaccurate as the
one in Fig. 11 and we findtw5tb,w51.54. Furthermore,

since the exact values of the boundary tensions are nearly
equal to the upper bounds to the boundary tensions~Fig. 6!
obtained by Blokhuis3 ~but still slightly smaller!, it might be
possible that the exact line and boundary tensions at the wet-
ting transition are close to the value of 1.602, the upper
bound to the boundary tension at the wetting transition. Set-
ting tw andtb,w in Eqs.~3.11! and~3.12! equal to 1.602, and
fitting the other four parameters to the numerical data~the
line and boundary tensions from the multigrid algorithm!,
gives t251.18 andt1,h54.34, leading toQ55.02. Al-
though the fit is not shown, it is, again, very accurate. Since
both of these fitting procedures give excellent results, it is
concluded that our numerical data are consistent with
Q55.515.
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APPENDIX: A KERINS–BOITEUX FORMULA FOR THE
BOUNDARY TENSION

In this appendix, we derive two different, but equivalent,
formulas for the boundary tensiontb along the prewetting
line. One of them is a close analog of the Kerins–Boiteux
formula19 for the line tension derived for systems in which
the three phases are all fluid-like. It turns out that the pres-
ence of the substrate does not affect the form of the Kerins–
Boiteux formula in this case.

The boundary tension is given by@cf. Eq. ~3.3!#

tb5E
2`

`

dx E
0

`

dzF12 S ]r

]xD
2

1
1

2 S ]r

]zD
2

1 f ~r!2 f ~ra!G
1E

2`

`

dx@F~r1!2s#, ~A1!

where the density profiler5r(x,z) is a solution of the
Euler–Lagrange equation@cf. Eq. ~3.9!#

]2r

]x2
1

]2r

]z2
5 f 8~r! ~A2!

with the boundary condition@cf. Eq. ~3.10!#

]r

]zU
z50

5F8~r1!. ~A3!

Multiplying both sides of the Euler–Lagrange equation by
(]r)/(]x) and integrating overz from 0 to` gives

E
0

`

dzF]2r]x2
]r

]x
1

]2r

]z2
]r

]x
2 f 8~r!

]r

]xG50. ~A4!

FIG. 16. A plot of the~numerically! exact line and boundary tensions vs
h1
w2h1 for g50 andh1

w50.681 25. Thewetting transition transition oc-
curs ath1

w2h150. The data are fitted by assumingtw5tb,w andQ55.515
~see the text!. At the wetting transition, we findtw5tb,w51.54.
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Next, we partially integrate the second term and write the
first and third terms as a derivative

E
0

`

dzF12 ]

]x S ]r

]xD
2

2
]r

]z

]2r

]x]z
2

]

]x
f ~r!G

5S 2
]r

]z

]r

]xD
z50

z5`

5F8~r1!
]r1
]x

, ~A5!

where we have used the boundary condition in Eq.~A3! to
derive the last identity.

We now write the second term on the left-hand side as
well as the term on the right-hand side of the above equation
as a derivative, integrate overx from x8 to `, and subse-
quently drop the prime. We are then finally left with

E
0

`

dzF12 S ]r

]xD
2

2
1

2 S ]r

]zD
2

2 f ~r!1 f ~ra!G5F~r1!2s.

~A6!

Another important formula can be derived by performing a
similar analysis as above, but now multiplying both sides of
the Euler–Lagrange equation by (]r)/(]z) and integrating
over x from 2` to `. We will not do the analysis, which
follows exactly the same steps as the analysis above, but we
will just give the result

E
2`

`

dxF2
1

2 S ]r

]xD
2

1
1

2 S ]r

]zD
2

2 f ~r!1 f ~ra!G50.

~A7!

Integrating Eq.~A6! overx from 2` to ` and Eq.~A7! over
z from 0 to` and adding the results to the expression for the
boundary tension in Eq.~A1! leaves us with the analog of the
Kerins–Boiteux~K–B! formula

tb
K–B5E

2`

`

dxE
0

`

dzF12 S ]r

]xD
2

1
1

2 S ]r

]zD
2

2 f ~r!1 f ~ra!G .
~A8!

Another formula that we will use for the boundary tension is
obtained by integrating Eq.~A6! over x from 2` to ` and
adding the result to the expression for the boundary tension
in Eq. ~A11!

tb5E
2`

`

dx E
0

`

dzS ]r

]xD
2

. ~A9!

Although this formula is even simpler than the analog of the
Kerins–Boiteux formula in Eq.~A8!, it is only valid as an
expression for the boundary tension, whereas the formula in
Eq. ~A8! is also valid for the line tension along partial wet-
ting. This is shown in the next Appendix.

