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ABSTRACT 

Scientific measurements are often depicted as line graphs. State-

of-the-art high throughput systems in life sciences, telemetry and 

electronics measurement rapidly generate hundreds to thousands 

of such graphs. Despite the increasing volume and ubiquity of 

such data, few software systems provide efficient interactive 

management, navigation and exploratory analysis of large line 

graph collections. To address these issues, we have developed 

Line Graph Explorer (LGE). LGE is a novel and visually scalable 

line graph management system that supports facile navigation and 

interactive visual analysis. LGE provides a compact overview of 

the entire collection by encoding the y-dimension of individual 

line graphs with color instead of space, thus enabling the analyst 

to see major common features and alignments of the data. Using 

Focus+Context techniques, LGE provides interactions for viewing 

selected compressed graphs in detail as standard line graphs 

without losing a sense of the general pattern and major features of 

the collection. To further enhance visualization and pattern 

discovery, LGE provides sorting and clustering of line graphs 

based on similarity of selected graph features. Sequential sorting 

by associated line graph metadata is also supported. We illustrate 

the features and use of LGE with examples from meteorology and 

biology. 
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1. INTRODUCTION 
Line graphs may date back over 4000 years to ancient Egypt [7] 

while a more “modern” instance is attributed to Robert Plot [19] 

in 1684. Since that time, our ability to collect and store such data 

has grown at an incredible rate. While we have access to more 

information than ever before, we also have the additional burden 

to make sense of these massive data collections.  

This paper introduces an interactive visualization for large 

collections of line graphs. Our motivating application and 

inspiration is in the domain of molecular biology, more 

specifically in protein and DNA analysis using gel 

electrophoresis. This process uses an electric field to separate the 

components of a sample migrating through a porous gel medium. 

The observed separation is generally proportional to the size or 

molecular weights of the components. 

 

 

 

Figure 1. Typical outputs from an electrophoresis instrument. 

(a) A traditional vertically oriented gel image where each 

column represents a sample and the vertical dimension 

depicts the separation criterion used in the experiment (in this 

case, the molecular weight). The intensity of the signal is 

shown by the intensity of the color of the horizontal bands. (b) 

Overlaid plots where each line graph represents the detailed 

electropherogram of a single sample. Here the vertical 

dimension is the intensity of the signal, while the horizontal 

dimension is the separation criterion (molecular weight). 
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The data produced by these experiments can be viewed as 2D line 

graphs (Figure 1(b)), with the x-dimension being the separation 

criterion (for example molecular weight), and the y-dimension 

being signal intensity. Alternatively, the same data can be 

visualized in a manner similar to traditional 1D gel images 

(Figure 1(a)) where samples can be stacked side-by-side as 

columns, thereby allowing better sample comparison. For each 

sample, the separated sample components are shown as horizontal 

bands, with the intensity of the band representing the signal 

intensity. The y-dimension represents the separation criterion. 

Modern high throughput instruments can process thousands of 

samples per day, resulting in large collections of line graphs.  

Frequently collections of line graphs are either overlaid as in 

Figure 1(b), or stacked. Overlaying many graphs has clear issues 

with occlusion. On typical computer displays, stacking graphs 

only permits visualizing a small number of graphs at one time. 

For large collections, some method of scrolling the collection or 

selecting relevant subsets is typically necessary, thus losing 

overall context of the data set. While not generally applied, the 

1D view shown in Figure 1(a) does allow more graphs to be 

stacked, but precise visualization of graph detail is lost in the 

color encoding, and only qualitative comparisons can be made. 

To address these issues we developed Line Graph Explorer 

(LGE), a visualization system that provides an overview similar 

to the gel-like view in Figure 1(a), along with the details available 

in the line graph view in Figure 1(b).  Our goal is to design a 

visually scalable display that effectively enables data exploration 

and visual analysis of these large collections, thereby allowing 

scientists to explore and discover underlying trends and patterns 

in such data. In addition, to enhance visual pattern discovery, 

LGE allows sorting and clustering of line graph features. 

Sequential sorting by associated line graph metadata is also 

supported. 

