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ABSTRACT In this paper, we propose a stereo simultaneous localization and mapping (SLAM) method

based on line segments. For the front-end module of SLAM, we designed a novel method based on the

coplanar junction detection, description, and matching. Then the junctions along with their multi-scale

rotated BRIEF descriptors are used in other SLAM modules, including line tracking, mapping, and loop

closure. The line extraction and matching thread runs at 20 ∼ 40Hz for stereo image sequences on a laptop,

making it a practical front-end for line-based SLAM system. For the back-end module, a cost function is

designed to minimize both of the reprojection error of line segments and alignment error of the vanishing

points. The experimental results demonstrate that the proposed method exhibits more accurate localization

and reconstruction than state-of-the-art line-based SLAM systems in line-rich environments.

INDEX TERMS Simultaneous localization and mapping (SLAM), line detection, vanishing point, visual

odometry, loop closure.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) has drawn

much attention in recent years due to their broad applica-

tions. Currently, there are mainly two mainstreams of visual

SLAM approaches including feature-based methods [1] and

direct methods [2]. Feature-based methods consist of fea-

ture extraction and matching between frames. Then feature

points’ coordinates and camera poses are optimized by min-

imizing re-projection geometric error. Direct methods use

raw pixel intensity for mapping and pose estimation by

minimizing photometric errors. Usually feature methods are

robust to illumination changes and geometric errors. Direct

methods can create semi-densemaps which will benefit many

applications.

Most of the feature-based SLAM methods utilize point

feature for pose estimation and mapping. However, line seg-

ments are important features apart from point features espe-

cially in human-made environments, including both indoor

environment and the so-called Manhattan world outdoors [3].

The associate editor coordinating the review of this manuscript and

approving it for publication was Chenguang Yang .

For such environments, consistent line segment maps have a

high geometric expressiveness with respect to the underlying

scene geometry. Besides, lines are more robust to illumina-

tion changes and have the potential for building semi-dense

maps and recovering planes. As a result, line features may

be an alternative to point features especially in untextured

environments, when there are insufficient reliable feature

points that can be detected. There are some works that utilize

line segments for visual SLAM and visual odometry, such

as [4]–[10].

Despite the progress of line-based SLAM, it is less mature

compared with point-based SLAM. The potential reasons

lie in several problems when introducing line segments in

SLAM. First, current line segment detectors have many limi-

tations for detection, tracking, and matching. To name a few,

the detected line segments have a low repeatability rate across

different images. Besides, the endpoints of line segments are

unreliable and a long line segmentmay be divided into several

short ones. Second, state-of-the-art line segment detection

and matching methods are time-consuming. For example,

the LSD [11] widely adopted in line-based SLAM takes

40 ∼ 50ms to process a 640 × 480 image, which makes
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FIGURE 1. Typical results of our proposed SLAM method. Top Left and
Top Right: line extraction and matching for a stereo image pair. Lines
with the same color and number indicate a correspondence. Bottom
Right: vanishing point extraction results. Lines with the same color share
a common vanishing point. bottom Left: Line reconstruction and
localization results.

line-based SLAMmethods are difficult to be real-time. Third,

compared to feature points, line segments are more complex

for representation [12]. A 3D line has 4 degrees-of-freedom,

and a line segment additionally has two endpoints for param-

eterization.When involving line segments in SLAM, the non-

linearity and compactness of parameterization affect the

performance.

In this paper, wemake several improvements for line-based

SLAM. For 640 × 480 stereo sequences, the line extraction

and matching in our method is real-time by only one thread

on a laptop. To the best of our knowledge, this is the first

method in the literature that can achieve such efficiency,

which will make the front-end in line-based SLAM towards

practical.We also propose a cost function to exploit vanishing

point (VP) alignment across frames to improve the accuracy

of line-based SLAM. Fig. 1 demonstrates typical results of

our proposed method. In summary, the main contributions

include:

• We propose a novel method for junction and line match-

ing. Specifically, we use multi-scale rotated BRIEF

descriptors to construct line junction descriptors. The

resulted line extraction and matching are much more

efficient and accurate than state-of-the-art methods.

