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LINE CRACK SUBJECT TO SHEAR1

A. Cemal FEringen

Princeton University
Princeton, NJ 08540

ABSTRACT

Field equations of nonlocal elasticity are solved to

determine the state of stress in the neighborhood of

a lin. crack in an elastic plate suhject to a uniform

shear at the surface of the crack tip. A fracture criterion
based on the maximum shear stress gives the critical

value of the applied shear for which the crack becomes unstable.
’ Cohesive stress necessary to break the atomic bonds {g
calculated for brittle materials.

1. INTRODUCTION

In several previous papers, [1] - [3], we discussed the state of
stress near the tip of a sharp line crack in an elastic plate subject
to a uniform tension perpendicular to the line of the crack at infinity. The

solution of this problem was obtained within the framework of the non-

local elasticity theory. The resulting solution did not contain the
stress singularity present in the classical elasticity solution and
therefore a natural fracture criterion based on the usual maximum stress
hypothesis could be established., This most interesting outcome could

be used to calculate the cohesive stress 1In various materials.

1The present work was supported by the Office of Naval Research
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The present paper deals with the problem of a line crack in an
clastic plate where the crack is subject to a uniform shear load. We
employ the ficeld equations of nonlocal elasticity theory to formulate
and solve this problem. Gratifyingly the resulting solution does not
contain the stress singularity at the crack tip and therefore a fracture
criterion based ca the maximum shear stress hypothesis can be used to
obtain the critical value of the applied shzar for which the line
crack begins to become unstable. If the cencept of the surface energy

is used it is possible to calculate the cohesive stress holdiang the

atomic bonds together. For steel (with no dislocations) we give an estimate

for the cohesive stress, In section 2 we give a resumé of basic
eyuations of the linear nonlocal elasticity theory. 1In section 3 the
boundary value problem is formulated and the general solution 1is
obtaired, 1In section 4 the solution is given for the dual integral
equations completing the solution of the problem of line crack subject to
a shear load. Calculations for the shear stress are carried out on a

computer and results are discussed in section 5.

2. BASIC EQUATIONS OF NONLOCAL ELASTICITY

The basic equations of linear, homogeneoug, isotropic, nonlocal elastic

so)'ds, with vanishlng body and inertia forces, are (cf. {4, 5])

(2.1) tkl,k = (0

(2.2) tey = f{x'(lf'-fl)err<§')6kg+2u'(If'-§|>ekl(§')1dv(§')
v
1

(2.3) eki = E (uk,l+u1,k)




- —————

where the only difference from classical elasticity is in the stress
constitutive equations (2.2) which states that the stress tkl(f)’ at a
poirt X, depends on strains ekl(f')' at all points of the body. For
homogeneous and isotropic solids the nonlocal elastic moduli k'(|x'-x!)
and 1'(|x'-x|) are functions of the distance between the variable point

x' and the fixed point x at which the stress is to be evaluated. The

integral in (2.2) is over the volume V of the body enclosed within

the surface 3V.

Throughout this paper we employ cartesian coordinates x, with

k
the usual convention that a free index takes the values (1, 2, 3) and

repeated indices are summed over the renge (1, 2, 3). Indices following

a comma represent partial differentiation, e.g.

In our previcus work {4, 6, 7] we have obtained the forms of
A (|x'-x|) and u'(|x'-x]|) for which the dispersion curves of plane
waves coincide within the enti:e Brillouin zone with those obtained in

the Born-Yon Kdrmin theory of latt.ce dynamics. Accordingly

(2.4) 'u") = Lwa]x'-x]) ,
a(|x'=x|) -{ ao(a-!x'-xl) |x'-x]|<a,
0 |x'-x|~a

where a is the la“tice parameter, A and u are classical Lamé constants,

and @, ts a normalization constant to be determined from




(2.5) J a(lx'~x)dv(x') = 1

1]
While this simpie and elegant result is useful 1in many calculations,
it is not the or.ly one that approximates the dispersion curves of

lattice dynamics. In fact a very useful one s

2.6)  ailx'=x]) = ajexpl-(8/a) (x" —x) (x' =x,)]

where B is a constant. For the two-dimensional case (2.6) has the

specific form

@7 allx'=xD) = 2 8/ %expl-(8/2)  [(x'x)? + (x',-x) %))

Employing (2.4), in (2.2) we write

-

(2.8) teg = | a( 5'-§i> Iy (X)AV(x")
v

where

(2.9)

1Y) ' '
O g (") = Ae (x")6, +2ue, o (x")

~

= Aup L8 tuluy () L ()]

is the classical Hooke's law. Substituting (2.8) into (2.1) and using

the Green-Gauss theorem we obtain

@100 [ adxi-xDog  Gaveey - § adlx'-xDo (xaa ) =0
y
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Here (he surface integral may be dropped if the only surface of the

body is at infinity.