2. PROBLEM DESCRIPTION 

Before introducing the features of LGE, we will start by 

describing the data and tasks it supports. 

2.1 Data 
While Line Graph Explorer is generically applicable to a wide 

range of data, we are initially motivated by data derived from 

high throughput life science instruments. The data can typically 

be reduced to a collection of related line graphs, each representing 

a biological sample. Each graph consists of linearly ordered data. 

For example, the process of electrophoresis usually produces a 

component migration time series called electropherograms 

(Figure 1, Figure 5, Section 5.2). In genetic analysis, microarray 

data [14] can be ordered by genomic location (Figures 6 and 7, 

Section 5.3). Before presenting several examples, it is useful to 

note the following common characteristics of such data: 

• The individual line graphs are based on linearly ordered data, 

in which case the ordered axis (usually the x-axis) remains 

fixed and is not generally reorderable. 

• The collection of graphs may consist of independent samples 

stacked vertically, whose ordering can be changed to 

juxtapose and compare graphs. 

• Graphs consist mostly of a baseline with fluctuations from 

the base line as peaks or valleys (for example, spectra). 

• For biological or chemical samples these peaks and valleys 

are the regions of interest, and we refer to them as features. 

• The data consists of (or can be reduced to) a modest enough 

number of features that visual analysis is feasible.  

• The line graphs are appropriately aligned prior to 

visualization to permit valid comparison of feature 

alignment. 

• The analysis (whether computational or visual) is to compare 

the size, location and alignment of these features. 

• We expect that some line graphs will show similar features 

and others will not. This similarity or dissimilarity is what 

we seek in the analysis, and represents a corresponding 

biological or chemical similarity or dissimilarity. 

• The number of line graphs in a given study (i.e. the subject 

of analysis) can be quite large, with hundreds to thousands of 

samples. 

Thus, we need a visually scalable and efficient means to inspect, 

compare and manage large collections of related line graphs. We 

chose a Focus+Context approach to provide both a scalable 

overview and detailed line graphs within a single integrated view. 

The interactions and visualization are optimized assuming the 

data properties listed above. For graphs with little or no correlated 

behavior, we would expect the visualization to be less useful, 

although it would still allow some degree of useful graph 

management and inspection. While our motivation is high 

throughput instrument data, any linearly ordered data sharing 

most of the characteristics listed above should be amenable to the 

visualization we propose, particularly correlated time series data. 

2.2 Tasks 

The high-level task of LGE is comparison between large 

collections of line graphs. We describe the lower-level tasks for 

which it was designed in terms of the task taxonomy of Amar et 

al. [2]: 

• Extrema, Range and Distribution: These tasks are used to 

characterize the overall properties of a graph and allow 

quick identification or comparison to other graphs in the 

collection. 

• Correlation and Cluster: It is useful to organize the graph 

collection to make similar graphs adjacent. Not only is this 

useful in it’s own right, but it increases the likelihood of 

finding and assessing the extent of visual correlations. 

• Anomalies: The analyst is often interested in finding 

missing, unexpected and/or shifted peaks in the line graph 

collection. This search can be supported directly by visual 

analysis. In addition, sorting or clustering can bring similar 

anomalies together or help identify an anomaly existing 

within an otherwise similar group of graphs. 

As we will describe later, LGE provides a number of interactions 

and computational methods intended to support these tasks. 

3. RELATED WORK 

The solution we propose was actually hinted at in Bertin’s 

synoptic of graphical constructions [5]. He refers to such 

collections of line graphs as an “array of curves.” In his graphical 

representation of the synoptic, he even indicates these curves are 

reorderable. However, the application of this construction is never 

fully developed. Further, Bertin does not indicate depicting these 

curves as anything other than 2D line graphs. 

To fully develop this concept we considered several other 

research topics that are related to LGE. 



Color Encodings 

Using color to encode numerical data is a widely used technique 

discussed in detail by Bertin [5]. Such encodings are typically 

implemented in the form of heatmap displays [6]. 

Bioinformaticians frequently use a red/green [8] and sometimes 

yellow/blue color gradient to represent gene expression ratios. 

