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ABSTRACT

This paper studies the problem of embedding very large
information networks into low-dimensional vector spaces,
which is useful in many tasks such as visualization, node
classification, and link prediction. Most existing graph em-
bedding methods do not scale for real world information
networks which usually contain millions of nodes. In this
paper, we propose a novel network embedding method called
the “LINE,”which is suitable for arbitrary types of informa-
tion networks: undirected, directed, and/or weighted. The
method optimizes a carefully designed objective function
that preserves both the local and global network structures.
An edge-sampling algorithm is proposed that addresses the
limitation of the classical stochastic gradient descent and
improves both the effectiveness and the efficiency of the in-
ference. Empirical experiments prove the effectiveness of
the LINE on a variety of real-world information networks,
including language networks, social networks, and citation
networks. The algorithm is very efficient, which is able to
learn the embedding of a network with millions of vertices
and billions of edges in a few hours on a typical single ma-
chine. The source code of the LINE is available online.1
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1. INTRODUCTION
Information networks are ubiquitous in the real world with

examples such as airline networks, publication networks, so-
cial and communication networks, and the World Wide Web.
The size of these information networks ranges from hundreds
of nodes to millions and billions of nodes. Analyzing large
information networks has been attracting increasing atten-
tion in both academia and industry. This paper studies
the problem of embedding information networks into low-
dimensional spaces, in which every vertex is represented as
a low-dimensional vector. Such a low-dimensional embed-
ding is very useful in a variety of applications such as vi-
sualization [21], node classification [3], link prediction [10],
and recommendation [23].

Various methods of graph embedding have been proposed
in the machine learning literature (e.g., [4, 20, 2]). They
generally perform well on smaller networks. The problem
becomes much more challenging when a real world informa-
tion network is concerned, which typically contains millions
of nodes and billions of edges. For example, the Twitter
followee-follower network contains 175 million active users
and around twenty billion edges in 2012 [14]. Most exist-
ing graph embedding algorithms do not scale for networks
of this size. For example, the time complexity of classical
graph embedding algorithms such as MDS [4], IsoMap [20],
Laplacian eigenmap [2] are at least quadratic to the number
of vertices, which is too expensive for networks with mil-
lions of nodes. Although a few very recent studies approach
the embedding of large-scale networks, these methods either
use an indirect approach that is not designed for networks
(e.g., [1]) or lack a clear objective function tailored for net-
work embedding (e.g., [16]). We anticipate that a new model
with a carefully designed objective function that preserves
properties of the graph and an efficient optimization tech-
nique should effectively find the embedding of millions of
nodes.

In this paper, we propose such a network embedding model
called the “LINE,” which is able to scale to very large, arbi-
trary types of networks: undirected, directed and/or weighted.
The model optimizes an objective which preserves both the
local and global network structures. Naturally, the local
structures are represented by the observed links in the net-
works, which capture the first-order proximity between the
vertices. Most existing graph embedding algorithms are de-
signed to preserve this first-order proximity, e.g., IsoMap [20]
and Laplacian eigenmap [2], even if they do not scale. We
observe that in a real-world network many (if not the major-
ity of) legitimate links are actually not observed. In other
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Figure 1: A toy example of information network. Edges can
be undirected, directed, and/or weighted. Vertex 6 and 7
should be placed closely in the low-dimensional space as they
are connected through a strong tie. Vertex 5 and 6 should
also be placed closely as they share similar neighbors.

words, the observed first-order proximity in the real world
data is not sufficient for preserving the global network struc-
tures. As a complement, we explore the second-order prox-
imity between the vertices, which is not determined through
the observed tie strength but through the shared neighbor-
hood structures of the vertices. The general notion of the
second-order proximity can be interpreted as nodes with
shared neighbors being likely to be similar. Such an intu-
ition can be found in the theories of sociology and linguistics.
For example, “the degree of overlap of two people’s friend-
ship networks correlates with the strength of ties between
them,” in a social network [6]; and “You shall know a word
by the company it keeps” (Firth, J. R. 1957:11) in text cor-
pora [5]. Indeed, people who share many common friends
are likely to share the same interest and become friends, and
words that are used together with many similar words are
likely to have similar meanings.

Fig. 1 presents an illustrative example. As the weight of
the edge between vertex 6 and 7 is large, i.e., 6 and 7 have a
high first-order proximity, they should be represented closely
to each other in the embedded space. On the other hand,
though there is no link between vertex 5 and 6, they share
many common neighbors, i.e., they have a high second-order
proximity and therefore should also be represented closely to
each other. We expect that the consideration of the second-
order proximity effectively complements the sparsity of the
first-order proximity and better preserves the global struc-
ture of the network. In this paper, we will present care-
fully designed objectives that preserve the first-order and
the second-order proximities.

Even if a sound objective is found, optimizing it for a very
large network is challenging. One approach that attracts
attention in recent years is using the stochastic gradient de-
scent for the optimization. However, we show that directly
deploying the stochastic gradient descent is problematic for
real world information networks. This is because in many
networks, edges are weighted and the weights usually present
a high variance. Consider a word co-occurrence network, in
which the weights (co-occurrences) of word pairs may range
from one to hundreds of thousands. These weights of the
edges will be multiplied into the gradients, resulting in the
explosion of the gradients and thus compromise the perfor-
mance. To address this, we propose a novel edge-sampling
method, which improves both the effectiveness and efficiency
of the inference. We sample the edges with the probabilities
proportional to their weights, and then treat the sampled
edges as binary edges for model updating. With this sam-

pling process, the objective function remains the same and
the weights of the edges no longer affect the gradients.

The LINE is very general, which works well for directed
or undirected, weighted or unweighted graphs. We evalu-
ate the performance of the LINE with various real-world
information networks, including language networks, social
networks, and citation networks. The effectiveness of the
learned embeddings is evaluated within multiple data min-
ing tasks, including word analogy, text classification, and
node classification. The results suggest that the LINE model
outperforms other competitive baselines in terms of both ef-
fectiveness and efficiency. It is able to learn the embedding
of a network with millions of nodes and billions of edges in
a few hours on a single machine.

To summarize, we make the following contributions:

• We propose a novel network embedding model called
the “LINE,”which suits arbitrary types of information
networks and easily scales to millions of nodes. It has
a carefully designed objective function that preserves
both the first-order and second-order proximities.

• We propose an edge-sampling algorithm for optimizing
the objective. The algorithm tackles the limitation of
the classical stochastic gradient decent and improves
the effectiveness and efficiency of the inference.

• We conduct extensive experiments on real-world infor-
mation networks. Experimental results prove the ef-
fectiveness and efficiency of the proposed LINE model.

