Yun-zhou Zhu
Department of Computer Science
China University of Science and Technology
Hefei, Anhui
People's Republic of China

Abstract

In this paper we describe the pronerties of the line graoh of \boldsymbol{r}-acyclic hynergraphs. Based on the properties, an efficient algorithm is given for determining whether a hypergraph is γ acyclic. The algorithm runs in $O(n(n+e))$ time for a hypersranh with its line granh having n vertices and e edges.

1. Introduction

There is a natural correspondence betwefn database schemes and hypergraohs. A number of basic desirable pronerties of database schemes have been shown to be equivalent to acyclicity (2). Further R. Fagin has recently defined two types acyclicity for hypergraphs which he calls β-acyclicity and γ-acyclicity (3) (where the early type of acyclicity he calls $\alpha-$ acyclicity). He proves that $\boldsymbol{\gamma}$-acyclicity is equivalent to some more desirable conditions involving monotone-increasing joins and unique relationship among attrbutes, which are not equivalent to other acyclicities.

There have been Dolynomial-time algorithms for determining a-acyclicity $(4,2), \beta$-acyclicity (3) and γ-acyclicity $(5,3)$, respectively. A linear-time algorithm for α-acyclicity has recently been given by Tarjan and Yannakakis (6). We also note that Karen Chase (7) offers two methods to make a α-cyclic hyperoraph to be α-acyclic. The purpose of this pader is to discuss the properties of the line graph corresponding to $\boldsymbol{\gamma}$ acyclic hypergraph. Based on the proverties an efficient algorithm is given for determining whether a hypergraph is r acyclic by means of the line graph of the hynergranh.

2. \boldsymbol{r}-acyclicity

A hypergraph (1) is a pair (N, E), where N is a finite set of nodes and E is a set of edges which are arbitrary
nonemnty subset of N.
A γ-cycle in a hyoergranh H is a secuence

$$
\left(S_{1}, x_{1}, S_{2}, x_{2}, \ldots, S_{m}, x_{m}, S_{m+1}\right)
$$

such that
(a) x_{1}, \ldots, x_{m} are distinct nodes of H :
(b) S_{1}, \ldots, S_{m} are distinct edges of H and $S_{m+1}=S_{1}$;
(c) $m \geqslant 3$, that is, there are at least 3 edges involved;
(d) x_{i} is in S_{i} and $S_{i+1}(1 \leqslant i \leqslant m)$; and
(e) if $1 \leqslant i<m$, then x_{i} is no S_{j} except S_{i} and S_{i+1}
where m is the size of γ-cycle.
Definition 1 A hyperaraph is γ-cyclic if it has a γ-cycle.

Let $\left(S_{1}, \ldots, S_{m}, S_{m+1}\right)$ be a secuence of sets, where S_{1}, \ldots, S_{m} are distinct and $S_{m+1}=S_{1}$. Let us call S_{i} and S_{i+1} neighbors ($1 \leqslant i \leqslant m$); note, in oarticular, that S_{m} and S_{1} are neighbors. Le \ddagger us call (S_{1}, \ldots, S_{m}, S_{m+1}) a oure cycle if $m \geqslant 3$ and if whenever $\mathrm{i} \neq j$, then $\mathrm{S}_{i} \cap \mathrm{~S}_{j}$ is nonempty if and only if S_{i} and S_{j} are neighbors.
Definition 2 A hyoergraoh is γ-cyclic if it has either a γ-cycle of size 3 or a pure cycle.
Lemma 1 Definition $1-2$ of $\boldsymbol{\gamma}$-cyclicity are equivalent (3).

A hypergraph is $\boldsymbol{\gamma}$-acyclic if it is not \boldsymbol{r}-cyclic. It is easy to see trat a hypergranh is r-cyclic according to Definition 2 if it contains at least one of two kinds of "forbidden configurations" as shown in Figure 1.

Fiqure 1
Singapore, August, 1984

Conference on Very Large Data Bases.

3. A Characterization of Line Graph of a Hypergraph

Let $H=\left(N ; X_{1}, X_{2}, \ldots, X_{n}\right)$ be a hypergraoh with n edges. The line graph of H is defined to be the simple graph $L(H)$ of order n whose vertices $x_{1}, x_{2}, \ldots, x_{n}$ respectively represent the edges x_{1}, x_{2}, \ldots, x_{n} of H and with vertices x_{i} and x_{j} joined by an edge if and only if $X_{i} \cap X_{j}=\boldsymbol{\phi}$. We say that $W_{i j}$ is the weight of the edge between x_{i} and x_{j} in $L(H)$ if $W_{i j}=x_{i} \cap x_{j}$ and $W_{i j} \neq \phi$. Figure 2 shows a hypergraph, its corresponding line graph and weights.