Spotfire [26] provides a generic mechanism for coloring points in 

2D and 3D graphs by mapping numeric attributes to a color 

gradient. Recently, Saito et al. [23] described a compact color 

encoding for one-dimensional data that attempts to preserve some 

aspects of the underlying 2D line graph. Their scheme affords 

visual scalability, but does not directly support visualizing full 

graph details.  

Focus+Context  

Many information visualization systems employ Focus+Context 

techniques, where some kind of visual compression is used to 

view the entire data set within the application window [6]. 

Additionally, a distortion or lens effect is employed to facilitate 

viewing data of interest in detail while maintaining the context of 

the entire dataset. Table Lens [21] is a well known example that 

applies Focus+Context to tabular spreadsheet-like data. LGE can 

be considered an extension of Table Lens to include line graph 

data in addition to simple tabular data. 

Reorderable Matrix 

The reorderable matrix was first introduced by Bertin [5]. The 

rows and columns of a table of graphical representations are 

permuted to reveal correlated features. The best known 

implementation of this concept is again Table Lens. Siirtola [25] 

has performed empirical user studies of the reorderable matrix 

with positive results. More recently VistaClara [13] used a fully 

permutable matrix to analyze microarray data. 

Linearly Ordered Data 

One of the most widely investigated and relevant cases of linearly 

ordered data is time series data. Müller and Schumann [17] 

provide a review of techniques for time-dependent data. 

TimeSearcher [12] displays overlaid line graph data and allows 

filtering based on graph features. QueryLines [22] provides a 

mechanism for approximate queries of time series based on 

visually specified criteria. BinX [4] displays a single line graph 

that focuses scalability on the x-dimension. VistaChrom [14] 

analyzes microarray data as a form of linear data, addressing 

scalability primarily through data aggregation as opposed to 

directly visualizing the complete data set. Hao et al. [11] 

developed an importance-driven, space-filling layout for time 

series data, but does not allow for easily aligned comparisons. 

2D Line Graphs  

This basic plotting style is ubiquitous, with more examples than 

can be enumerated here. Spotfire [26] may be the best known 

system associated specifically with exploratory information 

visualization that also supports a variety of line graph displays. 

These systems typically employ traditional views of overlaid or 

stacked line graphs. We believe none have adequately addressed 

the visual scalability issues of large collections of such plots.  

4. DESIGN 

LGE can be viewed as an extension of Table Lens [18], where 

one of the columns consists of a collection of line graphs as seen 

in the right panel of Figure 2(b). A table of associated metadata is 

also provided and allows ad hoc sorting of the rows in the 

collection. This table is shown in the left panel of Figure 2(a). By 

reordering the table, patterns may emerge either from the line 

graph views or from the metadata table itself, or both. 

4.1 Viewing Global Context 

A collection of line graphs actually consists of three dimensions: 

the ordered independent x-axis, the dependent y-axis, and the 

additional dimension consisting of the reorderable list of graphs. 

Such collections can be rendered in a 3D view, but there are 

serious occlusion and perspective distortion problems with this 

approach. To provide a compact overview we reduce the rendered 

dimensionality to 2D by initially displaying them as thin 1D 

ribbons with the y-dimension of the data encoded by color 

saturation and luminance instead of vertical position. Higher y-

values are represented by more saturated and brighter colors. LGE 

offers three different forms of color mapping:  

Linear, where the normalized y-dimension is used directly for 

saturation and brightness; 

Sigmoidal, with the normalized y-dimension value x mapped to 

saturation and brightness level i, with a user-defined constant s 

using the function: 
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Using this compressed encoding of the line graph data, we avoid 

overlaying graphs, which is unsatisfactory as occlusion becomes a 

serious problem with large numbers of graphs. We also avoid 2D 

stacking of the graphs, which suffers from limited visual 

scalability, and we avoid 3D stacking, which carries the same 

occlusion and navigation issues as most 3D visualizations. 