Organization. The rest of this paper is organized as
follows. Section 2 summarizes the related work. Section 3
formally defines the problem of large-scale information net-
work embedding. Section 4 introduces the LINE model in
details. Section 5 presents the experimental results. Finally
we conclude in Section 6.

2. RELATED WORK
Our work is related to classical methods of graph em-

bedding or dimension reduction in general, such as multi-
dimensional scaling (MDS) [4], IsoMap [20], LLE [18] and
Laplacian Eigenmap [2]. These approaches typically first
construct the affinity graph using the feature vectors of the
data points, e.g., the K-nearest neighbor graph of data, and
then embed the affinity graph [22] into a low dimensional
space. However, these algorithms usually rely on solving the
leading eigenvectors of the affinity matrices, the complexity
of which is at least quadratic to the number of nodes, making
them inefficient to handle large-scale networks.

Among the most recent literature is a technique called
graph factorization [1]. It finds the low-dimensional embed-
ding of a large graph through matrix factorization, which is
optimized using stochastic gradient descent. This is possi-
ble because a graph can be represented as an affinity ma-
trix. However, the objective of matrix factorization is not
designed for networks, therefore does not necessarily pre-
serve the global network structure. Intuitively, graph fac-
torization expects nodes with higher first-order proximity
are represented closely. Instead, the LINE model uses an
objective that is particularly designed for networks, which
preserves both the first-order and the second-order prox-
imities. Practically, the graph factorization method only
applies to undirected graphs while the proposed model is
applicable for both undirected and directed graphs.



The most recent work related with ours is DeepWalk [16],
which deploys a truncated random walk for social network
embedding. Although empirically effective, the DeepWalk
does not provide a clear objective that articulates what net-
work properties are preserved. Intuitively, DeepWalk ex-
pects nodes with higher second-order proximity yield similar
low-dimensional representations, while the LINE preserves
both first-order and second-order proximities. DeepWalk
uses random walks to expand the neighborhood of a vertex,
which is analogical to a depth-first search. We use a breadth-
first search strategy, which is a more reasonable approach to
the second-order proximity. Practically, DeepWalk only ap-
plies to unweighted networks, while our model is applicable
for networks with both weighted and unweighted edges.

In Section 5, we empirically compare the proposed model
with these methods using various real world networks.

3. PROBLEM DEFINITION
We formally define the problem of large-scale information

network embedding using first-order and second-order prox-
imities. We first define an information network as follows:

Definition 1. (Information Network) An informa-

tion network is defined as G = (V,E), where V is the set
of vertices, each representing a data object and E is the
set of edges between the vertices, each representing a re-
lationship between two data objects. Each edge e ∈ E is
an ordered pair e = (u, v) and is associated with a weight
wuv > 0, which indicates the strength of the relation. If G
is undirected, we have (u, v) ≡ (v, u) and wuv ≡ wvu; if G
is directed, we have (u, v) 6≡ (v, u) and wuv 6≡ wvu.

In practice, information networks can be either directed
(e.g., citation networks) or undirected (e.g., social network
of users in Facebook). The weights of the edges can be either
binary or take any real value. Note that while negative edge
weights are possible, in this study we only consider non-
negative weights. For example, in citation networks and
social networks, wuv takes binary values; in co-occurrence
networks between different objects, wuv can take any non-
negative value. The weights of the edges in some networks
may diverge as some objects co-occur many times while oth-
ers may just co-occur a few times.

Embedding an information network into a low-dimensional
space is useful in a variety of applications. To conduct the
embedding, the network structures must be preserved. The
first intuition is that the local network structure, i.e., the
local pairwise proximity between the vertices, must be pre-
served. We define the local network structures as the first-
order proximity between the vertices:

Definition 2. (First-order Proximity) The first-order
proximity in a network is the local pairwise proximity be-
tween two vertices. For each pair of vertices linked by an
edge (u, v), the weight on that edge, wuv, indicates the first-
order proximity between u and v. If no edge is observed
between u and v, their first-order proximity is 0.

The first-order proximity usually implies the similarity of
two nodes in a real-world network. For example, people who
are friends with each other in a social network tend to share
similar interests; pages linking to each other in World Wide
Web tend to talk about similar topics. Because of this im-
portance, many existing graph embedding algorithms such

as IsoMap, LLE, Laplacian eigenmap, and graph factoriza-
tion have the objective to preserve the first-order proximity.
However, in a real world information network, the links

observed are only a small proportion, with many others
missing [10]. A pair of nodes on a missing link has a zero
first-order proximity, even though they are intrinsically very
similar to each other. Therefore, first-order proximity alone
is not sufficient for preserving the network structures, and
it is important to seek an alternative notion of proximity
that addresses the problem of sparsity. A natural intuition
is that vertices that share similar neighbors tend to be sim-
ilar to each other. For example, in social networks, people
who share similar friends tend to have similar interests and
thus become friends; in word co-occurrence networks, words
that always co-occur with the same set of words tend to
have similar meanings. We therefore define the second-order
proximity, which complements the first-order proximity and
preserves the network structure.

Definition 3. (Second-order Proximity) The second-
order proximity between a pair of vertices (u, v) in a net-
work is the similarity between their neighborhood network
structures. Mathematically, let pu = (wu,1, . . . , wu,|V |) de-
note the first-order proximity of u with all the other vertices,
then the second-order proximity between u and v is deter-
mined by the similarity between pu and pv. If no vertex is
linked from/to both u and v, the second-order proximity
between u and v is 0.

We investigate both first-order and second-order proxim-
ity for network embedding, which is defined as follows.

Definition 4. (Large-scale Information Network Em-
bedding) Given a large network G = (V,E), the problem
of Large-scale Information Network Embedding aims
to represent each vertex v ∈ V into a low-dimensional space
Rd, i.e., learning a function fG : V → Rd, where d ≪ |V |.
In the space Rd, both the first-order proximity and the
second-order proximity between the vertices are preserved.

Next, we introduce a large-scale network embedding model
that preserves both first- and second-order proximities.

4. LINE: LARGE-SCALE INFORMATION

NETWORK EMBEDDING
A desirable embedding model for real world information

networks must satisfy several requirements: first, it must
be able to preserve both the first-order proximity and the
second-order proximity between the vertices; second, it must
scale for very large networks, say millions of vertices and bil-
lions of edges; third, it can deal with networks with arbitrary
types of edges: directed, undirected and/or weighted. In this
section, we present a novel network embedding model called
the “LINE,” which satisfies all the three requirements.

4.1 Model Description
We describe the LINE model to preserve the first-order

proximity and second-order proximity separately, and then
introduce a simple way to combine the two proximity.