Besides, we make a comprehensive evaluation of line

segment detectors and recommend the Douglas-Peucker

algorithm for line-based SLAM.

• A cost function is proposed for vanishing point align-

ment in back-end optimization. The cost function can

be seamlessly integrated into the optimization frame-

work of line-based SLAM, such as SLSLAM [6] and

PL-VIO [13].

• For line-based SLAM, we propose a novel loop closure

method that is based on junctions of lines. It uses the

bag-of-words representation of junction descriptors to

detect loops. The junction descriptors are byproducts of

the line segment matching method, and it does not take

additional time to extract.

We call ourmethod JunctionSLAM, sincemost of themodules

in our methods rely on coplanar junctions.

In the following text, first we introduce the line detection

and matching method in Section III, which is the most impor-

tant module in front-end of our SLAM method. Section II

introduces the related work. In Section IV, we introduce the

observationmodels and loss functions for line features, which

are used to design the back-end of our SLAM method. Next,

the whole SLAMmethod is briefly summarized in Section V.

Finally, the experimental results are presented in Section VI,

and the conclusions are drawn in Section VII.

II. RELATED WORK

SLAM has been widely applied in computer vision and

robotics [1], [6], [8], [14], [15]. In this section, we briefly

review the background material that our work is based on.

A. LINE SEGMENT BASED SLAM

Line segments have been integrated in filtering framework

of SLAM [4], [16], [17]. Recently, line segments have

been used in the optimization framework with bundle adjust-

ment for stereo cameras [6], [10], [18] and monocular cam-

eras [8]. There are also some works integrate line segments in

point-based SLAM frameworks [7], [8], [10], [19].Moreover,

some works used the structural parallel lines as a constraint

to estimate camera rotation. A group of parallel lines project

to image plane will converge to a vanishing point (VP). For

example, Camposeco et al. [20] deal VP as a measurement

within an EKF-based visual-inertial odometry (VIO) system

to improve the localization accuracy. Reference [21] use

VP as a high-level landmark in a multilayer feature graph to

directly calculate line landmarks direction in 3D space. Line

segments are also used for implementing visual odometry [5],

[22], [23].

Line segments have also been used in loop closure in visual

SLAM. Being similar to loop closure with point features,

typically discriminative line descriptors and bag-of-words

representation [24] were adopted to detect loop closures in

large-scale scenes [25]. Zhang et al. [26] proposed a vanish-

ing point-based loop closure method in a line-based SLAM

system.

B. FEATURE EXTRACTION, DESCRIPTION AND MATCHING

Point and Line segment extraction and matching is a

long-standing problem in computer vision and robotics [27],

[28]. Still, it is far from being solved. The most popular point

feature extraction and description method in the SLAM area

is ORB [29]. Popular line segment detector including Hough

transform, Line Segment Detector (LSD) [11], EDLines [30],

Fast Line Detector (FLD) [25], etc.

A few line descriptors have been proposed to describe

the line segments. Most of them build gradient histograms

around line segments, which are similar to point descriptors.
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Representative line descriptor is Line Band Descrip-

tor (LBD) [31]. Some works build descriptors for the junc-

tion of putative coplanar lines, such as warped regions [32],

line intersection context feature [33] and Line-Junction-Line

structures [34], [35].

Once the descriptors have been achieved, putative matches

can be set up according to the similarity of descriptors. How-

ever, the presence of outliers in correspondence is inevitable

due to ambiguities in the points’ local appearance. There

are many mismatch removal method for point correspon-

dence [36]–[40].

C. GEOMETRY FOR LINE SEGMENTS AND VANISHING

POINTS

The most natural way for line parameterization is using

Plücker coordinates [41]. However, Plücker coordinates take

6 parameters to parameterize a line. Orthonormal represen-

tation allows minimum 4 parameters with an unconstrained

optimization solver [12]. It is the most compact and has been

successfully employed optimization framework [6].

Camera pose estimation from features is the core task

in SLAM. Given line matches, typically 13 line correspon-

dences across 3 frames are used to estimate the relative pose

by trifocal tensor [41]. Minimal solver for recovering camera

motion across two views of a calibrated stereo rig is studied

in [42]. The algorithm can handle any assorted combination

of point and line features across these 4 images.