Further, since the thickness of a given strip can be quite narrow 

and juxtaposed with other graphs in a dense display, the eye can 

perceive more of the overall correlated patterns in the data. For 

example, the graph features align in closer proximity in our 

overview than they would with stacked 2D plots 

4.2 Viewing Detail 

By encoding the y-dimension of the line graph using color instead 

of vertical height, we intentionally sacrifice the level of 

perceivable detail in the graph in order to improve visual 

scalability and to allow comparison of line graphs across the 

entire collection. To compensate for this perceptual loss, LGE 

uses a simple form of semantic zooming to allow viewing the full 

line graph on demand. There are two forms of display for the full 

2D line graphs. The user can either select individual graphs, as 

shown in Figure 2(c), or create a collection of graphs in the form 

of a lens, as shown in Figure 2(d). The lens is designed to display 

a series of neighboring graphs, with the focal graph in full 

magnification, and the upper and lower graphs in increasingly 

lower magnifications of the y-scale. The style is very similar to 

the parallel projection chosen by Baudisch et al. [3] for text 

magnification. The lens can be moved to show a different set of 

adjacent line graphs, and it can be resized to contain more or less 

graphs. Since the line graphs are initially in the dense overview 

state, they are closely packed together, which sometimes makes 



 

Figure 2. The Line Graph Explorer interface: LGE has two main panels: (a) the metadata panel and (b) the line graph panel. The 

metadata panel contains attributes of the line graph data displayed. In this example, it shows the sample name, and other specifics 

of the electrophoresis examples including plate and well information. The line graphs show the electropherogram data. The line 

graphs can be viewed either individually, as in (c), or under a lens, as in (d). LGE offers sorting by metadata and sorting and 

clustering based on line graph features. Sorted results are stored as history (e) and can be retrieved. 

selection of individual graphs more difficult. The lens facilitates 

graph selection by enlarging the line graphs. This enlargement not 

only aids visual inspection, but also provides a larger screen target 

for selection operations. Additionally, the lens provides a 

convenient way to scan the data when the lens is moved across 

the display.  

Since the lens displays different progressive magnifications of the 

y-, but not the x-scale, lens graphs are displayed at slightly 

different aspect ratios. This difference in aspect ratios might be 

confusing to users since scales of adjacent graphs within the lens 

are not directly comparable. LGE attempts to minimize possible 

confusion in two ways. First, LGE uses different background 

colors for the different magnification levels of the plots, with 

darker colors for lower magnifications. This scheme attempts to 

create an illusion of depth where plots of lower magnifications 

will be perceived to be on a lower visual layer and farther away 

from the user. Second, LGE doubly encodes the y-dimension of 

the line graph with space and color as a visual reminder of the y-

scale, and to visually link the two visual representations of the 

line graph data. The reader should note that the intent of lens 

graphs surrounding the focus graph is to aid navigation more than 

to provide analytical comparison. For analysis purposes, the lens 

can be enlarged or the graphs opened directly to provide more 

directly comparable aspect ratios. 

4.3 Basic Interactions 
Users can view the 2D plots of individual line graphs by a single 
left-mouse click on the overview (Figure 2(b)). The result is 
shown in Figure 2(c). Clicking on an open 2D plot will return it to 
the closed overview state. Dragging the left-mouse button opens a 

range of graphs generating a series of adjacent 2D line graphs. 
Dragging upwards will close previously opened line graphs. 
Similarly, a moveable and resizable lens can be created by an alt-
left-mouse click, as shown in Figure 2(d). In contrast to a simple 
2D graph, users can move the lens up and down through the 
collection with an alt-left-mouse drag or by using the arrow keys. 
One resizes the lens by placing the mouse on the upper or lower 
edges of the lens and performing an alt-left-mouse drag operation. 
All of these actions are synchronized with the metadata panel to 
maintain horizontal data alignment. 

4.4 Metadata Panel 
Metadata can be associated with each line graph and displayed in 

tabular form in the left panel, as shown in Figure 2(a). Similar to 

the handling of line graphs, such data can also be displayed in 

either the overview or the detail state. For the overview state, 

LGE displays graphical bars representing either categories or 

numerical data. When a line graph is opened to the detailed 2D 

state, the available cell height is sufficient to show the values of 

metadata as text strings in addition to the graphical representation. 