4.1.1 LINE with First-order Proximity

The first-order proximity refers to the local pairwise prox-
imity between the vertices in the network. To model the



first-order proximity, for each undirected edge (i, j), we de-
fine the joint probability between vertex vi and vj as follows:

p1(vi, vj) =
1

1 + exp(−~uT
i · ~uj)

, (1)

where ~ui ∈ Rd is the low-dimensional vector representation
of vertex vi. Eqn. (1) defines a distribution p(·, ·) over the
space V × V , and its empirical probability can be defined
as p̂1(i, j) =

wij

W
, where W =

∑
(i,j)∈E wij . To preserve the

first-order proximity, a straightforward way is to minimize
the following objective function:

O1 = d(p̂1(·, ·), p1(·, ·)), (2)

where d(·, ·) is the distance between two distributions. We
choose to minimize the KL-divergence of two probability dis-
tributions. Replacing d(·, ·) with KL-divergence and omit-
ting some constants, we have:

O1 = −
∑

(i,j)∈E

wij log p1(vi, vj), (3)

Note that the first-order proximity is only applicable for
undirected graphs, not for directed graphs. By finding the
{~ui}i=1..|V | that minimize the objective in Eqn. (3), we can
represent every vertex in the d-dimensional space.

4.1.2 LINE with Second-order Proximity

The second-order proximity is applicable for both directed
and undirected graphs. Given a network, without loss of
generality, we assume it is directed (an undirected edge can
be considered as two directed edges with opposite directions
and equal weights). The second-order proximity assumes
that vertices sharing many connections to other vertices are
similar to each other. In this case, each vertex is also treated
as a specific “context” and vertices with similar distributions
over the “contexts” are assumed to be similar. Therefore,
each vertex plays two roles: the vertex itself and a specific
“context” of other vertices. We introduce two vectors ~ui and
~u′
i, where ~ui is the representation of vi when it is treated

as a vertex while ~u′
i is the representation of vi when it is

treated as a specific “context”. For each directed edge (i, j),
we first define the probability of “context” vj generated by
vertex vi as:

p2(vj |vi) =
exp(~u′T

j · ~ui)
∑|V |

k=1 exp(~u
′T
k · ~ui)

, (4)

where |V | is the number of vertices or “contexts.” For each
vertex vi, Eqn. (4) actually defines a conditional distribution
p2(·|vi) over the contexts, i.e., the entire set of vertices in the
network. As mentioned above, the second-order proximity
assumes that vertices with similar distributions over the con-
texts are similar to each other. To preserve the second-order
proximity, we should make the conditional distribution of
the contexts p2(·|vi) specified by the low-dimensional rep-
resentation be close to the empirical distribution p̂2(·|vi).
Therefore, we minimize the following objective function:

O2 =
∑

i∈V

λid(p̂2(·|vi), p2(·|vi)), (5)

where d(·, ·) is the distance between two distributions. As
the importance of the vertices in the network may be differ-
ent, we introduce λi in the objective function to represent

the prestige of vertex i in the network, which can be mea-
sured by the degree or estimated through algorithms such as
PageRank [15]. The empirical distribution p̂2(·|vi) is defined
as p̂2(vj |vi) =

wij

di
, where wij is the weight of the edge (i, j)

and di is the out-degree of vertex i, i.e. di =
∑

k∈N(i) wik,

where N(i) is the set of out-neighbors of vi. In this paper,
for simplicity we set λi as the degree of vertex i, i.e., λi = di,
and here we also adopt KL-divergence as the distance func-
tion. Replacing d(·, ·) with KL-divergence, setting λi = di
and omitting some constants, we have:

O2 = −
∑

(i,j)∈E

wij log p2(vj |vi). (6)

By learning {~ui}i=1..|V | and {~u′
i}i=1..|V | that minimize

this objective, we are able to represent every vertex vi with
a d-dimensional vector ~ui.

4.1.3 Combining first-order and second-order prox-
imities

To embed the networks by preserving both the first-order
and second-order proximity, a simple and effective way we
find in practice is to train the LINE model which preserves
the first-order proximity and second-order proximity sepa-
rately and then concatenate the embeddings trained by the
two methods for each vertex. A more principled way to
combine the two proximity is to jointly train the objective
function (3) and (6), which we leave as future work.

4.2 Model Optimization
Optimizing objective (6) is computationally expensive,

which requires the summation over the entire set of ver-
tices when calculating the conditional probability p2(·|vi).
To address this problem, we adopt the approach of negative
sampling proposed in [13], which samples multiple negative
edges according to some noisy distribution for each edge
(i, j). More specifically, it specifies the following objective
function for each edge (i, j):

log σ(~u′
j
T · ~ui) +

K∑

i=1

Evn∼Pn(v)[log σ(−~u′
n
T · ~ui)], (7)

where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. The
first term models the observed edges, the second term mod-
els the negative edges drawn from the noise distribution and
K is the number of negative edges. We set Pn(v) ∝ dv

3/4,
which is proposed in [13] and dv is the out degree of vertex
v.

For the objective function (3), there exists a trivial solu-
tion: uik = ∞, for i=1, . . . , |V | and k = 1, . . . , d. To avoid
the trivial solution, we can still utilize the negative sampling
approach (7) by just changing ~u′T

j to ~uT
j .

We adopt the asynchronous stochastic gradient algorithm
(ASGD) [17] for optimizing Eqn. (7). In each step, the
ASGD algorithm samples a mini-batch of edges and then
updates the model parameters. If an edge (i, j) is sampled,
the gradient w.r.t. the embedding vector ~ui of vertex i will
be calculated as:

∂O2

∂~ui
= wij ·

∂ log p2(vj |vi)

∂~ui
(8)

Note that the gradient will be multiplied by the weight of
the edge. This will become problematic when the weights



of edges have a high variance. For example, in a word co-
occurrence network, some words co-occur many times (e.g.,
tens of thousands) while some words co-occur only a few
times. In such networks, the scales of the gradients diverge
and it is very hard to find a good learning rate. If we select a
large learning rate according to the edges with small weights,
the gradients on edges with large weights will explode while
the gradients will become too small if we select the learning
rate according to the edges with large weights.

4.2.1 Optimization via Edge Sampling

The intuition in solving the above problem is that if the
weights of all the edges are equal (e.g., network with binary
edges), then there will be no problem of choosing an appro-
priate learning rate. A simple treatment is thus to unfold
a weighted edge into multiple binary edges, e.g., an edge
with weight w is unfolded into w binary edges. This will
solve the problem but will significantly increase the memory
requirement, especially when the weights of the edges are
very large. To resolve this, one can sample from the origi-
nal edges and treat the sampled edges as binary edges, with
the sampling probabilities proportional to the original edge
weights. With this edge-sampling treatment, the overall ob-
jective function remains the same. Therefore, the problem
boils down to how to sample the edges according to their
weights.

