
Line-Art Rendering of 3D-Models

Christian Rössl Leif Kobbelt

Max-Planck-Institute for Computer Sciences
Stuhlsatzenhausweg 85, 66133 Saarbrücken, Germany

{roessl,kobbelt}mpi-sb.mpg.de

Abstract

We present an interactive system for computer aided
generation of line art drawings to illustrate 3D mod-
els that are given as triangulated surfaces. In a pre-
processing step an enhanced 2D view of the scene is
computed by sampling for every pixel the shading, the
normal vectors and the principal directions obtained
from discrete curvature analysis. Then streamlines are
traced in the 2D direction fields and are used to de-
fine line strokes. In order to reduce noise artifacts the
user may interactively select sparse reference lines and
the system will automatically fill in additional strokes.
By exploiting the special structure of the streamlines
an intuitive and simple tone mapping algorithm can be
derived to generate the final rendering.

1. Introduction

In contrast to photorealistic images based on
physical simulation of lighting and shading, non-
photorealistic rendering techniques offer various ad-
vantages for printed illustrations. The higher level of
abstraction that they provide helps to put emphasis on
the crucial information of an illustration. Abstraction
mechanisms available to designers include levels of de-
tail and focus attention to stress the important parts of
a drawing or enriching an image with additional visual
information and effects.

Typical applications for the use of non-photorealism
are e.g. architectural sketches, illustrations in medical
text books or technical manuals, and cartoons. Many
of these applications prefer a very specific technique:
line rendering. Here, a picture consists of monochrome
lines or strokes only. An artist may chose between dif-
ferent line styles or vary line attributes like length,
thickness or waviness. There is a broad spectrum
of drawing styles, that have been developed in fine

arts for centuries. Well known examples are silhouette
drawings where just the contours of an object are out-
lined or more sophisticated techniques like engraved
copper plates that have formerly been used for print-
ing or pen-and-ink illustrations.

Apart from the advantage of abstraction or artis-
tic features line drawings also provide some technical
benefits: they can be stored resolution independent or
provide level of detail like features for different resolu-
tions. Besides, such pictures can easily be reproduced
on any monochrome media.

Figure 1. Handmade line art drawing have

been used for centuries. Our example is from
1778. Such illustrations provide a high den

sity of clearly perceptible information while
also satifying aesthetic standards.

In this paper we present a tool that assists an artist
in manufacturing a line drawing from a 3D model. The
geometry of the object is given as a triangle mesh. This
allows us to handle a huge class of models ranging from
technical constructions in CAD to real world data that



is obtained from a range scanner. The system frees the
user from drawing individual lines or strokes. Instead
curvature data is first sampled from the object and
then used to semi-automatically generate lines. Our
rendering style produces long single or cross hatched
lines of varying thickness that are especially appropri-
ate for technical drawings.

2. Related Work

Over the last years various computer based tech-
niques for producing line drawings semi-automatically
or even automatically have been developed. There are
two basic approaches: The first one is image based.
Here, the user is assisted in converting a digital grey
scale image into a line drawing without having to draw
individual strokes. [12] define a potential field over an
image and draw equipotential lines of varying density.
In [15] predefined stroke textures are used to map the
tone of the reference image and to produce a pen-and-
ink illustration. This method is improved in [16] in a
way that the stroke textures are generated automati-
cally from both a set of reference strokes and an inter-
actively modifiable direction field.

The second approach takes into account the 3D ge-
ometry of a scene. Here, an early step was the use of
haloed lines [1] that give an impression of depth and
the use of different line styles for outline and shad-
ing [4]. [19] utilizes special stroke textures to render
high quality pen-and-ink illustrations from polygonal
models. These stroke textures are created for differ-
ent materials and resemble hand draw strokes. During
shading the strokes are mapped to image space to-
gether with the corresponding polygons and are used
for tone mapping then. This system was extended to
process free-form surfaces in [20] where isoparametric
curves are used for rendering, following [5]. Such curves
look especially well for surfaces of revolution. Elber
also employs lines of curvature of parametric surfaces
and contour lines of implicit surfaces [6]. By precalcu-
lating these stokes and applying a simple shader even
interactiveness can be achieved [7].

