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LINE CRACK SUBJECT TO SHEARI

A. Cema! Eringen

Princeton University
Princeton, NJ 08540

ABSTRACT

Field equations of nonlocal elasticity are solved to
determine the state of stress in the neighborhood of
a lin'. crack in an elastic plate subject to a uniform
shear at the surface of the crack tip. A fracture criterion
based on the maximum shear stress gives the critical
value of the applied shea: for which the crack becomes unstable.
Cohesive stress necessary to break the atomic bonds is
calculated for brittle materials.

1. INTRODUCTION

In several previous papers, [11 - [31, we discussed the state of

stress near the tip of a sharp line crack in an elastic plate subject

to a uniform tension perpendicular to the line of the crack at Infinity. The

solution of this problem was obtained within the framework of the non-

local elasticity theory. The resulting solution did not contain the

stress singularity present In the classical elasticity solution and

therefore a natural fracture criterion based on the usual maximum stress

hypothesis could be established. This most interesting outcome could

be used to calculate the cohesive stress in various materials.

1 The present work was supported by the Office of Naval Research
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TheL, present paper- dtils with the problem of a line crack in anl

eLa~st ic plate where tile crack is s,?ubject to a uni form shear I oad. We

employ the field equations of nonlocal elasticity theory to formulate

and solve this problem. Crat ifyingly the resulting solution does not

contain the stress singularity at the crack tip and therefore a fracture

criterion based c.i the maximum shear stress hypothesis can be used to

obtain the critical value of the applied sh2ar for which the line

crack begins to become unstable. If the concept of the surface energy

is used It is possible to calculate the cohesive stress holding the

atomic bonds together. For steel (with no dislocations) we give an estimate

for the cohesive stress. In section 2 we give a resum4 of basic

equations of the linear nonlocal elasticity theory. In section 3 the

boundary value problem is formulated and the general solution is

obtair.ed. In section 4 the solution is given for the dual integral

equations completing the solution of the problem of line crack subject to

a shear load. Calculations for the shear stress are carried out on a

computer and restilts are discussed in section 5.

2. BASIC EQUATIONS OF NONLOCAL ELASTICITY

The basic equations of linear, homogeneous, isotropic, nonlocal elastic

sol'ds, with vanishing body and inertia forces, are (cf. [4, 5])

(2.1) t = 0kl.,k

(2.2) tk = f[X'(Ix'-xl)e rr(x') 6 k +2p' (1x'-xJ)ekZ(X') ]dv(x')

V

(2.3) ek 1 " -(U +U,)
't 2 kZ i,k

_________________________ -- -.... O*
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where the only d1fference from classical elasticity is .n the stress

constitutivc equations (2.2) which states that the streqs tkW(X), at a

polkt x, depends on strains ekZ(W), at all points of the body. For

homogeneous and Isotropic solids the nonlocal, elastic moduli )'(Ix'-x!)

and oi'(Ix'-xI) are functions of the distance between the variable point

x' and the fixed point x at which the stress is to be evaluated. The

integral in (2.2) is over the volume V of tile body enclosed within

the surface (V.

Throughout this paper we employ cartesian coordinates xk with

the usual convention that a free index takes the values (1, z, 3) and

repeated indices are summed over the range (1, 2, 3). Indices following

a comma represent partial differentiation, e.g.

k,9- k Z.

In our previ.us work [4, 6, 7] we have obtained the forms of

X'(Ix'-xI) and ij'(Ix'-xj) for which the dispersion curves of plane

waves coincide within the ent 4 'e Brillouin zone with those obtained in

the Born-Von KdrmAn theory of lattice dynamics. Accordingly

(2.4) (A',p') - (ApIc([x'-xj)

a x - {l a (a-lx'-,,I). Ix'-xlSa,

0 IX,'-xl'a

where a is the lattice parameter, X and p are classical Lam6. constants,

and a is a normalization constant to be determined from0
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All

(2.5) J a(Ix'-xl)dv(x') 1.