Let W = (w1, w2, . . . , w|E|) denote the sequence of the
weights of the edges. A simple approach is to calculate

the sum of the weights wsum =
∑|E|

i=1 wi first, and then to
sample a random value within the range of [0, wsum] to see

which interval [
∑i−1

j=0 wj ,
∑i

j=0 wj ] the random value belongs

to. This approach takes O(|E|) time for drawing a sample,
which is very time consuming when the number of edges |E|
is large. In this paper, we use the alias table method [9] to
draw a sample according to the weights of the edges, which
takes only O(1) time when repeatedly drawing samples from
the same discrete distribution.

Sampling an edge from the alias table takes constant time,
i.e. O(1), and optimization with negative sampling takes
O(d(K + 1)) time, where K is the number of negative sam-
ples. Therefore, overall each step takes O(dK) time. In
practice, we find that the number of steps used for op-
timization is usually proportional to the number of edges
O(|E|). Therefore, the overall time complexity of the LINE
is O(dK|E|), which is linear to the number of edges |E|,
and does not depend on the number of vertices |V |. The
edge sampling treatment improves the effectiveness of the
stochastic gradient descent without compromising the effi-
ciency.

4.3 Discussion
We discuss several practical issues of the LINE model.

Low degree vertices. One practical issue is how to ac-
curately embed vertices with small degrees. As the number
of neighbors of such a node is very small, it is very hard
to accurately infer its representation, especially with the
second-order proximity based methods which heavily rely
on the number of “contexts.” An intuitive solution to this is
expanding the neighbors of those vertices by adding higher
order neighbors, such as neighbors of neighbors. In this pa-
per, we only consider adding second-order neighbors, i.e.,
neighbors of neighbors, to each vertex. The weight between

vertex i and its second-order neighbor j is measured as

wij =
∑

k∈N(i)

wik
wkj

dk
. (9)

In practice, one can only add a subset of vertices {j} which
have the largest proximity wij with the low degree vertex i.
New vertices. Another practical issue is how to find the
representation of newly arrived vertices. For a new vertex i,
if its connections to the existing vertices are known, we can
obtain the empirical distribution p̂1(·, vi) and p̂2(·|vi) over
existing vertices. To obtain the embedding of the new ver-
tex, according to the objective function Eqn. (3) or Eqn. (6),
a straightforward way is to minimize either one of the fol-
lowing objective functions

−
∑

j∈N(i)

wji log p1(vj , vi), or −
∑

j∈N(i)

wji log p2(vj |vi), (10)

by updating the embedding of the new vertex and keeping
the embeddings of existing vertices. If no connections be-
tween the new vertex and existing vertices are observed, we
must resort to other information, such as the textual infor-
mation of the vertices, and we leave it as our future work.

5. EXPERIMENTS
In this section, we empirically evaluate the effectiveness

and efficiency of the LINE model. We apply the method
to several large-scale real-world networks of different types,
including a language network, two social networks, and two
citation networks.

5.1 Experiment Setup

Data Sets.
(1) Language network. We construct a word co-occurrence

network from the entire set of English Wikipedia pages.
Words within every 5-word sliding window are considered
to be co-occurring with each other. Words with frequency
smaller than 5 are filtered out. (2) Social networks.
We use two social networks: Flickr and Youtube2. The
Flickr network is denser than the Youtube network (the
same network as used in DeepWalk [16]). (3)Citation Net-
works. Two types of citation networks are used: an au-
thor citation network and a paper citation network. We use
the DBLP data set [19]3 to construct the citation networks
between authors and between papers. The author citation
network records the number of papers written by one author
and cited by another author. The detailed statistics of these
networks are summarized into Table 1. They represent a
variety of information networks: directed and undirected,
binary and weighted. Each network contains at least half a
million nodes and millions of edges, with the largest network
containing around two million nodes and a billion edges.

Compared Algorithms.
We compare the LINE model with several existing graph

embedding methods that are able to scale up to very large
networks. We do not compare with some classical graph
embedding algorithms such as MDS, IsoMap, and Laplacian
eigenmap, as they cannot handle networks of this scale.
2Available at http://socialnetworks.mpi-sws.org/
data-imc2007.html
3Available at http://arnetminer.org/citation

http://socialnetworks.mpi-sws.org/data-imc2007.html
http://socialnetworks.mpi-sws.org/data-imc2007.html
http://arnetminer.org/citation


Table 1: Statistics of the real-world information networks.

Language Network Social Network Citation Network
Name Wikipedia Flickr Youtube DBLP(AuthorCitation) DBLP(PaperCitation)
Type undirected,weighted undirected,binary undirected,binary dircted,weighted directed,binary
|V| 1,985,098 1,715,256 1,138,499 524,061 781,109
|E| 1,000,924,086 22,613,981 2,990,443 20,580,238 4,191,677

Avg. degree 504.22 26.37 5.25 78.54 10.73
#Labels 7 5 47 7 7
#train 70,000 75,958 31,703 20,684 10,398

• Graph factorization (GF) [1]. We compare with the
matrix factorization techniques for graph factorization.
An information network can be represented as an affin-
ity matrix, and is able to represent each vertex with a
low-dimensional vector through matrix factorization.
Graph factorization is optimized through stochastic
gradient descent and is able to handle large networks.
It only applies to undirected networks.

• DeepWalk [16]. DeepWalk is an approach recently
proposed for social network embedding, which is only
applicable for networks with binary edges. For each
vertex, truncated random walks starting from the ver-
tex are used to obtain the contextual information, and
therefore only second-order proximity is utilized.

• LINE-SGD. This is the LINE model introduced in Sec-
tion 4.1 that optimizes the objective Eqn. (3) or Eqn. (6)
directly with stochastic gradient descent. With this
approach, the weights of the edges are directly multi-
plied into the gradients when the edges are sampled
for model updating. There are two variants of this ap-
proach: LINE-SGD(1st) and LINE-SGD(2nd), which
use first- and second-order proximity respectively.

• LINE. This is the LINE model optimized through the
edge-sampling treatment introduced in Section 4.2. In
each stochastic gradient step, an edge is sampled with
the probability proportional to its weight and then
treated as binary for model updating. There are also
two variants: LINE(1st) and LINE(2nd). Like the
graph factorization, both LINE(1st) and LINE-SGD(1st)
only apply to undirected graphs. LINE(2nd) and LINE-
SGD(2nd) apply to both undirected and directed graphs.

• LINE (1st+2nd): To utilize both first-order and second-
order proximity, a simple and effective way is to con-
catenate the vector representations learned by LINE(1st)
and LINE(2nd) into a longer vector. After concate-
nation, the dimensions should be re-weighted to bal-
ance the two representations. In a supervised learning
task, the weighting of dimensions can be automatically
found based on the training data. In an unsupervised
task, however, it is more difficult to set the weights.
Therefore we only apply LINE (1st+2nd) to the sce-
nario of supervised tasks.