The position and state of the metadata for each sample are linked 

to those in the line graph panel allowing the user to inspect details 

of the metadata at the same time as inspecting details of the line 

graphs. This behavior can be seen in Figure 2. 

Several statistical values are computed for the line graphs and 

provided as default metadata. These values include the mean, 

standard deviation, minimum and maximum of each line graph, 

and can be used as attributes for reordering graphs. LGE also 

provides a column of metadata called Graph State which is + for 

open graphs and – for closed graphs, and adjusts dynamically as 

graphs are opened and closed. This attribute is contained in the far 
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right column of metadata in Figure 2. The Graph State attribute 

permits the user to rapidly collate all open graphs together for 

quick comparison. 

Similar to the implementation of Table Lens, LGE allows 

sequential sorting of metadata for ad hoc data exploration. Once 

sorted, both the metadata and the line graph panels will display 

the samples in their new row order. 

4.5 Computationally Assisted Interactions 

LGE also offers sorting and clustering based on individual line 

graph features. LGE currently supports Euclidean distance and 

Pearson correlation as distance measures. Users can select a 

particular line graph, or optionally select a part of the graph, and 

use either the selected portion or the entire graph as a basis for 

sorting the remaining graphs by similarity. This operation results 

in the selected graph as the topmost graph in the panel with the 

remaining graphs ordered by decreasing similarity to the selected 

graph. 

Users can similarly cluster all line graphs based on the entire or a 

selected portion in the x-dimension. We currently use standard 

agglomerative clustering based on simple distance measures, 

including Euclidian distance and Pearson correlation. To simplify 

the display and since we are primarily interested in grouping 

similar graphs together for comparison, we currently do not 

display the tree structure of the cluster hierarchy. Also, our 

current implementation assumes aligned graph data where 

corresponding measurements exist at each time point across all 

graphs.  

4.6 Sort History 

Any operation which reorders the data is stored in a history queue 

and is accessible on the toolbar shown in Figure 2(e). Browse 

buttons allow sequential navigation through the history and a 

combo box allows a direct selection. The basic model is similar to 

a web browser history mechanism. 

5. RESULTS 

In this section, we illustrate the features of LGE using three sets 

of real measurement data: time series climate data, 

electropherograms and microarray data. For brevity, we largely 

omit details of the various experimental platforms and the specific 

data types. The cited references can help clarify some of these 

points.  

5.1 Sorting Climate Data 

As a simple initial example, we consider a relatively large 

collection of time series climate data. Figure 3 shows a sorted 

display of daily mean temperature from 324 international cities 

for the past 10 years, adapted from the data provided by the 

University of Dayton [27]. There are over one million data points 

rendered. Even at a very high-level overview, it is easy to see the 

periodicity of the data with warm summer months in red 

alternating with cold winter months in green. In this example we 

have first sorted by standard deviation of the location’s 

temperature and then by hemisphere (North/South). In Figure 3 

we have also opened a lens so we can probe for a pleasant 

climate. We use the lens to scan quickly for a location that 

exhibits a low standard deviation (consistent temperature) and a 

mild mean temperature. Since in this example, we consider a low 

variance a desirable trait, we can quickly determine either visually 

(for example, the line graph for Honolulu is relatively featureless) 

or from the pre-computed metadata. We quickly find Honolulu as 

a candidate destination. 

 

 

 

Figure 3. Daily mean temperature from 1995-2005 for 324 

international cities. Over one million data points are shown in 

this overview, encoded with a bi-color scheme where red 

represents positive (warm) values and green represents 

negative (cold) values. The annual periodicity of the data is 

clearly shown in this overview. Graphs are sorted by standard 

deviation and then hemisphere. A lens is opened around 

Honolulu Hawaii. The open graph in the lower portion is 

Fairbanks Alaska for comparison. 

 

It is interesting to consider Fairbanks Alaska, also shown in 

Figure 3. The increase in seasonal temperature fluctuations is 

readily apparent. Alaska clearly has a more extreme climate when 

compared to Hawaii. 