Most recently, [21] generate a discrete direction field
over a triangulated (subdivision) surface. Originally
the principal directions are calculated via discrete cur-
vature analysis. In order to reduce noise and to get a
pleasant rendering this field is globally optimized in a
second step by minimizing some energy functional. For
the final picture a silhouette drawing is combined with
hatches from the filtered principal directions.

The previously mentioned approaches that respect
the geometry of an object are all able to produce ”real”
stokes, e.g. in Postscript. Besides, there is another class

of techniques that are pixel based and produce discrete
images. [14] introduce the concept of G-buffers that
provide additional information per pixel such as depth
value, normal vector or the parameter value of a para-
metric surface. Non-photorealistic images that resem-
ble line drawings can then be generated by applying
well known image processing operators. In contrast,
[9] uses a modified ray-tracing algorithm for emulating
engraved copper plates. With processing pixel data it
is also possible to take advantage of graphics hardware:
[3] generate copper plate like images from intersection
lines of OpenGL clipping planes with the object.

The approach that is presented in this paper exam-
ines the geometry of a model by approximating the
principal directions in every vertex of the given tri-
angle mesh. Then this data is interpolated across tri-
angles and sampled per pixel. Here, the G-buffer con-
cept is used, and the graphics hardware is exploited.
Once all data is grabbed from image buffers the user
may modify these buffers and an additional (”sten-
cil”) buffer and interactively place continuous stream-
lines. Instead of generating all strokes from stream-
lines, the system lets the user chose a few reference
lines and generates strokes by interpolation between
these curves. This guarantees that only good, visually
appealing strokes that are not disturbed by noise are
rendered. For the final Postscript image the silhouette
that has been grabbed from an image buffer and con-
verted to a set of polygons is added.

3. Overview of the algorithm

In this section we give a short overview over the
various stages of our algorithm. The details are ex-
plained in the subsequent sections. The input data is
given by an arbitrary triangle mesh viewed from a
given perspective and the output is a line art image
of the object. For the preprocessing of the surface, we
have to assume that the mesh is mostly manifold. Non-
manifold artifacts can be handled as long as they do
not cover a significant part of the image.

The first phase of the algorithm preprocesses the
mesh data. For every vertex of the mesh intrinsic geo-
metric attributes like the normal vector and the prin-
cipal curvature directions are computed. This infor-
mation is needed to determine the stroke placement
and orientation in the later phases. The strokelines
or hatches of our line art renderings will follow the
(projected) principal curvature directions on the given
surface, since those directions characterize the under-
lying geometry very well and carry a maximum shape
information. The user can control the geometric de-
tail considering a smoothed version [8] of the mesh for



curvature analysis. Although the geometric attributes
are estimated for the vertices only, we can (linearly)
interpolate them across the triangles to obtain a set of
continuous attribute fields that are defined everywhere
on the given surface.

The 3D-object is then rendered together with its
attributes into a so-called enhanced frame buffer sim-
ilar to a G-buffer. For every pixel this frame buffer
contains lots of information about the visible surface
point. The pixel data includes the local shading (grey
value) which later determines the local stroke den-
sity. Additionally, the normal vector is stored for every
pixel which provides the necessary information for con-
tour extraction. For the orientation of the strokelines,
the projected principal curvature directions are also
stored.

In the second phase the enhanced pixel informa-
tion is used to partition the image in regions with ho-
mogeneous principal direction fields. Not all criteria for
this segmentation are based on pure geometry. In fact,
the segmentation is the most artistic part of the line
art image generation. Consequently we allow the user
to interactively control the segmentation process. The
information from the enhanced frame buffer is used to
implement an intuitive user interface.

Each separated region can be rendered by a single
grid of strokelines in a line art style. For every segment
we hence generate a fishbone structure which captures
all necessary data for the stroke generation. To opti-
mize the quality of the resulting line art image we have
to apply different types of filter operations that remove
local turbulences in the principal direction fields.

The third phase then performs the actual tone
mapping, i.e., the translation of directional and shad-
ing information into quasi-parallel hatches with appro-
priate width. This phase defines the actual ”style” for
the line art rendering. Our goal is to distribute the
strokes as uniformly as possible while making their
construction as local as possible.