Parameter Settings.
The mini-batch size of the stochastic gradient descent is

set as 1 for all the methods. Similar to [13], the learning rate
is set with the starting value ρ0 = 0.025 and ρt = ρ0(1−t/T ),
where T is the total number of mini-batches or edge samples.
For fair comparisons, the dimensionality of the embeddings

of the language network is set to 200, as used in word em-
bedding [13]. For other networks, the dimension is set as
128 by default, as used in [16]. Other default settings in-
clude: the number of negative samples K = 5 for LINE and
LINE-SGD; the total number of samples T = 10 billion for
LINE(1st) and LINE(2nd), T = 20 billion for GF; window
size win = 10, walk length t = 40, walks per vertex γ = 40
for DeepWalk. All the embedding vectors are finally nor-
malized by setting ||~w||2 = 1.

5.2 Quantitative Results

5.2.1 Language Network

We start with the results on the language network, which
contains two million nodes and a billion edges. Two appli-
cations are used to evaluate the effectiveness of the learned
embeddings: word analogy [12] and document classification.

Table 2: Results of word analogy on Wikipedia data.

Algorithm Semantic (%) Syntactic (%) Overall (%) Running time

GF 61.38 44.08 51.93 2.96h
DeepWalk 50.79 37.70 43.65 16.64h
SkipGram 69.14 57.94 63.02 2.82h

LINE-SGD(1st) 9.72 7.48 8.50 3.83h
LINE-SGD(2nd) 20.42 9.56 14.49 3.94h

LINE(1st) 58.08 49.42 53.35 2.44h
LINE(2nd) 73.79 59.72 66.10 2.55h

Word Analogy. This task is introduced by Mikolov et
al. [12]. Given a word pair (a, b) and a word c, the task aims
to find a word d, such that the relation between c and d is
similar to the relation between a and b, or denoted as: a :
b → c :?. For instance, given a word pair (“China”,“Beijing”)
and a word “France,” the right answer should be “Paris”
because “Beijing” is the capital of “China” just as “Paris” is
the capital of “France.” Given the word embeddings, this
task is solved by finding the word d∗ whose embedding is
closest to the vector ~ub−~ua+~uc in terms of cosine proximity,
i.e., d∗ = argmaxd cos((~ub −~ua +~uc), ~ud). Two categories of
word analogy are used in this task: semantic and syntactic.

Table 2 reports the results of word analogy using the em-
beddings of words learned on the Wikipedia corpora (Skip-
Gram) or the Wikipedia word network (all other meth-
ods). For graph factorization, the weight between each pair
of words is defined as the logarithm of the number of co-
occurrences, which leads to better performance than the
original value of co-occurrences. For DeepWalk, different
cutoff thresholds are tried to convert the language network
into a binary network, and the best performance is achieved
when all the edges are kept in the network. We also com-
pare with the state-of-the-art word embedding model Skip-
Gram [12], which learns the word embeddings directly from
the original Wikipedia pages and is also implicitly a matrix



Table 3: Results of Wikipedia page classification on Wikipedia data set.

Metric Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1

GF 79.63 80.51 80.94 81.18 81.38 81.54 81.63 81.71 81.78
DeepWalk 78.89 79.92 80.41 80.69 80.92 81.08 81.21 81.35 81.42
SkipGram 79.84 80.82 81.28 81.57 81.71 81.87 81.98 82.05 82.09

LINE-SGD(1st) 76.03 77.05 77.57 77.85 78.08 78.25 78.39 78.44 78.49
LINE-SGD(2nd) 74.68 76.53 77.54 78.18 78.63 78.96 79.19 79.40 79.57

LINE(1st) 79.67 80.55 80.94 81.24 81.40 81.52 81.61 81.69 81.67
LINE(2nd) 79.93 80.90 81.31 81.63 81.80 81.91 82.00 82.11 82.17

LINE(1st+2nd) 81.04** 82.08** 82.58** 82.93** 83.16** 83.37** 83.52** 83.63** 83.74**

Macro-F1

GF 79.49 80.39 80.82 81.08 81.26 81.40 81.52 81.61 81.68
DeepWalk 78.78 79.78 80.30 80.56 80.82 80.97 81.11 81.24 81.32
SkipGram 79.74 80.71 81.15 81.46 81.63 81.78 81.88 81.98 82.01

LINE-SGD(1st) 75.85 76.90 77.40 77.71 77.94 78.12 78.24 78.29 78.36
LINE-SGD(2nd) 74.70 76.45 77.43 78.09 78.53 78.83 79.08 79.29 79.46

LINE(1st) 79.54 80.44 80.82 81.13 81.29 81.43 81.51 81.60 81.59
LINE(2nd) 79.82 80.81 81.22 81.52 81.71 81.82 81.92 82.00 82.07

LINE(1st+2nd) 80.94** 81.99** 82.49** 82.83** 83.07** 83.29** 83.42** 83.55** 83.66**

Significantly outperforms GF at the: ** 0.01 and * 0.05 level, paired t-test.

factorization approach [8]. The window size is set as 5, the
same as used for constructing the language network.

We can see that LINE(2nd) outperforms all other meth-
ods, including the graph embedding methods and the Skip-
Gram. This indicates that the second-order proximity bet-
ter captures the word semantics compared to the first-order
proximity. This is not surprising, as a high second-order
proximity implies that two words can be replaced in the
same context, which is a stronger indicator of similar se-
mantics than first-order co-occurrences. It is intriguing that
the LINE(2nd) outperforms the state-of-the-art word em-
bedding model trained on the original corpus. The reason
may be that a language network better captures the global
structure of word co-occurrences than the original word se-
quences. Among other methods, both graph factorization
and LINE(1st) significantly outperform DeepWalk even if
DeepWalk explores second-order proximity. This is because
DeepWalk has to ignore the weights (i.e., co-occurrences) of
the edges, which is very important in a language network.
The performance by the LINE models directly optimized
with SGD is much worse, because the weights of the edges
in the language network diverge, which range from a single
digit to tens of thousands, making the learning process suf-
fer. The LINE optimized by the edge-sampling treatment
effectively addresses this problem, and performs very well
using either first-order or second-order proximity.

All the models are run on a single machine with 1T mem-
ory, 40 CPU cores at 2.0GHZ using 16 threads. Both the
LINE(1st) and LINE(2nd) are quite efficient, which take
less than 3 hours to process such a network with 2 million
nodes and a billion edges. Both are at least 10% faster than
graph factorization, and much more efficient than DeepWalk
(five times slower). The reason that LINE-SGDs are slightly
slower is that a threshold-cutting technique has to be applied
to prevent the gradients from exploding.