Vanishing point (VP) is the intersection of several line

segments in the image plane projected by a group of parallel

lines. The geometric properties of VP are useful in many

applications. The camera intrinsic parameters can be esti-

mated by exploiting VPs [43]. Two VPs of different groups

of parallel lines can be used to estimate camera rotation [44].

VP has also been used for relative pose estimation [45] and as

a measurement within an EKF-based visual-inertial odome-

try (VIO) system [20]. In [21], VPs are used as high-level

landmarks in a multilayer feature graph, and the direction of

such landmarks are represented by corresponding VPs.

III. JUNCTION & LINE DETECTION AND MATCHING

Many of current line-based SLAM methods use LSD [11] to

detect line segments, then they use LBD descriptor [31] for

line segment matching [7], [8], [10], [18]. However, in the

front-end of our method, we use different methods for line

detection andmatching. In this section, several improvements

to state-of-the-art junction detection and junction/line match-

ing will be introduced.

A. PUTATIVE COPLANAR JUNCTION DETECTION

A practical line-based SLAM should have an efficient and

effective line segment detector. In section VI-A, we make

a comprehensive evaluation of state-of-the-art line seg-

ment detectors. According to our evaluation, we adopt the

Douglas-Peucker algorithm [46] to detect line segments due

to its superior performance and high efficiency.

FIGURE 2. Heuristics to determine whether two line segments construct a
valid junction. Solid lines are detected line segments, and red dots are
their intersections. (a) a valid junction; (b) invalid since one of the line
segments is too short; (c) invalid since the intersection is far away from
line segments; (d) invalid since the intersection is out of the image plane.

Once the line segments are detected, putative coplanar

junctions can be constructed. Usually, an image contains

dozens to hundreds of line segments. Theoretically, any two

line segments may construct a junction, so the potential

number of junctions is large. To preserve meaningful junc-

tions only, we use certain heuristics and carefully implement

pruning strategies that are similar to those in previous litera-

ture [33], [35], [47].

The heuristics are explained in Fig. 2. Specifically, a puta-

tive coplanar ray-point-ray (RPR) junction should satisfy all

of the following 3 conditions: (i) An RPR junction consists of

two line segments, and their intersection is inside of the image

plane. The two line segments are not necessarily intersected

directly and may intersect in their extension. (ii) The length

of both line segments should be above a threshold. (iii) The

distance between the intersection and its line segments should

be below a threshold [33]. After applying these 3 heuristics,

an image usually contains 100 ∼ 1, 500 junctions.

We use a triplet J (x, θ, ϕ) to represent the image of an

RPR junction. Here, x ∈ R
3 is the junction’s homogeneous

coordinates in the normalized image. θ and ϕ are angles of

the rays that construct this junction. For the convenience of

subsequent junctionmatching, θ and ϕ are selected since their

clockwise angle is between (0, π).

B. JUNCTION DESCRIPTION AND MATCHING

A simple and efficientmethod is proposed for junctionmatch-

ing based on a multi-scale rotated BRIEF descriptor [48]. To

build the rotated BRIEF descriptors for junctions, we need to

determine the feature position, orientation, and scale of the

junctions at first. As shown in Fig. 3, the junction position

is the intersection of two line segments in the image plane.

The orientation is set as the angle bisector of the junction

in the image plane. The scale of the junction is difficult to

determine. A simple strategy is using multiple scales. In this

paper, 3 scales are used for each junction, including 10,

15, and 20 pixels. Once the position, orientation and scale

of junctions are given, we extract their multi-scale BRIEF

descriptors [48] as the junction description.

To determine the junction matching between two images,

the efficient Hamming distance for binary strings is adopted.

The matches inevitably have mismatches. A scheme for

building putative matches and rejecting mismatches should

be developed for junction matching.

In this paper, we use stereo rigs for SLAM. For recti-

fied stereo image pairs, all epipolar lines are parallel in the
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FIGURE 3. The junctions and their rotated BRIEF support regions. In this
scene, there are 2 coplanar line segments in 3D space. In two images,
solid lines are detected line segments. Arrows are the angle bisectors of
the detected junctions. Squares are the support regions of rotated BRIEF
descriptors.