IIf1

While this simpie and elegant result is useful in many calculations,

it is not the or.ly one that approximates the dispersion curves of

lattice dynamics. In fact a very useful one is

(2.6) ct\jx'-.xj) M a 0exp[-(63/a) 2 (X'k- Xk)(X'k- Xk)]

where B is a constant. For the two-dimensional case (2.6) has the

specific form

(2.7) 0(lx'- X) - (0/1)2exp (/a )2 [(X' -Xl2 + (x' 2 -x 2

Employing (2.4), in (2.2) we write

> (.8) tkj = a(jY,'-xi) Ck (X')dv(x')

(2.8) t ki - k

V

where

(2.9) OkG(X) Xe (x')6k + 2 1jek WX)

= XU (x')6 +k+U (X,)+u (x')]
r,r - k9. k,R. Z,k-

Is the classical Hooke's law. Substituting (2.8) into (2.1) and using

the Green-Gauss theorem we obtain

(2.10) ra(Ix'-xI)Gktk(x')dv(x') - cl(Ix'-xl)ok (x')daW 0
v 2.o av

_____ ____ ____ k. ' k.. . . - -- .



Here The surface integral may be dropped If the only surface of the

body Is at Infinity.

3. CRACK UNDER SHEAR

Consider a plate in (Xl=X, x2 •Y) - plane weakened by a line crack

of length 29 along the x-axis. The plate is subjected to a constant

shear stress T0 along tht" surfaces of the crack, Fig. 1. For the

plane strain problem (2.10) takes the form

(3.1) j c(Ix'-xl)Gk kzk(xv ,y )dx'dy' - a(Ix'-xI)[0T2 Z (x',0)]dx'- 0

R -Z

where the Integral with a slash is over the two-dimensional infinite

space excluding the crack line (Ix1<Z, yi0). A bold-face bracket indicates a

Jump at the crack line.

When an incision is made in an undý,!ormed body, the body will

in general be deformed and stressed because of the long-range inter-

atomic attractions. Thus if we are to treat the problem of a plate

with crack, undeformed and unstressed in the natural state, we must

consider that after an incision is made the crack is not opened, i.e.

the boundary conditions are to be applied to the plate in the natural

state.

Under the applied uniform shear load on the unopened surfaces of

the crack the displacement field possess the following symmetry regulations

(3.2) u(x,-y) -u(x,y) , v(x,-y) - v(xy)

f.A
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Emplo•ying this in (2.9) we see that

(3.3) [02 (x 0)1 ] 0 , [x[>k

Hence the limits (-9•,9) in the second integral of (3.1) may be

replaced by (

The Fourier transform of (3.1) with respect to x' gives

(3.4) { (t,jy'-yIl[-i0o lz(,y') + Tyy,(&,y ]dy

-cz(&,Iyl)j C2i(&,0) 1 - 0

where a superposed bar indicates the Fourier transform, e.g.,

f(g,y) = (27T) f(x,y)exp(i,x)dF
CO

If we take the Fourier transform of (3.4) with respect to y, and solve

for the fact- of a in the integrand of (3.4), upon inversion we obtain

d -(2Tt) •(xO) I {exp(-iny)dn
dyl,( ,y) + •y 292. ",0 2t 1.

since the left hand side is defined for all y except y=O. Thus we

obtain

(3.5) _i&G d+29. 0 Z - 1,2
it dy
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Substituting this into (3.4) we have

(3.6) o (XO) 1 = 0 , = 1, 2

Hence we have shown that the general solution of (3.4) is the

same as that of the system (3.5) and (3.6).

The Jump condition (3.6) for JxI>Z is satisfied identically. For

JxI<Z we also have [o 2 1 (x,O) I = 0, on account of (3.2). Since

2(X,-y) = -o 2 2 (x,y) we also see that t 2 2 (x,O) - 0 for IxI<k. Thus

the normal stress condition on the crack surface is satisfied identically.