3. CRACK UNDER SHEAR

Consider a plate in (xlzx, xzﬁy) - plane weakened by a line crack
of length 2¢ along the x-axis. The plate is subjected to a constant
shear stress T, along the surfaces of the crack, Fig. 1. For the

plane strain problem (2.10) takes the form

L

(3.1) f a(lf'—fl)okz'k(x',y')dx'dy' - J a(|§'~§|)[022(§',0)!dx' =0
R -2

where the integral with a slash is over the two-dimensional infinite
space excluding the crack line (|x|<2, y=0). A bold-face bracket indicates a
jump at the crack line.

When an incision is made in an unde ormed body, the bhody will
in general be deformed and stressed because of the long-range inter-
atomic attractions. Thus 1if we are to treat the problem of a plate
with crack, undeformed and unstressed in the natural state, we must
consider that after an incision is made the crack is not opened, i.e.
the boundary conditions are to be applied to the plate in the natural
state.

'nder the applied uniform shear load on the unopened surfaces of

the crack the displacement field possess the following symmetry regulations

(3.2) u(x,-y) = ~u(x,y) , v(x,-y) = v(x,y)




- —————

Employing this in (2.9) we sce that

(3.3) !ozg(x,O)] =0 , Ix|>2

Hence the limits (-%,£) in the second integral of (3.1) may be
replaced by (-=,=),
The Fourier transform of (3.1) with respect to x' gives

o

(3.4) )[ alE, |y -y [-1£0,, (E,y") + di‘};.ou@,y')ldy'

-0

-3 (6,111 5,yy(6,0) 1 = 0

where a superposed bar indicates the Fourier transform, e.g.,

@

Fo(g,y) = (2")& [ f(x,y)exp(1£x)dE

o0

If we take the Fourier transform of (3.4) with respect to y, and solve
for the facts of a in the integrand of (3.4), upon inversion we obtain

4 [ GQE(X,O) ] l exp(-iny)dn
-~ . - J

e OO

= d -
-igoll(&.y) + dy ozz(s.y) = (2m)

since the left hand side is defined for all y except y=0. Thus we

obtaiu
< eS¢ 902 .
(3.5) 15011 + ay 0 . 2 1,2
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r Substituting this into (3.4) we have
(3.6) { azp(x.O) ] =0 . L =1, 2

Hence we have shown that the general solution of (3.4) is the }
same as that of the system (3.5) and (3.6).
The jump condition (3.6) for ]xl>2 is satisfied identically. For
|x|<2 we also have [OZI(X,O) ] = 0, on account of (3.2). Since
022(x,-y) = —ozz(x.y) we also see that t22(x,0) = 0 for |x|<2. Thus
the normal stress condition on the crack surface is satisfied idantically.
Considering also the continuity requirement of the displacement field

satisfying (3.3) we find that the boundary conditions at x=0 are:

o (x,0) =0 . t (x,0) =1 . lxl<2
(3.7) Yy yx ?

oyy(x,O) = 0 , a(x,0) =0 , |x|>2

In addition we must have

(3.8) u=v =20 . ag y = ®

Consequently we must obtain the solution of (3.5) subject to (3.7) and

(3.8). 1

\ 1

Even though some authore feel that v(x,0)=0, lxl>l should also be
satisfied for this (so-called Mode I1) problem (cf. [8]), the results
based on the boundary conditfons (3.7) and (3.8) are accepted by

, workers on the theory of fracture. The physical reasoning indicates
that constant shear load if not balanced by an opposing couple should
give a rotation to the whole body so that v(x,0)=0 for |x|>2 appears
to be in contradiction with the expected displacement field.