 

 

 

Figure 4. Daily mean temperature data sorted by similarity to 

Honolulu Hawaii. San Juan Puerto Rico has the most similar 

temperature profile to Honolulu. Fairbanks occurs at the end 

of the sorted list as it is the most extreme opposite to Honolulu 

in the data set. 

Once we find a location of interest we might want to consider 

alternatives that have  similar climates. We can sort the data set 

by similarity to Honolulu using Euclidean distance as the 

similarity measure. The result of sorting is shown in Figure 4.  

Honolulu

FairbanksHemisphere Std. Dev. 

Fairbanks

San Juan

Avg. Std. Dev. 

Honolulu



We can open up the graph for Honolulu and compare it to its 

nearest similar neighbor, which is San Juan Puerto Rico. Based on 

climate, San Juan might make a good alternative to Hawaii. It is 

also interesting to note that based on the similarity measure, 

Fairbanks Alaska is the extreme opposite of Honolulu. 

Sorting by similarity makes a more complex comparison of the 

graphs versus just by comparing a single attribute. Careful 

viewing of the metadata shows the similarity sorted ordering is 

strongly correlated with average temperature, but not precisely 

the same order obtained by simply sorting by this attribute. The 

annual variance in the data also contributes to the similarity 

measure in this case, and is evident in the table by observing the 

weaker but obvious correlation with standard deviation. 

 

 

 

 

 

 

Figure 5. Clustering wheat strains: (a) The original un-

ordered list of electropherograms. (b) The result of clustering. 

It is clearly visible that similar electropherogram profiles are 

now grouped together to enable quick comparison between 

similar graphs, as well as across related groups of graphs. One 

group of identical strain is outlined for illustration, but other 

similar groupings are also visible. 

 

5.2 Clustering Wheat Strains 

The dataset for this example is produced by a high throughput 

electrophoresis instrument [1] and consists of the 

electropherograms of 112 wheat strain samples. For each 

electropherogram, the x-axis is migration time, which is 

proportional to molecular weight. Here we are essentially looking 

at the molecular weight distribution of proteins in the sample, 

which can provide a kind of line graph signature for each wheat 

strain.  

The unordered collection is shown in Figure 5(a). At this 

preliminary stage we can see that the overview is effective at 

summarizing the entire data and shows clearly correlated peaks 

between some samples, and also obvious differences. There are 

also hints in the patterns that there might be some systematic 

differences due to underlying biology. 

We can easily group similar graphs with the built-in facility to 

hierarchically cluster using Euclidean distance between graphs. 

The effect of this operation is shown in Figure 5(b). It is 

immediately obvious that samples with similar electropherogram 

profiles are grouped near each other indicated by large regions 

with essentially identical aligned profiles. In most cases these 

matches correspond to identical strains derived from different 

flour samples. In addition related groups of different strains are 

clustered together. 

 

5.3 Exploring Graph Features in Breast 

Cancer Data 
Cancer cells often have increased or decreased copies of genomic 

DNA. Recently, an area of considerable interest is how DNA 

copy number changes correlate with gene expression (the amount 

of mRNA being transcribed from DNA in protein synthesis). Both 

DNA copy number and gene expression can be measured using 

microarrays, often in the form of ratios between a test sample and 

a normal non-diseased reference sample.  

In this scenario, we use LGE to jointly analyze both DNA copy 

number and gene expression data. The data is from 41 breast 

tumor cell lines as measured by Pollack et al. [20]. To keep our 

example simple, we consider only chromosome 17. Gene 

expression data is mapped to the genomic location of each gene 

so that it is comparable to the DNA copy number data. The 

dataset is smoothed as a 10-point moving average of the original 

log ratio data. For the purposes of this example, we simply 

consider the line graphs as abstract representations of 

increased/decreased DNA copy number, or gene over/under 

expression.  

We encode the data with a typical two-color scheme where red 

represents high ratios (log ratio > 0) and green represents low 

ratios (log ratio < 0). This view is shown in Figure 6 where we 

have segregated the DNA copy number and gene expression data 

for comparison. A quick glance at the overview reveals that while 

the measurements fluctuate in both DNA copy number and gene 

expression data, the fluctuations seem to be more extreme and 

frequent in the gene expression data. This observation is not 

surprising since gene expression is more dynamic than the static 

property of DNA copy number. 
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Figure 6. DNA copy number and gene expression data, sorted 

by measurement class. BT474 mRNA is opened to select a 

region that encompasses the gene ERBB2. Red indicates 

increases in DNA copy number or gene expression. Green 

indicates decreases. The gray region in the open graph 

indicates the selected region. 