Considering also the continuity requirement of the displacement field

satisfying (3.3) we find that the boundary conditions at x=O are:

a (x,O) = 0 , t yx(X,O) - T , lxl<z(3.7) YY oX

0 (x,O) - 0 u(x,O) = 0 ,]xlj>YY

In addition we must have

(3.8) u = V = 0 , as y-+

Consequently we must obtain the solution of (3.5) subject to (3.7) and
1

(3.8).

1Even though some authors feel that v(x,O)=O, lxj>t should also be
satisfied for this (so-called Mode II) problem (cf. [81), the results
based on the boundary conditions (3.7) and (3.8) are accepted by
workers on the theory of fracture. The physical reasoning indicates
that constant shear load if not balanced by an opposing couple, should
give a rotation to the whole body so that v(x,O)=O for JxI>£ appears
to be in contradiction with the expected displacement field.

-.- 1..
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Equations (3.5) arenorx other than the Fourier transforms of the

Navier's equationsIn two dimensions, namely

- 2-
O - (X~+211)& U-Iý()+Pi)V, = 0
,yy

(3.9)

-i$(X+O)uy, +(X+ 2)v, yy-2t 2 = 0

The general solution of this set (for y>O ), satisfying (3.8) is.

u = -(2ff)-2 1 [ICIA( + (I&Iy- ~X+3p)B(F)]exp(-Ily-i~x)d&,-(2•)-I12 f "0- [ I()+ (a y

(3.10)

v (2Tr)1/2 {i[A() + yB(&)]exp(-jtIy-itx)dF

where A(O) and B(&) are to be determined from the boundary conditons

(3.7). Using (2.9) we calculate

(3.11) 2y(p,y) 2ii[-I[IA(t) + (0y) B(&)-exp(-I~Iy)
yy A1

According to (3.7) and (3.7) this must vanish at y-0. Hence

'. (3~~.12) B(ý) ÷. ._ 1 A(F,)

Noting that A(-C) - A(&), on account of symmetry u(x,y) u(-x,v),

the displacement field may be put into the form

u(x,y) - 1/2 X J A(F Ax4-- w y e &coB (&x)d&,

(3.13)
-;Y ( 2)12 k_+ A(F) e e Ysin (&x)dF,

0 /)--v~~y .. -,- o .'_
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For Coe, I hrough (2.9) and (3.12) we obtain (y>O)

0 (x'y) =-0~ (x.-y) -2(2/7r) /(X.4+) jAQ()(2r-t 2Y~e,- Y n(FxWdr
0

(3.14) 0 o (',.,V) = -0i Yyx,-Nv) -2(2)!rr) 1 /2 (,A-J) ft A (F)'y-Ysrý~
0

ci y(x,y) - Y (x,-y) =-2(2/nt) t/2 0+0 F (F) Fl-ýy)e y cos(~xWd
0

The stress field according to (2.8), is then given by

M

(3.15) t yy(x,y) = fdyl fm o (x',Y') Lc(xIx'-xI,Iy'-yj) -ct(Ix'-xI~ly'+yl)]dx'
0

t (x,y) - f ""dy' f OO(xW ,y') [a (x'-x ,y '-y) +iaIx '-xjy '+ y I)d x

Substituting for a from (2.7), the Integrations may be performed with

respect to x' and y' by noting the integrals (cf.. [91).

f ex(ý- ,2 in ýx+x')? dx' = (T/)112 cp- 2 A)sinti x
I~ ~ JCPIX ois r(x+x')I (I/p Cos(- Fx

(3.16) 12 = fexp(_py,2--yy, )dy' . 1 /P1/2k~pY 24)1ý12p]
0

a3 Jyexp(_,py,2_yydy 1n 1/ ýx _Y

3 O y)y 2p 4 p P 4)lý,/'Pj

Hence,
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t =x -(2/70(0+11 fA) sin(rx) 1'e-t'Y[2ý+(& /2p)(ý-2py)I