As a final point, we derive an alternative expression for
the surface potential. The surface potential is given by the
expression in Eq.~4.7!

V~ l !5E
0

`

dzF12 S ]r

]zD
2

1 f ~r!2 f ~ra!G1F~r1!2s.

~A10!

Inserting Eq.~A6! into this expression gives the much sim-
pler form

V~ l !5E
0

`

dz
1

2 S ]r

]xD
2

. ~A11!

APPENDIX B: KERINS–BOITEUX FORMULA FOR THE
LINE TENSION AT PARTIAL WETTING

In this appendix, we derive the analog of the Kerins–
Boiteux formula19 for the line tension at partial wetting. In
order to derive this formula, it turns out to be more conve-
nient to write the expression for the line tension in polar
coordinates (r ,f) @cf. Eq. ~3.1!#

t5E
0

p

df E
0

`

dr r F12 S ]r

]r D
2

1
1

2r 2 S ]r

]f D 21 f ~r!G
1E

0

`

dr@F~r1!1F~rp!2sab2sag2sbg#, ~B1!

wherer1[r~r ,f50! andrp[r~r ,f5p!. The density profile
r5r(r ,f) is a solution of the Euler–Lagrange equation
which, in polar coordinates, reads@cf. Eq. ~3.6!#

]2r

]r 2
1
1

r

]r

]r
1

1

r 2
]2r

]f2 5 f 8~r!, ~B2!

with the boundary conditions@cf. Eq. ~3.7!#

1

r

]r

]fU
f50

5F8~r1!,
1

r

]r

]fU
f5p

52F8~rp!. ~B3!

Multiplying both sides of the Euler–Lagrange equation by
(]r)/(]r ) and integrating overf from 0 top gives

E
0

p

dfF1r ]

]r S r ]r

]r D ]r

]r
1

1

r 2
]2r

]f2

]r

]r
2 f 8~r!

]r

]r G50.

~B4!

Next, we partially integrate the second term and write the
first and third terms as a derivative

E
0

p

dfF 1

2r 2
]

]r S r ]r

]r D
2

2
1

r 2
]r

]f

]2r

]r ]f
2

]

]r
f ~r!G

5S 2
1

r 2
]r

]f

]r

]r D
f50

f5p

5
1

r FF8~r1!
]r1
]r

1F~rp!
]rp

]r G ,
~B5!

where we have used the boundary conditions in Eq.~B3! to
derive the last identity.

We now write the second term on the left-hand side as
well as the term on the right-hand side of the above equation
as a derivative. Next we multiply byr , integrate overr from
r 8 to ` and integrate by parts to obtain

E
0

p

dfF r2 S ]r

]r D
2

2
1

2r S ]r

]f D 22r f ~r!G
r5r 8

r5`

1E
0

p

df E
r 8

`

drF12 S ]r

]r D
2

2
1

2r 2 S ]r

]f D 21 f ~r!G
5@F~r1!1F~rp!# r5r 8

r5` . ~B6!
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The terms evaluated atr5` in the above equation can be
combined to give the sum of the three surface tensions. This
can be seen more clearly when one introducesz[Rf and
one takes the limitR→`,

lim
R→`

E
0

pR

dzF12 S ]r

]zD
2

1 f ~r!G1@F~r1!1F~rp!# r5R

5sab1sag1sbg. ~B7!

With the above equation and after interchangingr and r 8,
Eq. ~B6! becomes

E
0

p

dfF2
r

2 S ]r

]r D
2

1
1

2r S ]r

]f D 21r f ~r!G
1E

0

p

df E
r

`

dr8F12 S ]r

]r 8D
2

2
1

2~r 8!2 S ]r

]f D 21 f ~r!G
~B8!

52F~r1!2F~rp!1sab1sag1sbg.

Next we integrate overr from 0 to` and use the indentity

E
0

`

dr E
r

`

dr8g~r 8!5E
0

`

dr rg~r !, ~B9!

to finally write Eq.~B8! as

E
0

p

df E
0

`

dr r @2 f ~r!#5E
0

`

dr@2F~r1!2F~rp!1sab

1sag1sbg#. ~B10!

This equation can now be used to rewrite the expression for
the line tension in Eq.~B1!

t5E
0

p

df E
0

`

dr r F12 S ]r

]r D
2

1
1

2r 2 S ]r

]f D 22 f ~r!G .
~B11!

This is the analog of the Kerins–Boiteux formula in polar
coordinates.
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