Equations (3.5) arenome other than the Fourier transforms or the

Navier's equationsin two dimensions, namely

- 2- -
, = (A2 ~{E(A\+)v, =0,
nu gy (A2u) £ u~1E (A+u)v v
(3.9

- - 2 -
~1E(A+u)u, +(A+ 2u)v, —~E£"uv = 0
£ (A+u) y ( u) vy u

The general solution of this set (for y>0 ), satisfying (3.8) is.

-0

where A(£) and B(f{) are to be determined from the boundary conditons

(3.7). VUsing (2.9) we calculate

. = H
(311 5 (Gy) = 2utl-[e]a@) + g - [Ely) BGO) lexp(-[e]y)

According to (3.7)1 and (3.7)3,this must vanish at y=0. Hence

A4

(3.12) B(g) = "

l&| AcE)

Noting that A(-£) = A(£), on account of symmetry u(x,y) u(-x,y),

the displacement field may be put into the form

u(x,y) - (g) 1/2 Afﬂ I A(E) <li§£ -C%) e-Eycos(Ex)dg,

. i o Au

: (3.13)

&~ ) 00 - C y

. 1 m )

: vixy) = B2 £ J A(5)<_ L Ei) e "Yain(Ex)de

0

:.‘"—m--" - et -

u = -2 J e telae) + (Jgly- 12YBE) lexp(-]g|y-1ex)de,
(3.10) -
v =2 J 1{A(E) + yB(&) lexp(-|&]|y-1Ex)dE
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For the q o, through (2.9) and (3.12) we obtain (y>0)

y © 2 . -F
oxx(x.y) = ~0xx(x.-y) = —2(2/ﬂ)1/'(k+u) J A(E)(ZE-CZy)e ’ysin(ix)dﬁv
o
® -F
(3.14) uvy(x.y) = —0yy(x,~y) = -2(7/n)1/2(A+u) [ A (&)ﬁzye ’ysin(gx)dﬁ,
’ )

oyx(x,y) = uyx(x,-y) .

The stress fleld according to (2.8), 1is then given by

“2(2/n)1/2(k+u) j A (&) E(l-ﬁy)e_ﬁycos(ﬁx)di

o (Xsy) = ‘ dy' J O (X'sy") lal|x'=x|,]y'~y]) = a(|x'-x|,[y"*y]|)]dx"
(¢}
rm [+ o]
(3.15) t  (x,y) = dy' f o, (x"yy") la(|x"=x]|,]y"=y]) - a(|x'=x|,|y"*y|)]dx"
yy Jo yy
et @
= ' [ ' ' ' ' '
tyx(x.y) dy J oyx(x o) lalx"=x], ]y =y]) + a(|x"~x]|,|y"*y])1dx

-

Substituting for o from (2.7), the integrations may be performed with

respect to x' and y' by noting the integrals (cf., [9]).

. 2, Ysin £0+x( o, e 2 sin £ x
11 f exp(-px'“) 3005 &(x+x')2 dx' = (n/p) exp(-£°/4p) cos £ x

- U

0.16) 1y = [ expCopyPoyydayt = 2a/m xR (1012401,
o

® 2
I, = Y'PXP(-PY'Z‘YY')dY' =L X i/ EXP(Y2/4P)[1“¢(Y/2/E)].
3 o 2p 4p 'p
Hence,
e amemniottl Lnd ladhed

R it a s
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“x -(2/n)£(x+u) J At sin(gx) {e'gy[25+(£2/2p)(£-2py)l
[»]

-
[}

- ‘b( 2/f5' )] eEY[2{4.({ /2p) (E+2py) 11~ ¢(§j.j_§__x)]}d£’
tyy = (2/n)5(x+u) Ji A(E)sin(Ex) (e -8y &- 2py[1 ¢(g 353)1
(3.17) -e®Y SHIRY (10 (EP2BY) 114,
/P
tYX = -(2/n)*(k+u) I A(E)Ecas (Ex) {e-Ey[l+(£/2p)(€_2py)]
0

-11-¢<557£1>1 + Y[ 14+(5/2p) (E+2py) 1 [ 1- ¢(§~§§1>1

-2€(ﬂp)-&exp[-pyz-(ﬁz/Ap)]}dE

where p=(B/a)% and ¢(z) 1is the error function defined by

-y 2
¢(z) = 2n Jexp( -t )dt

o)