FIGURE 4. Flowcharts for line extraction and matching, and
reconstruction. They are building blocks for the front-end of our proposed
SLAM method. Blue blocks are inputs, and green blocks are outputs.

rectified image planes. Given a junction in the left image,

we search its potential matches in the right image along

the epipolar line. If there exist junctions near the corre-

sponded epipolar line, the Hamming distance is used to ver-

ify whether they could construct a match. The procedure is

shown in Fig. 4(a).

For two images that are from different times or from arbi-

trary viewpoints, the epipolar lines are unknown in advance.

We use the Hamming distance to determine putative junc-

tion matching. Given a junction in one image, we find its

closest neighbor and the second-closest neighbor according

to Hamming distance. Taking the ratio of distance from

the closest neighbor to the distance of the second clos-

est, they are accepted as a match if this ratio is below a

threshold.

Due to the ambiguities of local appearance, the junc-

tion matches inevitably have outliers. Denote a pair of

matched junctions from image I1 and I2 as J
I1
i (xi, θi, ϕi)

and J
I2
i (x′

i, θ
′
i , ϕ

′
i). If these two junctions are constructed by

the same two coplanar lines in 3D space, the intersections

can be viewed as feature points and they satisfy the epipolar

geometry

x
′⊤
i Exi = 0, (1)

where E is the essential matrix. The standard 5 points with

RANSAC can be used to remove outliers and estimate essen-

tial matrix E. Sampson error [41] is adopted to determine

whether a junction match (J
I1
i ,J

I2
i ) is inlier. (J

I1
i ,J

I2
i ) is

an inlier

d
(i)
point =

(x′⊤
i Exi)

2

(Exi)
2
1 + (Exi)

2
2 + (E⊤x

′
i)
2
1 + (E⊤x

′
i)
2
2

. (2)

Once the junction matching has been finished, rotation and

translation between these two images can be extracted from

essential matrix E if they are needed. The procedure is sum-

marized in Fig. 4(b).

C. FROM JUNCTION MATCHING TO LINE MATCHING

After a junction match across two images has been obtained,

we can extract 2 line matches. The following observation can

help us solve the ambiguity for these 2 line matches.

Since θ and ϕ are selected such that their clockwise angle

in image plane is between (0, π), θi always corresponds to θ ′
i

and ϕi corresponds to ϕ′
i .

IV. OBSERVATION MODELS AND LOSS FUNCTIONS FOR

LINE FEATURES

In our method, line-based bundle adjustment is used to opti-

mize the camera pose and line coordinates in 3D space. We

exploit two types of observations in the image plane for 3D

lines: line segments and vanishing points for parallel lines.

In this section, first we introduce the observation models for

these two observations. Thenwe construct a cost function that

considers the reprojection errors for both line segments and

vanishing points.

A. OBSERVATION MODEL FOR LINE SEGMENTS

A line segment in an image plane can be represented by

two endpoints, xs = (xs, ys, 1)
⊤ and xe = (xe, ye, 1)

⊤.

To build up the relationship between 3D line and 2D line

segment in an image plane, we need to transform the 3D

line in the world reference to the camera reference and then

project it to the image plane. We adopt two parameterizations

for a 3D line like that in [6]. Plücker line coordinates are

used for transformation and projection due to its simplicity.

Orthonormal representation is used for optimization due to its

compactness.

A 3D line L in Plücker coordinate is represented by L =

(n,d)⊤ ∈ R
6, where d ∈ R

3 is the line direction vector,

and n ∈ R
3 is the normal vector to the plane determined

by the line and the coordinate origin. A 3D rigid body

motion T ∈ SE(3) is defined by T =

[

R t

0 1

]

, where R ∈

SO(3) is a 3 × 3 rotation matrix and t = (tx , ty, tz)
⊤ ∈ R

3 is

a translation vector in 3D space.
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Given the transformation matrix

Tcw =

[

Rcw tcw

0 1

]

(3)

from the world frame W to the camera frame C , we can

transform the Plücker representation of a line by [49]

Lc =

[

nc

dc

]

=

[

Rcw [tcw]×Rcw

0 Rcw

]

Lw, (4)

where [·]× is the skew-symmetric matrix of a vector, and

subscripts c and w represent camera and world respectively.