Figure 2
A graph G is a chordal graph if every cycle in G with at least four distinct vertices has a chord. There are many important results about chordal graph (8). Lemma 2 Line graph $L(H)$ of a $\boldsymbol{\gamma}$-acyclic hypergraph H is chordal.
Proof. Let H be a $\boldsymbol{\gamma}$-acyclic hypergraph, and $L(H)$ be its line graph. Assume that $L(H)$ is not chordal. We shall show that H is γ-cyclic.

Since $L(H)$ is not chordal, there is a cycle ($x_{1}, e_{,}, \ldots . x_{k}, e_{k}, x_{k+1}$) in $L(H)$ (if no cycle, then $L(H)$ must be chordal), such that
(a) $x_{1}, x_{2}, \ldots, x_{k}$ are distinct vertices and $x_{k+1}=x_{1}$;
(b) $e_{1}, e_{2}, \ldots, e_{k}$ are distinct edges;
(c) $k \geqslant 4$; and
(d) there are no edges in $L(H)$ connecting two vertices of the cycle, except $e_{1}, e_{2}, \ldots, e_{k}$.
It follows immediately that there is a cycle ($S_{1}, S_{2}, \ldots, S_{k}, S_{k+1}$) in H corresoonding to $x_{1}, x_{2}, \ldots, x_{k}, x_{k+1}$ (note where $S_{k+1}=S_{1}$). It is easy to see that $S_{i} \cap S_{j}=\phi$ if and only if S_{i} and S_{j} are neighbors. Together with $k \geqslant 4$, we claim the cycle in H is a pure cycle. From Definition 2, H is $\boldsymbol{\gamma}_{-}$ cyclic. This is a contradiction. Thus Lemma 2 is proved.

Now, let us see the case of the cycle with size 3 in a hypergranh. Let us say that a hyoergraph H is pairwise nondisjoint if every nair of edges in H is nondisjoint. Let us call a complete aranh K_{3} isosceles trianale if there are at least two edges with precisely the same weight in K_{3}.

Lemma 3 If a pairwise nondisjoint hypergraoh H with 3 edaes is γ-acyclic, then its $L(H)$ is an isosceles triangle.
Proof. Let H be a Dairwise nondisjoint hypercraph with 3 edges, then it is obvious that $L(H)$ is a triangle.

Assume $L(H)$ is not isosceles. Let A, B and C be vertices of $L(H), W_{1}, W_{2}$ and ${ }^{\prime}$ be weights of the edges in $L(H)$, resnectively, as shown in Figure 3.

Figure 3
By assumption, we know that $W_{1} \neq W_{2}$, $W_{2} \neq W_{3}$ and $W_{1} \neq W_{3}$. Now we show that none of the followings is true.

$$
\begin{align*}
& W_{1}=W_{2} \cup W_{3} \\
& W_{2}=W_{1} \cup W_{3} \tag{array}\\
& W_{3}=W_{1} \cup W_{2}
\end{align*}
$$

Because of symmetry, we only need to deny (3.1). Since by (3.1), $W_{2} \subseteq W_{1}$ and $W_{3} \subseteq W_{1}$, then for each $a \in W_{2}$, it follows $a \in W_{1}$, or $a \in B$. On other hand, $a \in W_{2}$, that is, $a \in A$. Therefore $a \in A \cap B$, or $a \in W_{3}$. So $W_{2} \subseteq W_{3}$. Similarly, for each $b \in W_{3}$, we obtain that $b \in A, b \in W_{1}$ and $b \in C$. From $b \in A \cap C$ or $b \in W_{2}$, we claim $W_{3} \cong_{2} W_{2}$, thus $W_{2}=W_{3}$. The contradiction shows that none of those equations holds.