Document Classification. Another way to evaluate the
quality of the word embeddings is to use the word vectors to
compute document representation, which can be evaluated
with document classification tasks. To obtain document vec-
tors, we choose a very simple approach, taking the average
of the word vector representations in that document. This is
because we aim to compare the word embeddings with differ-
ent approaches instead of finding the best method for docu-
ment embeddings. The readers can find advanced document
embedding approaches in [7]. We download the abstracts
of Wikipedia pages from http://downloads.dbpedia.org/

3.9/en/long_abstracts_en.nq.bz2 and the categories of
these pages from http://downloads.dbpedia.org/3.9/en/

article_categories_en.nq.bz2. We choose 7 diverse cate-
gories for classification including“Arts,”“History,”“Human,”
“Mathematics,” “Nature,” “Technology,” and “Sports.” For
each category, we randomly select 10,000 articles, and ar-
ticles belonging to multiple categories are discarded. We
randomly sample different percentages of the labeled doc-
uments for training and use the rest for evaluation. All
document vectors are used to train a one-vs-rest logistic re-
gression classifier using the LibLinear package4. We report
the classification metrics Micro-F1 and Macro-F1 [11]. The
results are averaged over 10 different runs by sampling dif-
ferent training data.

Table 3 reports the results of Wikipedia page classifica-
tion. Similar conclusion can be made as in the word anal-
ogy task. The graph factorization outperforms DeepWalk
as DeepWalk ignores the weights of the edges. The LINE-
SGDs perform worse due to the divergence of the weights of
the edges. The LINE optimized by the edge-sampling treat-
ment performs much better than directly deploying SGD.
The LINE(2nd) outperforms LINE(1st) and is slightly bet-
ter than the graph factorization. Note that with the su-
pervised task, it is feasible to concatenate the embeddings
learned with LINE(1st) and LINE(2nd). As a result, the
LINE(1st+2nd) method performs significantly better than
all other methods. This indicates that the first-order and
second-order proximities are complementary to each other.

To provide the readers more insight about the first-order
and second-order proximities, Table 4 compares the most
similar words to a given word using first-order and second-
order proximity. We can see that by using the contextual
proximity, the most similar words returned by the second-
order proximity are all semantically related words. The
most similar words returned by the first-order proximity are
a mixture of syntactically and semantically related words.

Table 4: Comparison of most similar words using 1st-order
and 2nd-order proximity.

Word Similarity Top similar words

good
1st luck bad faith assume nice
2nd decent bad excellent lousy reasonable

information
1st provide provides detailed facts verifiable
2nd infomation informaiton informations nonspammy animecons

graph
1st graphs algebraic finite symmetric topology
2nd graphs subgraph matroid hypergraph undirected

learn
1st teach learned inform educate how
2nd learned teach relearn learnt understand

4http://www.csie.ntu.edu.tw/~cjlin/liblinear/

http://downloads.dbpedia.org/3.9/en/long_abstracts_en.nq.bz2
http://downloads.dbpedia.org/3.9/en/long_abstracts_en.nq.bz2
http://downloads.dbpedia.org/3.9/en/article_categories_en.nq.bz2
http://downloads.dbpedia.org/3.9/en/article_categories_en.nq.bz2
http://www.csie.ntu.edu.tw/~cjlin/liblinear/


5.2.2 Social Network

Compared with the language networks, the social net-
works are much sparser, especially the Youtube network.
We evaluate the vertex embeddings through a multi-label
classification task that assigns every node into one or more
communities. Different percentages of the vertices are ran-
domly sampled for training and the rest are used for evalu-
ation. The results are averaged over 10 different runs.
Flickr Network. Let us first take a look at the results on
the Flickr network. We choose the most popular 5 commu-
nities as the categories of the vertices for multi-label classifi-
cation. Table 5 reports the results. Again, LINE(1st+2nd)
significantly outperforms all other methods. LINE(1st) is
slightly better than LINE(2nd), which is opposite to the re-
sults on the language network. The reasons are two fold: (1)
first-order proximity is still more important than second-
order proximity in social network, which indicates strong
ties; (2) when the network is too sparse and the average
number of neighbors of a node is too small, the second-order
proximity may become inaccurate. We will further investi-
gate this issue in Section 5.4. LINE(1st) outperforms graph
factorization, indicating a better capability of modeling the
first-order proximity. LINE(2nd) outperforms DeepWalk,
indicating a better capability of modeling the second-order
proximity. By concatenating the representations learned
by LINE(1st) and LINE(2nd), the performance further im-
proves, confirming that the two proximities are complemen-
tary to each other.
Youtube Network. Table 6 reports the results onYoutube
network, which is extremely sparse and the average degree
is as low as 5. In most cases with different percentages
of training data, LINE(1st) outperforms LINE(2nd), con-
sistent with the results on the Flickr network. Due to the
extreme sparsity, the performance of LINE(2nd) is even infe-
rior to DeepWalk. By combining the representations learned
by the LINE with both the first- and second-order proxim-
ity, the performance of LINE outperforms DeepWalk with
either 128 or 256 dimension, showing that the two proxim-
ities are complementary to each other and able to address
the problem of network sparsity.

It is interesting to observe how DeepWalk tackles the net-
work sparsity through truncated random walks, which en-
rich the neighbors or contexts of each vertex. The random
walk approach acts like a depth-first search. Such an ap-
proach may quickly alleviate the sparsity of the neighbor-
hood of nodes by bringing in indirect neighbors, but it may
also introduce nodes that are long range away. A more rea-
sonable way is to expand the neighborhood of each vertex
using a breadth-first search strategy, i.e., recursively adding
neighbors of neighbors. To verify this, we expand the neigh-
borhood of the vertices whose degree are less than 1,000
by adding the neighbors of neighbors until the size of the
extended neighborhood reaches 1,000 nodes. We find that
adding more than 1,000 vertices does not further increase
the performance.

The results in the brackets in Table 6 are obtained on this
reconstructed network. The performance of GF, LINE(1st)
and LINE(2nd) all improves, especially LINE(2nd). In the
reconstructed network, the LINE(2nd) outperforms Deep-
Walk in most cases. We can also see that the performance
of LINE(1st+2nd) on the reconstructed network does not
improve too much compared with those on the original net-
work. This implies that the combination of first-order and

second-order proximity on the original network has already
captured most information and LINE(1st+2nd) approach is
a quite effective and efficient way for network embedding,
suitable for both dense and sparse networks.