After representing a line in camera frame, we can project it

to the camera image plane by [6]

l =





l1
l2
l3



 = Knc =





fy 0 0

0 fx 0

−fycx −fxcy fx fy



nc, (5)

where K is the projection matrix of line feature. When pro-

jecting a line to the normalized image plane, K is a identity

matrix. From projection equation (5), the coordinate of a line

segment projected by 3D line is only related with the normal

vector n.

For point features, the reprojection error of a 3D point is the

image distance between the projected point and the observed

point. For line features, the reprojection error can be defined

as the distance from two endpoints of a line segment to the

projected line. Formally, the reprojection error for a 3D line

k in camera frame i is defined as

el(i, k) =

[

d(xi,ks , lk )

d(xi,ke , lk )

]

(6)

with d(x, l) being the distance from point x to line l

d(x, l) =
x
⊤
l

√

l21 + l22

, (7)

where xi,ks and xi,ke are the two endpoints for the projected line

segment of lk .

B. OBSERVATION MODEL FOR VANISHING POINTS

A detected vanishing point in an image plane is represented

by v = (vx , vy, 1)
⊤. Given the normal direction dc of cor-

responding parallel lines in camera frame C , the vanishing

point in image plane can be predicted by [41]

vp = Kdc = KRcwdw, (8)

where K is the camera intrinsic matrix, subscripts c and w

represent camera and world respectively, and subscripts p

means prediction.

A straightforward way to compute the reprojection error

of a VP is to calculate the image distance between the

observation v and the prediction vp in the normalized image

plane. However, as shown in Fig. 5, the error for VP in the

normalized image plane is unbound and the error may change

drastically when optimizing the line parameters. To remedy

this problem, we define the error at a unit sphere centered

on the camera’s projection center. Denote vi,k as the VP for

FIGURE 5. Parallel lines L1 and L2 in 3D space are projected to the image
plane I as l1, l2. Point v is the groundtruth VP, and vn is a predicted VP by
L1 and a perturbation of L2. The reprojection error between v and vn in
image plane I is unbound and sensitive. We define the reprojection error
by projecting vanishing points to a unit sphere.

line k in camera frame i, then the reprojection errors for this

VP is defined as

ev(i, k) =
v
i,k

||vi,k ||
−

v
i,k
p

||v
i,k
p ||

=
v
i,k

||vi,k ||
−

KR
i
cwd

k
w

||KRi
cwd

k
w||

. (9)

Since the unit sphere is a bound space, this error function can

balance the reprojection error for all VPs in a fair way.

C. COST FUNCTION FOR BUNDLE ADJUSTMENT

To optimize the camera poses and line coordinates, a cost

function is constructed by jointly consider the observation

models for line segments and vanishing points

C=
∑

i,k

ρ(e⊤
l (i, k)6

−1
l el(i, k))+

∑

i,j

ρ(e⊤
v (i, j)6

−1
v ev(i, j)),

(10)

where ρ(·) is the robust Cauchy cost function, and 6−1
l and

6−1
v are informationmatrices for line segments and vanishing

points. In this paper, the information matrices are set as

identity matrices. In the first term, k is the index for all lines.

In the second term, j is the index for lines that belongs to a

group of parallel lines.

V. STEREO VISUAL SLAM BASED ON LINE SEGMENTS

AND VANISHING POINTS

A. SYSTEM OVERVIEW

Our proposed JunctionSLAM is based on graph optimization.

Being similar to themainstreams of feature-based SLAMsys-

tems, it has three threads: motion estimation, local mapping,

and loop closing. The system overview is shown in Fig. 6.

The details about each component will be described in the

following text.

B. MOTION ESTIMATION

For each new stereo frame, we use our line detection and

matching method as described in section III to build the line
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FIGURE 6. JunctionSLAM system overview, showing main steps performed by the tracking, local mapping and loop
closing threads.

matches. We also use the VP extraction method in [50] to

cluster lines in the left image and compute the coordinates of

VPs in the image plane. The line segments and VPs of each

frame will be served as observations.