The remaining two boundary conditions (3.7)2 and (3.7)4 may now be

expressed as

oo

C&C(C) K(¢,p) cos(gz) dg= -(n/Z)l’To , o<zl

(3.18) °

C-iC(c) cos(gz) dg = 0

o]

, z>1

where we have introduced

- LY IR LR T 5 detinl) oo
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X/ i oz , £ = ¢ . A(g) = C—&C(C),
(3.19)  K(z.p) = [1+(c2/2p82) 1116 (t/20/F) |- (2/2,7B) exp (-5 /4pe?)

TooE TOQZ/Z(A+u) . p = (B/‘a)2

To determine the unknown function A(§) we must solve the dual integral

equations {3.18) for C(g).

4. THE SOLUTION OF DUAL INTEGRAL EQUATIONS

By introducing

3
cos(gz) = (mgz/2) J_y(52)

where Jv(z) is the Bessel's function of order v, we write the system

(3.18) in the form

I CC(ﬁ)[l+k(€C)]J_i(CZ)dC = -Toz—i . O<z<1
0]

(4.1)

f C(£)I_y(gz)dy = 0 , z>1
0

The kernel function k(gy) is given by

(4.2)  k(eg) = K(g,p)-1 = 2e22%[1-0(cg) 1-0(er)-2n"Yegexp(-c 2c2)

where

(4.3) € = 1/21p£- a/2B4

: e G e — e e e e i e e A
T a0 T3 T N - - T
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The solution of the dual integral equations (4.1) is not known. However,
it 1s possible to reduce the problem tc the solution of a Fredholm

equation (see {10] § 4.6).
1

(4.%) h(x)+ j h(u)L(x,u)du = -—&(Trx)iTO
0

for the function h(x), where

o0

(4.5) L(x%,u) = (xu)* I tk(gt)Jo(xt)Jo(ut)dt
)

Once (4.4) 1is solved then C(g) 1s calculated by

s [ty
(4.6) C(z) = (27) J X JO(CX)h(x)dx
0

We observe that for ¢=0 we have k=0, and the dual integral equations
(4.1) reduce to those obtained in the classical elasticity. For this
case from (4.4) we have ho(x) = —To(nx)%/Z,and (4.6) gives the classical

result:
.7y c () = -/ o7 (@)
‘ ) 0 1
or
3
(4.8) AO(E) = -(1/2) TOJI(ER)/EQ

The next iteration of the integral equation (4.4) with the use of

h, (x) gives
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4.9 b = =G/ e ) - 1,0

where

i

1 n
(4.10) 1(5,¢€) J x J o (5x) £ (x,£)dx
0

(4.11) = J kiE%li%i&l {cJo(t)Jl(c)-tJo(C)Jl(t)]dt
o] ; -t

In which f is the Hankel transform of t-lk(et)Jl(t), i.e.,
N [+ 23
f(x,e) = J tf(t,e)Jl(xt)dt,
0

-v, f(t,C)

it

thlk(et)Jl(t)
17 we write

x/e =y, € =

; in (4.10),we will have
) 1/e -
1(5,e) = ¢ I I, (ny) fley,e)dy
(o]
But since ezf(ey,e) is the Hankel transform of f(n/e,e), we see that

Lm 1(5,e) = Un £(z,e) = 1m (270, (€hk(ez) ]
e~+0 £+0 e+




=14~ i

Hence (4.10) vanishes as k(eg) with ¢>0, 1.e.,
@1y e @ = -t @ o) |

Thus for small € the difference between Co(c) and Cl(c) will be of order |
€. Since any number of iterations will contribute higher order terms 1
in e, the solution for C(g) will also be in the form (4.12) as ¢-+0.
We observe that in general 8 is in the neighborhood of 1, [6].
The ratio of the atomic distance to the crack length a/2¢ is, however,
extremely small for even microscopic cracks. Thus ¢ 1is very small
and k(eg) is in general negligible as compared tc unity for all values
i of 4. As can be seen from Fig. 2, k(eZ) goes uniformly from 0 to
-1 as €f varies between 0 and =, Thus we expect that the solution of (4,1)
for ((g) will be almost the same as the classical solution Co(c)
corresponding to ¢=0, Some differences are of course expected
for crack lengths close to atomic distances.