4. Preprocessing the surface geometry

Non-photorealistic renderings of complex shapes
usually exploit the differential geometric attributes of
the surfaces. Grids of principal curvature directions
and geodesic lines provide natural (orthogonal) pa-
rameterizations for freeform surfaces and the stroke-
line orientation can be based on the iso-lines of such
parameterizations [5, 6]. For piecewise linear surface
representations these concepts have to be generalized.
By locally fitting a polynomial patch to a mesh vertex
and its adjacent neighbors, we can compute first and
second fundamental forms for each vertex [18, 13, 17].

From these we can derive normal and principal curva-
ture directions. For surface points in the interior of the
triangular faces these attributes can be computed by
barycentric interpolation of the values in the corners.

This interpolation step can be done very elegantly
by the underlying rasterization engine which maps the
3D mesh to the frame buffer: vector or scalar valued
attributes can be encoded as RGB colors and assigned
to the mesh vertices. Rendering the object without
any shading then generates a frame buffer pixel matrix
which stores the interpolated values. Arbitrary preci-
sion can be obtained by appropriate scaling and multi-
pass rendering. For vector valued attributes a conclud-
ing normalization step might be necessary. We render
each attribute field separately. In the end we obtain a
set of images, one of them containing the (grey-scale)
shaded view of the object. The other images show the
color coded attribute fields, one for the normal vectors
and one for each principal direction. We call the col-
lection of all these images (with identical resolution)
the enhanced frame buffer with many different values
stored for each pixel. We prefer this term to G-buffer
[14] because we interprete pixels as discrete samples
that are used to (re-)construct continous strokes.

Once the given 3D-object is rendered, the enhanced
frame buffer contains all the necessary information for
the subsequent steps of the algorithm. Hence, phases
two and three entirely work in 2D which reduces their
computation costs.

5. Image segmentation

After the preprocessing all relevant geometric infor-
mation about the original 3D-model is encoded in a
regular pixel matrix. Hence the following steps of the
algorithm do not have to consider the (possibly com-
plex) topology of the original mesh data. Most opera-
tions can be expressed and implemented as image pro-
cessing operators which rely on the regular grid struc-
ture.

At first we apply simple Gaussian or Median filters
to the frame buffer. This is necessary to remove high
frequency noise from the attribute fields which some-
times emerges from sampling artifacts during the ras-
terization. Later, the principal direction fields are used
to generate strokelines by line integration. Low-pass
filtering on these direction fields hence have a smooth-
ing effect on the strokelines leading to an improved
visual appearance of the line art image.

From the normal direction field we can easily ex-
tract the silhouette lines for the object. We do this
by dot multiplication of the normal vectors with the
viewing direction and extracting the zero-contour.



Figure 2. To convert the shaded image on the left into a line art image, we have to partition the image

in regions with coherent principal direction fields. A LIC image with overlayed contours (center) helps
the user to do the segmentation interactively. In addition the user can probe streamlines (right).

This works for parallel projection as well as per-
spective projection. An efficient technique to compute
a polygonal approximation of that zero-contour is a
two-dimensional variant of the marching cubes algo-
rithm (marching squares) [10]. The smoothed contour
polygons resemble thick, slightly waved hand drawn
strokes.

Our goal is to decompose the image into several
regions which have a strong coherence in the principal
direction fields since these areas are to be rendered by
a single set of quasi-parallel hatches. Silhouette lines
serve as a reliable detector for the boundary between
such regions. In addition, image processing operators
can be applied to the sampled data. We believe that
automatic algorithms can only provide a rough initial
segmentation that is to be refined manually.

The segmentation of the input image is the most
sophisticated part of the generation of line art im-
ages. Since the segmentation is usually driven by non-
geometric attributes such as functional grouping in
technical parts or implicit color and texture informa-
tion, we allow the user to interactively control the
partitioning. In our user interface, we display a LIC
image [2] based on the maximum curvature direction
field overlayed with the automatically extracted silhou-
ettes (which serve as initial segmentation). The LIC
image gives a good and intuitive perception of regions
with coherent flow. The user can now simply draw the

segment boundaries on the screen. In practice we ob-
served that the interactive segmentation can be done
in several minutes even for moderately complex objects
(Fig. 2).