We use the method in [42] to estimate motions by trifocal

tensor geometry. For a stereo rig, the minimal solver for

motion estimation needs 3 line matches between the left

image of the current frame and the latest stereo keyframe.

We use 3 line matches across 3 images: the left image of the

lastest keyframe, and two images of the new stereo frame.

This minimal solver together with the RANSAC framework

is used to estimate relative pose. When the translation or

rotation of relative pose between the new frame and the lastest

keyframe exceeds threshold ηt or ηr , we will select the new

frame as a keyframe.

C. LOCAL MAPPING

Once a new keyframe is inserted into the pose graph, the 3D

coordinates of line segments in this new keyframe will

be reconstructed as that in SLSLAM by intersecting two

planes [6]. Then we will select N latest keyframes along with

the new keyframe as an active frame. Camera poses and line

segments belonging to active frames will be refined by local

bundle adjustment. Finally, after poses are refined, a culling

strategy will be used to remove outliers from line matches

or VP clusters. Specifically, if the reprojection error of a line

segment exceeds a threshold ηl = 5, this line segment will

be removed. Similarly, if the reprojection error between a

VP observation and the predicted VP exceeds a threshold of

ηv = 0.3, this VP observation will be removed.

D. LOOP CLOSURE DETECTION

Our loop closure detection is similar to that in

ORB-SLAM [1]. The difference lies in that we do not use

oriented FAST to detect feature points like that in ORB

feature detector [29]. Instead, we use the extracted junctions

described in section III-A as feature points.

Our method also uses the bag-of-words feature represen-

tation to perform loop closure detection and relocalization.

The visual words are organized by a hierarchical tree called a

vocabulary tree [24]. We use the vocabulary tree provided by

ORB-SLAM, which is built offline by clustering a large num-

ber of BRIEF descriptors extracted from an image dataset.

The loop closure thread compares current images to the

previous keyframes Ki, i = 1, 2, . . . , t . We query the

keyframe dataset and discard all those keyframes whose sim-

ilarity score is lower than a predefined threshold. To accept

a loop candidate we must detect consecutively 3 loop candi-

dates that are consistent. For these loop candidates, we further

perform 5-point method with the RANSAC framework for

geometric verification. If there are sufficient matches passed

the geometric verification, a loop is detected.

VI. EXPERIMENTAL RESULTS

We use the stereo sequence it3f in SLSLAM [6] to test our

method. It contains 5, 442 pairs of stereo images, and each

image has a resolution of 640 × 480. We also captured a

stereo sequence called soho3q by a stereo camera with global

shutters. It contains 1, 640 stereo image pairs, and each image

has a resolution of 752 × 480. The sequence is taken in a

VOLUME 7, 2019 181805



J. Ma et al.: Line-Based Stereo SLAM by Junction Matching and VP Alignment

FIGURE 7. Sample images of the test sequences.

coworking space, as shown in Fig. 7. Comparedwith previous

line SLAM sequences, it contains more line segments on

average. It is challenging for SLAM since it contains image

saturation caused by ceiling lights and reflection caused by

glass walls.1 All of the experiments are performed on a laptop

with Intel i7-5500U CPU @ 2.40 GHz QuadCore.

A. LINE & JUNCTION DETECTION AND MATCHING

There are many line segment detectors in computer

vision and robotics communities. However, there does

not exist any comprehensive evaluation for these meth-

ods. We compare 4 state-of-the-art methods that have

open-sourced implementation, including line segment detec-

tor (LSD) [11], EDLine [30], Fast Line Detector (FLD) [25],

and Douglas-Peucker algorithm (DP) [46]. For LSD and

FLD, the source codes were provided by the authors. These

two methods also have been integrated into openCV. For

EDLine, there is an open-sourced implementation that has

been integrated into LBD [31].2 We do not use the multi-scale

processing to make it as the same as the original paper.

For the Douglas-Peucker algorithm, we use the source code

1https://drive.google.com/open?id = 0B_tUbCEawNQlZThPeW1rNm
ZvbzA

2http://www.mip.informatik.uni-kiel.de/tiki-index.php?page = Lilian+
Zhang

TABLE 1. Performance of line segment detection on it3f.