We also note that there are a number of similar intense red peaks 

that occur near the middle of chromosome 17. These peaks 

correspond to significantly increased copy number or a similar 

increase in gene expression. One of the strongest is highlighted as 

a gray rectangle in the gene expression profile of cell line BT474 

(Figure 6). We note that the top of this peak is in the vicinity of 

the gene ERBB2, also known as HER2. This gene is strongly 

associated with some types of breast cancer. The drug Herceptin 

(trastuzumab) specifically targets cells with increased expression 

of this gene [16]. Hence these peaks represent important and 

interesting features both graphically and biologically and worthy 

of further exploration. With LGE, we can select just the relevant 

region (indicted by the gray rectangle in Figure 6), and can sort 

by similarity to only this region, ignoring other graph features. 

The result is shown in Figure 7. 

We immediately see that we have isolated a series of profiles that 

have similar peaks in the vicinity of ERBB2 indicating increased 

DNA copy number or gene over-expression in this important 

region. What is more striking is that frequently the DNA copy 

number profile and gene expression profile for the same cell line 

occur adjacent to each other, indicating a strong degree of 

similarity between the increases in gene expression and DNA 

copy number. This observation suggests that perhaps the over-

expression of genes found in cancer cell lines may often be 

simply due to increases in DNA copy number, instead of more 

complicated mechanisms involving gene expression regulation. 

Beyond the specifics of these three examples, an important 

observation is that relatively large collections of related line 

graphs can be interactively explored with LGE to provide insights 

about the correlated behavior of the data. Further, this exploration 

can be quickly accomplished with a small number of simple user 

interactions. 

 

Figure 7. DNA copy number and gene expression data, 

reordered by clustering Euclidean distance of the ERBB2 

Region. Once clustered, we find that cell line-matched DNA 

copy number and gene expression measurements are often 

next to each other or very close together, indicating a very 

high correlation between gene copy number and over/under 

expression of mRNA. Two examples are shown in the figure: 

the BT474 and the Norway 101 cell lines. 

 

6. CONCLUSION 

This paper presents Line Graph Explorer, a visually scalable 

technique for visualizing large collections of line graph data. The 

combination of a Table Lens-like interface for reordering line 

graphs based on associated metadata and a Focus+Context 

approach for inspecting line graph details affords a powerful and 

facile interaction technique for exploratory analysis of large 

collections of line graph data. Our preliminary evaluation of the 

prototype with data from a number of different domains suggests 

LGE’s potential as a general tool for line graph data visualization. 

Viewed as an extension of Table Lens, it seems reasonable that 

LGE would likely inherit many of the same interaction and 

visualization benefits.  

While our current work focuses on the combination of reorderable 

metadata and compressed line graphs, there remains an open 

question in the current design as to the most appropriate 

techniques to provide detail and context simultaneously. Studies 

of the effectiveness of Focus+Context techniques have yielded 

mixed results. While such techniques have been found to be 

beneficial for some navigation tasks [10, 24], their benefit is more 

questionable for interactive layout [9] and visual scanning [15]. 

We are currently initiating a user study comparing the use of 

Focus+Context, Overview+Detail and Details-on-Demand 

approaches for exploring line graph data. 

We are also interested in examining methods to magnify all 

graphs at a specific point on the x-axis (a vertical lens). Such 

methods, when coupled with user-variable magnification, would 
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Gene Expression 

Data 

BT474 mRNA

BT474 DNA

Norway 101 DNA 

Norway 101 mRNA

ERBB2 ERBB2

BT474 mRNA 



allow the user to drill to an arbitrary level of graph detail in either 

dimension. In addition, we are interested in expanding LGE’s data 

analysis tool set by adding interactive data filtering as well as 

more powerful methods of feature comparison and search.  
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