If a surface has too much fine detail relative to the
sampling density in the frame buffer, we sometimes
find regions in the image where no natural direction
field for the strokeline orientation can be defined. In
such cases, our interface allows the user to override
the directional information in the frame buffer and to
locally define a synthetic direction field. With a tech-
nique similar to [11] we use the partial derivatives of
bi-linear Coons-patches to generate these synthetic di-
rection fields. In the final line art image, this fine detail
will be taken into account by the tone mapping.

6. Generating hatches

For every segment with coherent principal direction
fields we define a grid of hatches. We build this grid in
a fishbone fashion by first picking a backbone and then
arranging the ribs in orthogonal direction.

To define the backbone, the user can pick an ar-
bitrary point in the interior of the current segment.
Starting at that point we compute the backbone curve
by integrating along the minimum curvature direc-
tion field. We use simple forward Euler for tracing the
streamline. On the backbone curve we distribute sam-



Figure 3. Hatch generation is based on a fish

bone structure. The backbone is defined by

a curve following the minimum curvature di
rections and the ribs are computed by trac

ing along the maximum curvature. In order to
reduce the noise in the direction field (left)

and to avoid discretization artifacts, the user

can define a sparse set of ”keyribs” and a
dense set of ribs is constructed by interpola

tion (right).

ples with constant arc-length distance. The orthogonal
ribs are then computed by starting at those samples
and integrating along the maximum curvature direc-
tion.

In some cases, however, this simple rib generation
technique fails to produce useful strokelines. Due to
the discretization of the direction field, neighboring
lines can merge which destroys the global fishbone
structure (Fig. 3, left). In order to avoid this effect,
the user can manually place a few sample points on the
backbone from where the key-ribs are traced along the
maximum curvature directions. Inbetween these key-
ribs we uniformly distribute additional blended ribs.
The blended ribs result from interpolating between the
key-ribs. By properly choosing the starting points for

G0
F0

E0

β2

β1

p2

α2

γ1

α1
p1

p0 = b(t)
b(1)

b(0)
backbone b

γ2

Figure 4. The blending of strokes is based on

a decomposition into orientation (E0,F0) and

characteristic shape ({αi},{βi}) and controlled
by a parameter t ∈ [0, 1] with the backbone

curve b locally parameterized as shown .

the key-ribs, we generate a high quality set of pseudo-
parallel strokelines (Fig. 3, right).

Each strokeline is represented by a polygon with
constant edge length h (arc-length parameterization).
To uniquely describe the shape of a rib strokeline we
need the first polygon edge E0 and a sequence of angles
αi between successive edges Ei and Ei+1. The com-
plete strokeline can then be reconstructed by start-
ing with the first edge E0 and adding more edges
Ei+1 with the same length in the direction deter-
mined by the angles αi. In the strokeline representa-
tion [E0, {αi}], the edge E0 determines the orientation
and the sequence {αi} determines the characteristic
shape (Fig. 4).

Assume we are given two key-ribs [E0, {αi}] and
[F0, {βi}] which start on the same backbone. Then for
every value t ∈ [0, 1] we find a new starting point
on the backbone arc between the two key-ribs and
the corresponding blended rib is given by [G0, {γi} =
{(1− t)αi + t βi}] where the orientation G0 is given by
an weighted average of E0 and F0 and the characteris-
tic shape is a weighted blend of the two key-ribs. Us-
ing this blending technique we can generate very good
fishbone type strokelines by prescribing only rather few
key-ribs.

After the rib generation, the fishbone structure is
given by a set of polygons with unit edge length h. For

rendering purposes, the kth vertex p
(l)
k of the lth rib

Rl = [G0, {γi}] can be computed by

p
(l)
k = p0 + G0 + h

k−1
∑

i=1

(

cos(
∑i

j=1 γj)

sin(
∑i

j=1 γj)

)

,



or

p
(l)
k = p0 − G0 − h

−k−1
∑

i=1

(

cos(
∑i

j=1 γ−j)

sin(
∑i

j=1 γ−j)

)

for negative k.