0

yx 0

0.17 -e 2p 2vp 2 d&

/~T,..i exp[-py -(p)/4p)]}dj

0

whe remnn two/ bound ar condiis t ieerrfntons aefnd d ( b74my nwb

expressed as

CiCOcos(ýz) dý 0 z>1
0

where we have introduced
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×/Z z k C F () • -C(O)

2 2 2 2(3.19) K(r,p) [l+(t /2pt )l[l-i(•/2 )l-(t/9¢'Wexp(-•2/4pt2),

T 0 02 /2(X+p) , p = (a/a) 2

To determine the unknown function AM) we must solve the dual integral

equations (3.18) for C(O).

4. THE SOLUTION OF DUAL INTEGRAL EQUATIONS

By introducing

cos(Cz) = (n~z/2) J_()

where J (z) is the Bessel's function of order •, we write the system
V

(3.18) in the form

i4(ý)[l+k(ECj)J_J(Cz)dý = -TO z , O~z<l
0

(4.1)

fC(O)J I(Cz)dý - 0 , z > 1

00

The kernel function k(6 ) is given by

(4.2) k(cc) = K(C,p)-l = 2 C[I- (E )]-2()-2 -½cexp(- 2• )

where

(4.3) E l/2tpi- a/20k
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The solution of the dual integral equations (4.1) is not known. However,

it is possible to reduce the problem to the solution of a Fredholm

equation (see [10] § 4.6).

I

(4.4) h(%)+ h(u)L(x,u)du -1(7x)½T
o0

for the function h(x), where

(4.5) L(x,u) = (xu:)' tk(et)Jo (xt) Jo(ut)dt

0

Once (4.4) is solved then C() is calculated by

(4.6) C(4) (2C)l Jl x'jo(Wh(x)dx

We observe that for c=O we have k=O, and the dual integral equations

(4.1) reduce to those obtained in the classical elasticity. For this

case from (4.4) we have h (x) = -T (Tx)½/2,and (4.6) gives the classical0 0

result:

(4.7) C0 (0) -(0/2)1ToC-½Jl( W

or

(4.8) Ao0 () = -0/2) ToJ1 (L) /&t

The next iteration of the integral equation (4.4) with the use of

ho(x) gives



(Li.) l'(x)W -0n/2) ~T 0.[l~(

where

(4.10) S(')=f J(xix&d

Jo f-2 kRJj~t (t)J (0)-tj (0i ( ~ d

In which f steHankel transform of t1 k(cEt)j (t), i.e.,

0

f(t,E) t-ke: l)

* . If we write

X/E - 11 C

in (4.10),we will have

But since c fi(ey,c) is the Hankel transform of f(n/c,c), we see that

lrn I(CE) lin f(t,) - i ur [ (O)k(EC)I
C-+0 C4-0 -
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Hence (4.10) vanishes as k(cý) with c-O, i.e.,

(4.12) C(() + 0(ý)

Thus for small c the difference between C (0) and C will be of order

c. Since any number of iterations will contribute higher order terms

in c,the solution for C(O) will also be in the form (4.12) as c-O.

We observe that in general B is in the neighborhood of 1, [6).

The ratio of the atomic distance to the crack length a/29, is, however,

extremely small for even microscopic cracks. Thus c is very small

and k(cý) is in general negligible as compared to unity for all values

of cC. As can be seen from Fig. 2, k(eC) gogs uniformly from 0 to

-I as cC varies between 0 and -. Thus we expect that the solution of (4.1)

for C(ý) will be almost the same as the classical solution C (&)
o

corresponding to c=0. Some differences are of course expected

for crack lengths close to atomic distances.

Substituting A (0) for A(&) in (3.13) and (3.17), we obtain the

displacement and stress fields. It is of interest to calculate the

shear stress along the x-axis. This is given by

(4.13) tyx/T f"[l+k(cC)]Jl(c)cos(ýz)dc , z x/z

This integral for O<z<l gives t yx/.t 1 since in this interval the

integral converges even for E-O. For z>1 the integral again converges

for all E>O and it is permissible to ignore k(cC) as compared to unity.