Now we shall prove that at least two following equations are true.

$$
\begin{align*}
& W_{1}-W_{2} \cup W_{3} \neq \phi \tag{3.4}\\
& W_{2}-W_{1} \cup W_{3} \neq \phi \\
& W_{3}-W_{1} \cup W_{2} \neq \phi \tag{3.6}
\end{align*}
$$

we can assume without loss of generality that neither (3.4) nor (3.5) is true, that is, $W_{1}-W_{2} \cup W_{3}=\phi$ and $W_{2}-W_{1} \cup W_{3}=\phi$. Based on (3.1) and (3.2), we obtain

$$
\begin{align*}
& W_{1} \subset W_{2} \cup W_{3} \tag{3.7}\\
& W_{2} \subset W_{1} \cup W_{3} \tag{3.8}
\end{align*}
$$

Let $F=W_{1} \cap W_{2}, F_{1}=W_{1}-F$ and $F_{2}=W_{2}-F$ (note, there is at least one of F_{1} and F_{2} being nonempty, otherwise $\left.W_{1}=W_{2}=F\right)$. There are three cases as follows:
Case 1. F_{1} is nonemoty. By (3.7), $F_{1} \cup \mathcal{F C F}_{2} \cup F U W_{3}$, i.e., $\mathrm{F}_{1} \subset \mathrm{~F}_{2} \cup W_{3}$, so $F_{1} \subset W_{3}$ (because $\dot{F}_{1} \cap \dot{F}_{2}=\phi$). It follows $F_{1} \subset A$. On the other hand, $F_{1} \subset W_{1}$, i.e., $F_{1} \subset C$. Hence, $F_{1} \subset A \cap C$, i.e., $F_{1} \subset W_{2}$, it is impossible;
Case 2. F_{2} is nonempty. Similar to Case 1 , by (3.8), we can obtain $F_{2} \subset W_{1}, \therefore t$ is also impossible:

Singapore, Auguat, 1984

Case 3. Both F_{1} and F_{2} are nonempty. Similar to Case 1 and Case 2.
Thus there exist distinct nodes a and b, such that

$$
\begin{aligned}
& a \in W_{1}-W_{2} \cup W_{3} \\
& b \in W_{2}-W_{1} \cup W_{3}
\end{aligned}
$$

We can also select a node $c \in W_{3}$ (of course, $a \neq c, b \neq c$). It is clear that (A, a, $B, b, C, c, A)$ is a r-cycle. This is the desired contradiction which proves Lemma 3.

In fact, the converse to Lemma 3 is also true. Let us see the following theorem by which an efficient algorithm is aiven later.
Theorem 1 A hyperaraph H is γ-acyclic if and only if its $L(H)$ is chordal and every triangle in $L(H)$ is isosceles.
Proof. (\Rightarrow): Let H be a γ-acyclic hypergraph, and $L(H)$ be the line graph of H. By Lemma 2, L(H) is chordal. For every three pairwise nondisjoint edges in H, since they are not γ-cycle, their corresDonding triangle in $L(H)$ is isosceles.
(\Leftarrow) : Let $L(H)$ corresponding to H be a chordal graph with every triangle being isosceles. We must show that H is -acyclic. Since $L(H)$ is chordal, then H has no pure cycle with size more than 3.

Consider every three pairwise nondisjoint edges (S_{i}, S_{j}, S_{k}) in H which corresponding to every isosceles triangle in $L(H)$, respectively. Assume without loss of generality $S_{i} \cap S_{j}=S_{i} \cap S_{k}$, then no matter how we select $x \in S_{i} \cap S_{k}$, there exist $x \in S_{i} \cap S_{j}$, i.e., $x \in S_{j}$. Similary, for each $y \in S_{i} \cap S_{j}$, we obtain $y \in S_{i} \cap S_{k}$, i.e., $y \in S_{k}$.

Algorithm 1 BOOLEAN PROCEDRUE HYPERGRAPH(H); BEGIN $L \leftarrow \phi$;

$$
\begin{aligned}
& \text { FOR each pair hyperedges } \\
& \text { IF } E_{i} \wedge E_{j} \neq \phi \text { THEN BEGIN }
\end{aligned}
$$

Therefore there is no $\boldsymbol{\gamma}$-cycle of size 3 in H. Of course, there is no pure cycle of size 3 in H. Thus H is r-acyclic.

It is known that for some oraph G, there is no graph whose line granh is G. A ordinary undirected oranh (without self-loops) is, of course, a hyoergranh whose each edaes has only two or one node For example, there is no granh whose line graph is the granh shown in Figure 4.

Figure 4
Here, we only consider the aranhs which are line graphs of given hypergranhs.