The organization of the rib vertices p
(l)
k to a se-

quence of sequences [[p
(l)
k ]k]l corresponds to a recti-

linear matrix type structure where the vertices of one

rib form a row [p
(l)
k ]k and the kth vertex for all ribs

[p
(l)
k ]l form a column. Hence, it is natural to exploit

this structure for the tone mapping. To simplify fur-
ther processing, we sample the shading values at the

locations p
(l)
k and pass a resampled attribute matrix

to the tone mapping procedure. In that procedure, a

stroke width value w
(l)
k is computed for every location

p
(l)
k . For this we do not need any directional informa-

tion.

7. Tone mapping

The last step of the algorithm is the translation of
grey value shading information into stroke widths. For
this translation several aspects have to be taken into
account.

First of all the local brightness of the rendered im-
age obviously depends on the ratio between stroke
width and distance between neighboring strokes. If
strokes lie more densely, the width of the strokes has to
decrease to maintain constant shading. Another possi-
bility is to suppress a part of the strokes and leave
the others with their original width. The problem with
the suppressing of certain strokelines is that disturbing
low-frequency patterns can appear in the final image
if the lines are chosen according to a periodic rule.
Adapting the distance of neighboring strokes to the lo-
cal grey value is not an option since that value usually
changes along the stroke but the distance cannot be
controlled freely.

Many sophisticated techniques have been proposed
for the tone mapping in line art images [15, 20, 16].

We use a simple and efficient technique which does
not use any global information but still has flexibility
to adjust stroke widths and suppress strokes.

The idea is to define strokes to have a constant
width w but only a certain portion w′ = (1 − c)w is
drawn in black where c ∈ [cmin, cmax] ⊂ [0, 1] is the lo-
cal grey value (0=black). Restricting the grey values to
the interval [cmin, cmax] guarantees a minimum width
of the strokes and a minimum width of the white space
between strokes. Since strokes have a constant width
they partially overlap if neighboring strokes come too

black band

center polygon

w′ = (1 − c)w

white bands

w

Figure 5. The strokes we use have constant

width. Only a certain portion of a stroke is

drawn in black while the rest is drawn as two
white bands on both sides.

close together. If the strokes are painted one after the
other then one stroke can delete parts of its neighbors.
In the extreme case two non-neighboring strokes can
approach so close that all the strokes between them
are completely removed.

The technique described so far controls the local
tone mapping by adjusting the stroke widths and au-
tomatically removes some strokes if their density in-
creases. The remaining question is how to avoid low-
frequency patterns in the distribution strokelines. We
solve this problem by drawing the strokes in a special
order which guarantees that the right strokes are over-
painted and the surviving ones are equally distributed.

A sequence of uniformly distributed strokelines
(without low frequency patterns) can be generated
by drawing every 2kth line. If the strokelines be-
come denser we want the strokes from coarser dis-
tributions (higher values k) to survive. Hence we
have to start drawing the finest level containing the
strokes [21 i]i and then go to coarser and coarser levels
[2k i − 1 + 2k−1]i, k = 2, 3, . . . Here we chose the index
offset −1 + 2k−1 such that no strokeline appears twice
for different values k.

The ordering in which the strokeline have to be
drawn can easily be computed from their index: in the
jth step the rev(j)th strokeline is drawn where rev(j)
is the number which has the reverse binary representa-
tion of j, i.e., the sequence of binary digits is reversed.

8. Cross hatches

So far we explained the generation of hatches only
along the maximum curvature direction. In some cases
the image quality can be improved by also adding
hatches in the cross direction since this increases the
brightness range (darkest to lightest grey value). Cross
hatches are often used to enhance the contrast at
shadow boundaries.



Figure 6. The special order in which the strokelines are drawn, guarantees that the surviving lines (the

ones that are not overpainted) do not show a lowfrequency pattern. Simply painting black strokes
with constant width w does not lead to constant color (far left). Drawing the strokes with white bands

and constant black fraction (as shown in Fig. 5) and in sequential top to bottom order leads to low

frequency patterns of suppressed lines (left). The next three images depict our special ordering. The
center image shows the lines with index 2 i (k = 1) only. In the center right image these lines are

partially overpainted by the lines with index 4 i + 1 (k = 2). In the next step another layer of lines with

index 8 i + 3 (k = 3) is painted (far right). The resulting image has an almost constant shading color
which is achieved by suppressing some of the lines in regions where strokelines become denser.