5.2.3 Citation Network

We present the results on two citation networks, both of
which are directed networks. Both the GF and LINE meth-
ods, which use first-order proximity, are not applicable for
directed networks, and hence we only compare DeepWalk
and LINE(2nd). We also evaluate the vertex embeddings
through a multi-label classification task. We choose 7 popu-
lar conferences including AAAI, CIKM, ICML, KDD, NIPS,
SIGIR, and WWW as the classification categories. Authors
publishing in the conferences or papers published in the con-
ferences are assumed to belong to the categories correspond-
ing to the conferences.
DBLP(AuthorCitation) Network. Table 7 reports the
results on the DBLP(AuthorCitation) network. As this
network is also very sparse, DeepWalk outperforms LINE(2nd).
However, by reconstructing the network through recursively
adding neighbors of neighbors for vertices with small degrees
(smaller than 500), the performance of LINE(2nd) signif-
icantly increases and outperforms DeepWalk. The LINE
model directly optimized by stochastic gradient descent,
LINE(2nd), does not perform well as expected.
DBLP(PaperCitation) Network. Table 8 reports the re-
sults on theDBLP(PaperCitation) network. The LINE(2nd)
significantly outperforms DeepWalk. This is because the
random walk on the paper citation network can only reach
papers along the citing path (i.e., older papers) and cannot
reach other references. Instead, the LINE(2nd) represents
each paper with its references, which is obviously more rea-
sonable. The performance of LINE(2nd) is further improved
when the network is reconstructed by enriching the neigh-
bors of vertices with small degrees (smaller than 200).

5.3 Network Layouts
An important application of network embedding is to cre-

ate meaningful visualizations that layout a network on a
two dimensional space. We visualize a co-author network
extracted from the DBLP data. We select some conferences
from three different research fields: WWW, KDD from“data
mining,” NIPS, ICML from “machine learning,” and CVPR,
ICCV from “computer vision.” The co-author network is
built from the papers published in these conferences. Au-
thors with degree less than 3 are filtered out, and finally the
network contains 18,561 authors and 207,074 edges. Laying
out this co-author network is very challenging as the three
research fields are very close to each other. We first map the
co-author network into a low-dimensional space with differ-
ent embedding approaches and then further map the low-
dimensional vectors of the vertices to a 2-D space with the
t-SNE package [21]. Fig. 2 compares the visualization results
with different embedding approaches. The visualization us-
ing graph factorization is not very meaningful, in which the
authors belonging to the same communities are not clustered
together. The result of DeepWalk is much better. However,
many authors belonging to different communities are clus-
tered tightly into the center area, most of which are high
degree vertices. This is because DeepWalk uses a random
walk based approach to enrich the neighbors of the vertices,
which brings in a lot of noise due to the randomness, es-



Table 5: Results of multi-label classification on the Flickr network.

Metric Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1

GF 53.23 53.68 53.98 54.14 54.32 54.38 54.43 54.50 54.48
DeepWalk 60.38 60.77 60.90 61.05 61.13 61.18 61.19 61.29 61.22

DeepWalk(256dim) 60.41 61.09 61.35 61.52 61.69 61.76 61.80 61.91 61.83
LINE(1st) 63.27 63.69 63.82 63.92 63.96 64.03 64.06 64.17 64.10
LINE(2nd) 62.83 63.24 63.34 63.44 63.55 63.55 63.59 63.66 63.69

LINE(1st+2nd) 63.20** 63.97** 64.25** 64.39** 64.53** 64.55** 64.61** 64.75** 64.74**

Macro-F1

GF 48.66 48.73 48.84 48.91 49.03 49.03 49.07 49.08 49.02
DeepWalk 58.60 58.93 59.04 59.18 59.26 59.29 59.28 59.39 59.30

DeepWalk(256dim) 59.00 59.59 59.80 59.94 60.09 60.17 60.18 60.27 60.18
LINE(1st) 62.14 62.53 62.64 62.74 62.78 62.82 62.86 62.96 62.89
LINE(2nd) 61.46 61.82 61.92 62.02 62.13 62.12 62.17 62.23 62.25

LINE(1st+2nd) 62.23** 62.95** 63.20** 63.35** 63.48** 63.48** 63.55** 63.69** 63.68**

Significantly outperforms DeepWalk at the: ** 0.01 and * 0.05 level, paired t-test.

Table 6: Results of multi-label classification on the Youtube network. The results in the brackets are on the reconstructed
network, which adds second-order neighbors (i.e., neighbors of neighbors) as neighbors for vertices with a low degree.

Metric Algorithm 1% 2% 3% 4% 5% 6% 7% 8% 9% 10%

Micro-F1

GF
25.43 26.16 26.60 26.91 27.32 27.61 27.88 28.13 28.30 28.51
(24.97) (26.48) (27.25) (27.87) (28.31) (28.68) (29.01) (29.21) (29.36) (29.63)

DeepWalk 39.68 41.78 42.78 43.55 43.96 44.31 44.61 44.89 45.06 45.23
DeepWalk(256dim) 39.94 42.17 43.19 44.05 44.47 44.84 45.17 45.43 45.65 45.81

LINE(1st)
35.43 38.08 39.33 40.21 40.77 41.24 41.53 41.89 42.07 42.21
(36.47) (38.87) (40.01) (40.85) (41.33) (41.73) (42.05) (42.34) (42.57) (42.73)

LINE(2nd)
32.98 36.70 38.93 40.26 41.08 41.79 42.28 42.70 43.04 43.34
(36.78) (40.37) (42.10) (43.25) (43.90) (44.44) (44.83) (45.18) (45.50) (45.67)

LINE(1st+2nd)
39.01* 41.89 43.14 44.04 44.62 45.06 45.34 45.69** 45.91** 46.08**
(40.20) (42.70) (43.94**) (44.71**) (45.19**) (45.55**) (45.87**) (46.15**) (46.33**) (46.43**)

Macro-F1

GF
7.38 8.44 9.35 9.80 10.38 10.79 11.21 11.55 11.81 12.08

(11.01) (13.55) (14.93) (15.90) (16.45) (16.93) (17.38) (17.64) (17.80) (18.09)
DeepWalk 28.39 30.96 32.28 33.43 33.92 34.32 34.83 35.27 35.54 35.86

DeepWalk (256dim) 28.95 31.79 33.16 34.42 34.93 35.44 35.99 36.41 36.78 37.11

LINE(1st)
28.74 31.24 32.26 33.05 33.30 33.60 33.86 34.18 34.33 34.44
(29.40) (31.75) (32.74) (33.41) (33.70) (33.99) (34.26) (34.52) (34.77) (34.92)

LINE(2nd)
17.06 21.73 25.28 27.36 28.50 29.59 30.43 31.14 31.81 32.32
(22.18) (27.25) (29.87) (31.88) (32.86) (33.73) (34.50) (35.15) (35.76) (36.19)

LINE(1st+2nd)
29.85 31.93 33.96 35.46** 36.25** 36.90** 37.48** 38.10** 38.46** 38.82**
(29.24) (33.16**) (35.08**) (36.45**) (37.14**) (37.69**) (38.30**) (38.80**) (39.15**) (39.40**)

Significantly outperforms DeepWalk at the: ** 0.01 and * 0.05 level, paired t-test.