TABLE 2. Performance of line segment detection on soho3q.

provided by the authors of [5], which is part of the Line

Vision Library.3 All these 4 methods were implemented in

C++ programming language. LSD and EDLine do not need

any parameter tuning. In both FLD and DP, the minimal line

length is set as 12 pixels. When performing the experiments

in this subsection, only one CPU core is used.

For line segment detection, there is no sufficient evaluation

criterion and benchmarks for performance comparison in

literature. In this paper, 3 surrogate criteria are used, including

runtime, line segment number, and the average length of line

segments.

The quantitative results of line segment detection of it3f

and soho3q are shown in Table 1 and Table 2, respectively. For

efficiency consideration, DP is superior to other 3 methods.

From line segment number, it is difficult to say which method

is better, because this number is influenced by many factors,

such as the recall of line segment and whether a long line

segment is divided into short ones. From the average length of

line segments, EDLine is the best and FLD is the second best.

However, we observed that EDLine tends to produce many

near-duplicate line segments. The histograms of runtime are

shown in Fig. 8. It can be seen that the Douglas-Peucker

algorithm has the smallest average runtime and the smallest

standard deviation.

After the line segments are detected, we construct the

junctions and perform junction and line matching by our

method described in section III. Typical results of the line

matching for stereo pairs are shown in Fig. 9. Table 1 and 2

also demonstrate our junction matching and line match-

ing results based on different line segment detectors. Here

three criteria are used, including junction number, matched

3https://bitbucket.org/lvl_dev/lvl
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TABLE 3. Performance comparison for line description and matching on it3f.

FIGURE 8. Runtime histogram for line segment detectors.

junction number, and matched line number in each image.

Among these three criteria, the matched line number is

the most important one. We can see EDLine and DP have

the largest number of matched lines on it3f and soho3q,

respectively.

We also compare our line matching method with the

widely used LBD method [31]. For fairness consideration,

the line detectors used in both methods are LSD pro-

vided by openCV 3.1. The results are shown in Table 3.

Compared with LBD, our method is more efficient and

has more matched lines. The potential reason is that LBD

depends on the endpoints of detected line segments. While

the detected endpoints are unstable, which may make the

line matching inaccurate. In contrast, our method relies on

junctions and does not depend on the endpoints of line

segments.

FIGURE 9. The line matching results for a pair of stereo images. Matched
line segments are characterized by the same color and the numbers in the
middle of line segments (best view the electronic version of this article).

After considering both the efficiency and quality, we rec-

ommend DP method for line segment detection in line-based

SLAM, which is an alternative to popular LSD. If efficiency

is not an issue, LSD would be our second recommendation,

since it does not need parameter tuning and always produce

reasonable results for all kinds of images. Combining the DP

method and our junction& linematchingmethod, we obtain a

much more efficient line matching engine than stat-of-the-art

methods.

B. SLAM RESULTS ON SYNTHETIC DATA

We construct a synthetic scene as shown in Fig. 10. We sam-

pled 100 frames from a camera trajectory in 3D space which

is composed of circular motion in X-Y plane and a sinu-

soidal motion along Z-axis. Each camera frame can observe

a cube with 12 line segments. We have performed 50 times

of experiments. In each experiment, Gaussian noise is added

to the endpoints of observed line segments with zero-mean

and a standard deviation of δpx = 1 pixel. As a result,

the coordinates of 3 vanishing points are also degraded by

this noise. When generating camera poses, the translation of

camera poses is perturbed by a zero-mean Gaussian noise

with standard deviation of δt = 0.1 meter, and the rotation

is perturbed by a zero-mean Gaussian noise with a standard

deviation of δq = 5◦. We compared the line-based bundle

adjustment method with and without VP constraints. After

each run, we measure translation error and rotation error

using the RMSE (root mean square error) of PRE (relative
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TABLE 4. RMSE of relative pose error using different settings.