Since the cross hatches follow the minimum curva-
ture direction, they are typically less curved than the
original hatches. As a consequence the effects of vary-
ing strokeline density are less severe and simple stroke
width modulation (without strokeline suppression) is
usually sufficient for the tone mapping.

Figure 7. Cross hatches are used to enhance

the contrast. Only the black portion of the
strokes is drawn to avoid overpainting.

In our implementation we applied cross hatches in
regions of the image where the shading value falls be-
low a prescribed threshold cmin (cf. the range restric-
tion in Section 7). Because one set of hatches has al-
ready been painted before the cross hatches are added,
we base the stroke width computation on the offset
grey values c′ = c−cmin. In order to avoid overpainting
the already existing hatches, we only draw the black

portion of the cross hatches (no white band, no stroke-
line suppression). As stated above this simple cross
hatching technique works well because minimum cur-
vature lines usually have a rather straight characteris-
tic shape (Fig. 7).

9. Examples

Our examples show a technical model and a toy elk.
The original triangle meshes consist of 43k and 30k
triangles. The technical part (Fig. 8) nicely shows the
suppression of strokes in the tone mapping process.
Cross hatched strokes are used in dark areas. The elk
model (Fig. 9) was generated from range scans of a
wooden toy. The strokes at the sphere-shaped wheels
have been generated manually as there are no mean-
ingful principle directions defined there. The two im-
ages are identical except that the cross hatch threshold
cmin was modified.

10. Conclusions

We presented a new technique for interactively gen-
erating line art drawings from triangulated models.
The model geometry is sampled in 3D space and we
can take advantage of the graphics hardware in this
preprocessing step. All subsequent processing is done
entirely in 2D which reduces the computation costs.
The artistic part of image segmentation and the plac-
ing of some few reference streamlines is done manu-
ally while the strokes are generated automatically by



Figure 8. A technical part line art rendered with our system. The view was captured from a model of

43k triangles.

blending reference ”key-ribs”. Exploiting the special
structure of our fishbone curves leads to a intuitive yet
effective tone mapping algorithm.

Our algorithm processes unorganzied triangle
meshes directly i.e. it does not assume a global param-
eterization of the surface in contrast to [5, 6, 7, 20].
This enables us to process a huge class of models since
such meshes are the most popular surface representa-
tion in computer graphics. In addition, the geometric
detail can easily be reduced by applying the discrete
curvature analysis to a smoothed version of the given
mesh thus allowing some kind of multi-resolution func-
tionality.

The previously mentioned algorithms process 3D
data that is already segmented into subsurfaces. We

require manual work for image segmentation and plac-
ing of reference streamlines. Subsurface information –
if available – can easily be exploited by performing an
additional ID-rendering step into the enhanced frame
buffer. Occlusion can also be handled by using the sil-
houettes as segment boundaries. For rather complex
triangle meshes this can only serve as an initial seg-
mentation that is to be refined manually by the artist.

Image based approaches like [16] also need manual
segmentation. As we are operating in 2D after geome-
try sampling, the situation is similar to our approach.
The main difference is that we can take great advan-
tage of the sampled data instead of e.g. creating a
direction field from scratch. So we focussed our work
on the relatively “high-level” fishbone metaphor that



Figure 9. Mama elk and babyelk (30k triangles) with and without cross hatching.

allows simple and efficient generation of smooth, quasi
parallel strokes.

We do not employ predefined stroke textures as in
[15, 16, 19, 20]. As a consequence our strokes only
reproduce tone and not texture that emulates different
surface materials as glass or wood. Nevertheless, our
rendering style seems appropriate for technical objects
with piecewise smooth surfaces.

Combining our technique with advanced pen-and-
ink rendering methods such as texturing and a
more sophisticated global tone mapping scheme would
clearly be interesting for future work.

Acknowledgement

We would like to thank Kolja Kähler for generating
the elk model.