Table 7: Results of multi-label classification on DBLP(AuthorCitation) network.

Metric Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1

DeepWalk 63.98 64.51 64.75 64.81 64.92 64.99 64.99 65.00 64.90
LINE-SGD(2nd) 56.64 58.95 59.89 60.20 60.44 60.61 60.58 60.73 60.59

LINE(2nd) 62.49 63.30 63.63 63.77 63.84 63.94 63.96 64.00 63.77
(64.69*) (65.47**) (65.85**) (66.04**) (66.19**) (66.25**) (66.30**) (66.12**) (66.05**)

Macro-F1

DeepWalk 63.02 63.60 63.84 63.90 63.98 64.06 64.09 64.11 64.05
LINE-SGD(2nd) 55.24 57.63 58.56 58.82 59.11 59.27 59.28 59.46 59.37

LINE(2nd) 61.43 62.38 62.73 62.87 62.93 63.05 63.07 63.13 62.95
(63.49*) (64.42**) (64.84**) (65.05**) (65.19**) (65.26**) (65.29**) (65.14**) (65.14**)

Significantly outperforms DeepWalk at the: ** 0.01 and * 0.05 level, paired t-test.

Table 8: Results of multi-label classification on DBLP(PaperCitation) network.

Metric Algorithm 10% 20% 30% 40% 50% 60% 70% 80% 90%

Micro-F1
DeepWalk 52.83 53.80 54.24 54.75 55.07 55.13 55.48 55.42 55.90
LINE(2nd) 58.42 59.58 60.29 60.78 60.94 61.20 61.39 61.39 61.79

(60.10**) (61.06**) (61.46**) (61.73**) (61.85**) (62.10**) (62.21**) (62.25**) (62.80**)

Macro-F1
DeepWalk 43.74 44.85 45.34 45.85 46.20 46.25 46.51 46.36 46.73
LINE(2nd) 48.74 50.10 50.84 51.31 51.61 51.77 51.94 51.89 52.16

(50.22**) (51.41**) (51.92**) (52.20**) (52.40**) (52.59**) (52.78**) (52.70**) (53.02**)

Significantly outperforms DeepWalk at the: ** 0.01 and * 0.05 level, paired t-test.

(a) GF (b) DeepWalk (c) LINE(2nd)

Figure 2: Visualization of the co-author network. The authors are mapped to the 2-D space using the t-SNE package with
learned embeddings as input. Color of a node indicates the community of the author. Red: “data Mining,” blue: “machine
learning,” green: “computer vision.”



pecially for vertices with higher degrees. The LINE(2nd)
performs quite well and generates meaningful layout of the
network (nodes with same colors are distributed closer).

5.4 Performance w.r.t. Network Sparsity
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Figure 3: Performance w.r.t. network sparsity.

In this subsection, we formally analyze the performance
of the above models w.r.t. the sparsity of networks. We
use the social networks as examples. We first investigate
how the sparsity of the networks affects the LINE(1st) and
LINE(2nd). Fig. 3(a) shows the results w.r.t. the percentage
of links on the Flickr network. We choose Flickr network
as it is much denser than the Youtube network. We ran-
domly select different percentages of links from the original
network to construct networks with different levels of spar-
sity. We can see that in the beginning, when the network is
very sparse, the LINE(1st) outperforms LINE(2nd). As we
gradually increase the percentage of links, the LINE(2nd)
begins to outperform the LINE(1st). This shows that the
second-order proximity suffers when the network is extremely
sparse, and it outperforms first-order proximity when there
are sufficient nodes in the neighborhood of a node.

Fig. 3(b) shows the performance w.r.t. the degrees of the
vertices on both the original and reconstructed Youtube
networks. We categorize the vertices into different groups
according to their degrees including (0, 1], [2, 3], [4, 6], [7, 12],
[13, 30], [31,+∞), and then evaluate the performance of ver-
tices in different groups. Overall, the performance of dif-
ferent models increases when the degrees of the vertices in-
crease. In the original network, the LINE(2nd) outperforms
LINE(1st) except for the first group, which confirms that the
second-order proximity does not work well for nodes with a
low degree. In the reconstructed dense network, the perfor-
mance of the LINE(1st) or LINE(2nd) improves, especially
the LINE(2nd) that preserves the second-order proximity.
We can also see that the LINE(2nd) model on the recon-
structed network outperforms DeepWalk in all the groups.

5.5 Parameter Sensitivity
Next, we investigate the performance w.r.t. the parame-

ter dimension d and the converging performance of different
models w.r.t the number of samples on the reconstructed
Youtube network. Fig. 4(a) reports the performance of the
LINE model w.r.t. the dimension d. We can see that the
performance of the LINE(1st) or LINE(2nd) drops when the
dimension becomes too large. Fig. 4(b) shows the results
of the LINE and DeepWalk w.r.t. the number of samples
during the optimization. The LINE(2nd) consistently out-
performs LINE(1st) and DeepWalk, and both the LINE(1st)
and LINE(2nd) converge much faster than DeepWalk.
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Figure 4: Sensitivity w.r.t. dimension and samples.

5.6 Scalability
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Figure 5: Performance w.r.t. # threads.

Finally, we investigate the scalability of the LINE model
optimized by the edge-sampling treatment and asynchronous
stochastic gradient descent, which deploys multiple threads
for optimization. Fig. 5(a) shows the speed up w.r.t. the
number of threads on the Youtube data set. The speed up
is quite close to linear. Fig. 5(b) shows that the classification
performance remains stable when using multiple threads for
model updating. The two figures together show that the
inference algorithm of the LINE model is quite scalable.

6. CONCLUSION
This paper presented a novel network embedding model

called the“LINE,”which can easily scale up to networks with
millions of vertices and billions of edges. It has carefully de-
signed objective functions that preserve both the first-order
and second-order proximities, which are complementary to
each other. An efficient and effective edge-sampling method
is proposed for model inference, which solved the limitation
of stochastic gradient descent on weighted edges without
compromising the efficiency. Experimental results on vari-
ous real-world networks prove the efficiency and effectiveness
of LINE. In the future, we plan to investigate higher-order
proximity beyond the first-order and second-order proxim-
ities in the network. Besides, we also plan to investigate
the embedding of heterogeneous information networks, e.g.,
vertices with multiple types.
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