4. An Efficient Algorithm for Testing r-acyclicity

Based on the nronerties of line graph of r-acyclic hypergraph, we annly the following operations sequentially to hypergraph H.
(a) Transform H into its $L(H)$;
(b) Check whether L(H) is chordal, if it is not, then H is r-cyclic;
(c) Check whether every triancle in $L(H)$ is isosceles, if one of triangle is not isosceles, then H is r-cyclic; otherwise H is r-acyclic.
The algorithm is shown in Figure 5.

END;
IF L is not a chordal graph THEN RETURN FALSE;
FOR each edge $e_{i j}$ of L DO
FOR each vertex x_{k} of L DO
IF (x_{i}, x_{j}, x_{k}) is in triangle $T_{i j k}$ THEN
IF $T_{i j k}$ is not isosceles IHEN RETURN FALSE;
RETURN TRUE;
END.
Figure 5

The following Lemma is important for our algorithm.
Lemma 4 A chordal granh recoanition may be performed in $0(n+e)$ time, where n is the number of vertices and e is the number of edges in the oraph $(9,10)$.

Theorem 2 Algorithm 1 is correct and runs in $O(n(n+e))$ time, for $L(H)$ having n vertices and e edges.
Proof. By Theorem 1, Algorithm 1 is correct.

Let us analyse the complexity of the algorithm. First we consider the time spent in forming $L(H)$. The maximal number of the edges in $L(H)$ is $O\left(n^{2}\right)$. The operation for tesing chordal graph should make our algorithm run in $O(n+e)$ time according to Lemma 4. Finally the time spent in checking every isosceles triangle is $O(e \cdot n)$. Thus, the bound is

$$
0\left(n^{2}+n+e+e \cdot n\right)=0(n(n+e))
$$

The proof is complete.
However, the details of the algorithm may be imoroved, such that the algorithm would be more efficient. One thing should be emphasized here, the input of the algorithm is a matrix of a hypergranh, which may be called renresentative mátrix.

5. Conclusion

We have discussed the proverties of line graphs corresponding to hyoergraohs. Those properties are also interesting graph-theoretic facts.

However, how to transform the cyclic database scheme into the r-acyclic is still the problem to be solved. Another question to be settled is whether there exist a linear-time alọorithm for testing \boldsymbol{r}-acyclicity.

Acknowledgement

The author would like to thank Prof. Yong-nian Chen for his comments and suggestions on a draft of this paper. The author is grateful to his colleagues Chao Ruan, Pei-Wei Mi and Qin-Xun Yu for their helpful discussion on the tonics.

References

(1) Berge, C. "Graphs and hypergranhs", English Trans. By Edward Minieka,

North Holland, 1973.
(?) Beeri, C., Facin, R., Maier, D. and Yannakakis, M. "On the desirahility of database schemes", J. ACM 30, 3 (July 1983).
(3) Fagin, R. "Degrees of acyclicity for hypergranhs and relational database schemes", J. ACM 30, 3 (July 1983).
(4) Graham, M. H. "On the universal relation", Tech. Ren., Univ. of Toronto, Ónt., Can., Sept. 1979.
(5) D'Atri, A., et al. "Acyclic hypergraphs: Their reccgnition and toDdown versus bottom-up generation", Tech. Rep. R. 29, Consiglio Nazionale Delle Richerche, Istituto di Analisi dei Sistemi ed Informatica, 198?.
(6) Tarjan, R. E. et al. "Simnle lineartime algorithm to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hynergraphs", Tech. Ren. Bell Labs. Murray Hill, N. J., May, 1982.
(7) Karen Chase "Join araoh and acyclic database schemes", Proceedings of the Seventh International Conference on VLDB, 1981.
(8) Gavril, F. "Alcorithms for minimum coloring, maximum clique, minimum covering by cliques and maximum independent set of a chordal graph", SIAM J. Comput. 1 (1972).
(9) Lueker, G. S. "Efficient algorithm for chordal graphs and interval graphs", Ph. D. Diss., Prog. Anpl. Math. and Dent. EE, Princeton U. 1975.
(10)Rose, D. J., Tarjan, R. E., Lueker, G. S. "Alcorithmic aspects' of vertex elimination on araphs", SIAM J. Comnut. 5, 2 (1976).

Abstract

Permission to copy without fee all or part of this material is granted provided that the coples are not made or distributed for direct commercial advantage, the VLDB copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Very Large Data Base Endowment. To copy otherwise, or to republish, requires a fee and/or special permission from the Endowment.