Substituting AO(C) for A(§) in (3.13) and (3.17), we obtain the

displacement and stress fields., Tt is of interest to calculate the

shear stress along the x-axis. This 1is given by

[

! (4.13) tyx/ro = IO[1+k(cc)]Jl(c)cos(cz)dc R z T x/2

This integral for 0<z<1l gives tyx/ro = 1 since in this interval the

L integral converges even for e=0. For z>1 the integral agaln converges
for all €>0 and it is permissible to ignore k(ef) as compared to unity.
However for z=1 this 18 no longer the case and we cannot ignore k(eg)

as compared to unity., To see this we write t x at z=1 as:

- ——— R . . - : G R e
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+t, + ¢t

2 3

tyx(x.l) = tl

where

t, = L joJl(n) [1-¢(en))cosndn,

ty, = 210 J ezanl(n) (1-¢(en) Jcosndn,
(o]

t3 a -ZTOH-* jenJl(n)exp(-eznz)cosndn

0

Since 1-%(en)20 and Tozo it 18 clear that

EEXCVAD! Jol1-¢(y)1dy -t It

b, st/ ) Joy211-¢(y>1dy AN

|t3|s (ZTo/nie) Jy exp(—yz)dy = To/ﬂ%E
o
Hence
|tyx(x,2)! < (%?-ron-&) el

Thus we see that tyx(x,g) has finite value for ¢$0. In the evaluation

of the stress field near z=1+ therefore we cannot ignore the function

k(ez) 1in (4.13).

it
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5. NUMERICAL ANALYSIS AND DISCUSSION

Calculations of the shear stress tvx’ given by (4.13) along the
crack line, were carried out on computer. The results
are plotted for e=1/20, 1/50, 1/100 and 1/200 in Figurea 3 to 6, For
a crack length of 20 atomic distance (e%1/20) the results are not very
good., However for a cra%ﬁ?g%hloo atomic distances (Fig. 5) we can see
that the shear stress boundary condition tyx(x,O)-'tO for |x|<2 is
satisfied in a strong approximate sense. The relative error is less than
1} °/o. Hence we conclude that the use of the classical AO(E) given
by (4.8) gives satisfactory results for crack lengths greater than 100
atomic distances,

The stress concentration occurs at the crack tip,and it is given

by

(5.1) cyx(z,O)/ro-c//E , €

o

Ba/24

where ¢ converges to about -0.30, {i.e,

(5.2) ¢ = -0J0

We now meke the following significant observations:
(1) The maximum shear stress occurs at the crack tip, and it 1s
finite ( eq. 5.1).
(i1) The shear stress at the crack tip becomes infinite as the
atomic distance a+0. This 18 the classical continuum limit

of square root singularity.
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(1i11) When tvx(E,O) =t ( = cohesive shear stress),fracture will

occur. In this case

L2, .
(5.3) rol GC
where
2 2
(5.4) GC = (Ba/2c )tC

Equation (5.3) is non other than the expression of the Griffith criterion

for brittle fracture. Note that we have arrived at this criterion via

the maximum shear stress hypothesis. The present criterion of fracture
not only unifies the fracture mechanics at the macroscopic and microscopic
scales, but also employs the natural concept of bond failure in the

atomic scale.

(iv) The coheslve stress t, may be estimated 1 one employs the

Griffith definition'of surface energy y and writes

. 2 .
(5.5) t. a@= KC Y
where
(5.6) KC = 8c2u/n8(1-v)

Employing the values of y and the elastic constants for steel

y = 1975 ccs  ,  u = 6.92x1011 cas

v = 0.291 , a = 2.48 A° , B = 1.65
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we find that!

t = L.oax10' cos t/u = 0,15

This result is in the right range and well accepted by metallurgists
based on other considerations. For example Kelly [11l] gives

10

t. % 6.0x10"° CGS and tc/u = 0.11.

Acknowledgement: The author is indebted to Dr. L. Hajdo for carrying out

the computations,

lThe altenuation constant 8=1,65, used In these calculations, makes

the Fourler transform of a coincide with the dispersion curve of
elastic waves In Born-Von Kidrman model of lattice dynamics (cf., {61]).
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