References

[1] A. Appel, F. Rohlf, A. Stein. The Haloed Line
Effekt for Hidden Line Elimination. Computer
Graphics (SIGGRAPH ’79 Proceedings), 1979, pp.
151–157

[2] B. Carbal, L.C. Leedom. Imaging Vector Fields
using Line Integral Convolution. Computer
Graphics (SIGGRAPH ’93 Proceedings), 1993,
S. 263–272

[3] O. Deussen, J. Hamel, A. Raab, S. Schlechtweg,
T. Strothotte. An illustration technique using
hardware-based intersections and skeletons. Proc.
Graphics Interface ’99, 1999, 175–182

[4] D. Dooley, M.F. Cohen. Automatic Illustration of
3D geometric models: Lines. Computer Graphics,
Vol. 23, No. 2, 1990, pp. 77–82

[5] Gershon Elber. Line Art Rendering via a Cover-
age of Isoparametric Curves. IEEE Transactions



on Visualization and Computer Graphics, Vol. 1,
No. 3, September 1995, pp. 231–239

[6] Gershon Elber. Line Art Illustrations of Paramet-
ric and Implicit Forms. IEEE Transactions on Vi-
sualization and Computer Graphics, Vol. 4, No. 1,
January-March 1998, pp. 1–11

[7] Gershon Elber. Interactive Line Art Rendering
of Freeform-Surfaces. Computer Graphics Forum
(EUROGRAPHICS ’99 Proceedings), 1999, pp. 1–
12

[8] Leif Kobbelt. Discrete Fairing and Variational
Subdivision for Freeform Surface Design. The Vi-
sual Computer, Vol. 16, 2000, pp. 142 – 158

[9] W. Leister. Computer generated Copper Plates.
Computer Graphics forum. Vol. 13, No. 1, 1994,
pp. 69–77

[10] W. Lorensen, H. Cline. Marching Cubes: A High
Resolution 3D Surface Construction Algorithm.
Computer Graphics (SIGGRAPH ’87 Proceed-
ings), 1987, S. 163–169

[11] Victor Ostromoukhov. Digital Facial Engraving.
Computer Graphics (SIGGRAPH ’99 Proceed-
ings), 1999, pp. 417–424

[12] Yachin Pnueli, Alfred M. Bruckstein. DigiDürer –
a digital engraving system. The Visual Computer,
Vol. 10, 1994, pp. 277–292

[13] Christian Rössl, Leif Kobbelt, Hans-Peter Seidel.
Line art rendering of triangulated surfaces using
discrete lines of curvature. WSCG ’2000 Proceed-
ings, 2000, pp. 168–175

[14] Takafumi Saito, Tokiichiro Takahashi. Compre-
hensible Rendering of 3-D Shapes. Computer
Graphics (SIGGRAPH ’90 Proceedings), 1990, pp.
197–206

[15] Michael P. Salisbury, Sean E. Anderson, Ro-
nen Barzel, David H. Salesin. Interactive pen-
and-ink illustrations. Computer Graphics (SIG-
GRAPH ’94 Proceedings), 1994, pp. 101–108

[16] Michael P. Salisbury, Michael T. Wong, John F.
Huges, David H. Salesin. Orientable Textures for
Image-Based Pen-and-Ink Illustration. Computer
Graphics (SIGGRAPH ’97 Proceedings), 1997, pp.
401–406

[17] Robert Schneider, Leif Kobbelt. Generating Fair
Meshes with G1 Boundary Conditions. Geomet-
ric Modeling and Processing (GMP 2000 Proceed-
ings), 2000, pp. 251–261

[18] William Welch, Andrew Witkin. Free-Form Shape
Design Using Triangulated Surfaces. Computer
Graphics (SIGGRAPH ’94 Proceedings), 1994,
pp. 247–256

[19] Georges Winkenbach, David H. Salesin.
Computer-generated Pen-and-Ink Illustra-
tion. Computer Graphics (SIGGRAPH ’94
Proceedings), 1994, pp. 91–98

[20] Georges Winkenbach, David H. Salesin. Render-
ing Parametric Surfaces in Pen-and-Ink. Com-
puter Graphics (SIGGRAPH ’96 Proceedings),
1996, pp. 469–476

[21] Dennis Zorin, Aaron Hertzmann. Illustrating
smooth surfaces. to appear in Computer Graph-
ics (SIGGRAPH ’2000 Proceedings), 2000