FIGURE 10. Synthetic scene. An upward-looking camera moves along a
circular trajectory. A synthetic cube that is composed of 12 lines with
three orthogonal directions is above the camera trajectory. A triplet of
red, blue, and green arrows that share a common tail represents a camera
pose.

pose error) [51]. Table 4 shows the mean error of 50 exper-

iments. It can be seen that the rotation error and translation

error are reduced by involving VP alignment in the bundle

adjustment.

C. SLAM RESULTS ON REAL DATA

We compare the proposed JunctionSLAM with StVO [23],

PL-SLAM [10], ORB-SLAM [1] and SLSLAM [6].

StVO and PL-SLAM which are recently proposed VO and

SLAM methods based on line features for stereo sequences.

SLSLAM is the first line-based SLAM method using an

optimization framework. It is open-sourced except for its

line extraction, matching, and tracking modules. We can

reproduce the results for it3f sequence since it provides the

line tracking results, while it can not process any newly cap-

tured sequence. ORB-SLAM is a state-of-the-art point-based

SLAMmethod. In this paper, vanishing points were extracted

by the method in [50]. We find the results are satisfactory and

efficient.

We run JunctionSLAM on sequence it3f which is widely

used in line-based SLAM methods. For fair comparisons,

we use the same parameters like that in SLSLAM (i.e.,

the keyframe selection thresholds are set as ηt = 0.75m

and ηr = 15◦). For other methods, the default parameters

are used. The trajectories generated by our method, StVO,

PL-SLAM,ORB-SLAM, and SLSLAMare shown in Fig. 11.

FIGURE 11. Localization results comparison. Point (0, 0, 0) is the starting
point of a trajectory. (unit: meter). (a) top view of trajectories. (b) front
view of trajectories.

Since the dataset does not provide the ground truth, the gap

between the first pose and the last pose can be a metric for

drift.

From Fig. 11, it can be seen that our proposed

JunctionSLAM performs significantly better than StVO,

PL-SLAM, and ORB-SLAM considering localization errors

both in X-Y plane and Z-axis. Our method is slightly better

than SLSLAM. Note that SLSLAM uses a GPU to make

the line extraction and matching to be real-time. In contrast,

our method can be faster than real-time even using a single

thread of CPU. For ORB-SLAM, the localization error in

Z-axis is as large as 1.65m, which means the point-based

methods do not workwell when there are few point features in

the environment. Besides, we observed that there are signifi-

cantly more keyframes in ORB-SLAM than that in line-based

SLAM methods.

The top views of line reconstruction from the proposed

JunctionSLAM system with or without loop closure are

shown in Fig. 12. It can be seen that the loop closure can

effectively reduce the localization drift. line reconstruction

with loop closure is more consistent with the actual building

structure.
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TABLE 5. Processing time for it3f sequence (unit: millisecond).

FIGURE 12. The line reconstruction of JunctionSLAM on it3f image
sequence. Dotted lines are estimated trajectories, and each dot
corresponds to a keyframe. The red dot and blue dot correspond to
starting and ending points, respectively. (a) with VP alignment and
without loop closure. (b) with VP alignment and loop closure.

JunctionSLAM runs in real-time for usual stereo

sequences. Table 5 summarizes the processing time for

the main components. It is worth to note that the

line extraction and matching run at 20 ∼ 40Hz

for usual stereo sequences on a laptop using a single

thread, making it practical for line-based SLAM systems.

The result for the whole stereo sequence is available

from https://www.dropbox.com/s/4qehqxqkfr5r9qd/junction

SLAM_demo.avi

Despite its successful application to the real-world

datasets, the proposed JunctionSLAM is suitable for line-rich

environments only. For texture-rich environments, there

might be insufficient line segment features, and point-feature-

based SLAM systems are more suitable. Due to the comple-

mentary of point-based SLAM and line-based SLAM, it is

promising that to combine these two features in the future

work.

VII. CONCLUSION

In this paper, we propose a SLAM system based on coplanar

junctions and vanishing points. Our contributions are three-

fold. First, by introducing junction matching and compre-

hensive evaluation of line segment detectors, we design a

real-time line extraction andmatchingmethod. Second, a cost

function is proposed that considers reprojection error of van-

ishing points. Third, a loop closure method based on junction

descriptors is proposed. The effectiveness and efficiency of

our method have been validated by real image sequences.
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