However for z-1 this is no longer the case and we cannot ignore k(cý)

as compared to unity. To see this we write t at z-1 as:yx

ill i I-i-----i--l----------------------------.......-----
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tyx (X,) - t + t +3

where

t T 0 (n) [l-$(rn)]cosndn,

t2- 2T o 2n2Ji(n) [1-0(En)]cosndn,

0

t 3 -2To r-½ enJl(n)exp(-c2n2)cosndn
"0

Since 1-0(cn)zO and T ,0 it is clear that
0

[t11 _• (o f) [l-O(y) 1dy -T/,½

t 2 .(2-c 0 ,f noy 2 [1-4(y)Jdy - 4T /3nrrc
0

t 31 (2TO/•½) f exp(-y 2 )dy = /n C
0

Hence

Ity (x,L) 0 1 0 .-I) C-1

Thus we see that t yx(x,) has finite value for c#O. In the evaluation

of the stress field near z-14-. therefore we cannot ignore the function

k(cO) in (4.13).
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5. NUMERICAL ANALYSIS AND DISCUSSION

Calculations of the shear stress t , given by (4.13) along the

crack line, were carried out on computer. The results

are plotted for E-1/20, 1/50, 1/100 and 1/200 in Figures 3 to 6. For

a crack length of 20 atomic distance (c=1/20) the rebults are not very

good. However for a cra hl00 atomic distance (Fig. 5) we can see

that the shear stress boundary condition ty (x,O))° for ]xI<z is

satisfied in a strong approximate sense. The relative error is less than

l½ 0/o. Hence we conclude that the use of the classical A0 () given

by (4.8) gives satisfactory results for crack lengths greater than 100

atomic distances.

The stress concentration occurs at the crack tip, and it is given

by

(5.1) tyx (,O)/T 0 c/ dE , =-a/22Z

where c converges to about -0.30, i.e.

(5.2) c Z -0.30

We now make the following significant observations:

(M) The maximum shear stress occurs at the crack tip, and it Is

finite ( eq. 5.1).

(ii) The shear stress at the crack tip becomes infinite as the

atomic distance a-+O. This is the classical continuum limit

of square root singularity.



-17-

(iii) When t (ZO) = t ( cohesive shear stress),fracture willyx c

occur. In this case

(5.3) 2 z - G
0 c

where

(5.4) G M (Ba/2c 2)t 2

Equation (5.3) is non other than the expression of the Griffith criterion

for brittle fracture. Note that we have arrived at this criterion via

the maximum sheai- stress hypothesis. The present criterion of fracture

not only unifies the fracture mechanics at the macroscopic and microscopic

scales,but also employs the natural concept of bond failure in the

atomic scale.

(IV) The cohesive stress t may be estimated i;" one employs thec

Griffith definition of surface energy y and writes

S~2
(5.5) t a K Xc c

where

(5.6) K - 8c2W/rB(1-v)c

Employing the values of y and the elastic constants for steel

y , 1975 CCS , - 6.92x101 CGS

v - 0.291 a 2.48 A° 1.65

S"r
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we find that

t - 1.04xlO1 3 CGS , t /p 0.• 1 '•c c

This result is in the right range and well accepted by metallurgists

based on other considerations. For example Kelly [III gives

t • 6.OxlO10 CGS and t /W - 0.11.
c C

Acknowledgement: The author is indebted to Dr. L. Hajdo for carrying out

the computations.

IThe altenuation constant B-1.65, used in these calculations, makes
the Fourier transform of a coincide with the dispersion curve of
elastic waves In Botn-Von K'rman model of lattice dynamics (cf. 161).

-• --- ... .... .~ ~..-. - -..- . ..-. -. .. . . .... • f-l•* .".,,-,, .•-,•,•..•• I ,.:LXVS- =mm m ----
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