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A b s t r a c t .  In this article a new concept for real time analysis of images 
based on the vectorized contours is presented. Given the polygone ap- 
proximation of contours the geometric moments can be formulated for 
line contours. The resulting line moments (LM's) can be calculated for 
an arbitrary collection of contour fragments. Neither the existence of an 
area nor a closed contour is prerequisite to characterize an object by 
line moments. Due to these properties of the LM's time consuming pre- 
processing of noisy object contours is not required. Even objects with 
structured surfaces can be characterized by LM's. The formalism to ap- 
ply the geometric moments to contour patterns is derived. A direct and a 
recursive algorithm to efficiently compute the LM's is given. As an appli- 
cation of the LM's an analysis system for structured textures is presented 
and results are discussed. 

1 I n d r o d u c t i o n  

The application of image processing systems in industrial environments gains 
more and more in significance. One reason why image processing has been unat- 
tractive for many applications in the past was the lack of computation power to 
meet real time requirements. 
In this paper we present an approach to real time analysis of images based on 
the contour data of the scene. In this context we consider the extraction of con- 
tours as a standard operation, which is universally applicable to many image 
processing and analysis tasks. Special hardware processors or implementations 
on signal-processor basis can realize contour extraction in video real time. 
For this work we used a hardware contour vectorizer called V e c t E x  3 which de- 
livers a polygone approximation of the gray level edges of images in video real 
time. (For a description of the processor see [HERR90].) As an example figure 
l a  shows the vectorized contours of a structured texture. 
Based on the contour data we developed a fast recursive algorithm to compute 
the line moments (LM's) of patterns. Therefore the extension of the conventio- 
nal moment definition (e.g. [HU62]) to LM's is one main aspect of this work. 
Due to this interpretation the computation of moments is no longer restricted 
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to elements with a definite area and a closed contour. An element is considered 
to be composed of an arbitrary collection of line fragments. 
Based on LM's the entire theory of moments and moment invariants can be 
applied for element recognition and analysis. 

2 Line m o m e n t s  of  contour  pat terns  

Applying a contour vectorization on objects of a real scene yields in object 
contours broken down into lots of fragments. To extract objects from the con- 
tour data  logically related fragments have to berecognized. This might be done 
by some rule based algorithms or by statistical analysis and segmentation. In 
[AMEL94] an algorithm is described, which assigns all contour fragments si- 
tuated in local neighbourhoods of edge points recursively to the same object. 
Non-overlapping and not directly neighbouring objects like in figures l a  and 5a 
can be segmented efficiently through this algorithm. 

Given the contour fragments C] of an object B (figure lb), the contour pattern 
C of B can be expressed as 

C = Oj C;. (1) 

If the contour fragments are approximated by polygones, the contour can be 
expressed in terms of line fragments cjl 

c ;  = U, cj, , c = Uj U, cj,. (2) 
A contour pattern C of an object B is consequently defined as an arbitrary 
collection of line fragments. There is no need to define either the area or the 
perimeter of an object. 

k3 0 ,.., _.,_. 

L~ ~L3 ~ - ' ~  ~ O~  ~ Contour O of an ObjectB 

L~ ~ _~J~ ~ 0 ~ F_~ Z~ ..~ line fragments cj, of contour 
) ~-] ~SJ L~/~ (~/~ ~ L ~- a contour fragment fragments C~ 

5 ~ X  PC) ,  ~ t 3 ~  D 

Fig.  1. (a) Example of a vectorized texture scene. (b)  Definition of a contour pat tern 

After the definition of contour patterns we will focus on the derivation of line 
moments. Let us first consider the well known geometric moments of the form 
m(~ ) = f_+~ f+o~ ~ xPy q f (z ,  y) dx dy. Given a gray level image we can understand 
f(x, y) as the gray level values. If the domain of definition D(B) of an object 
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B is known, e.g. through segmentation, the object is uniquely determined by its 
moments 

m(2q ) = f f xPyq f ( x , y )dA  p,q = [0,1, . . . ,cr  (3) 
(~,~)CD(B) 

according to the Uniqueness Theorem ([I-IU62]). If we consider line contours, the 
line moments along a contour C are given by 

m(~) = f ~(s)py(s)qf(s)  ds (4) 
C 

where f ( s )  is called the linear density and s stands for the arc length. In the 
case of describing the contour shape, f (s )  can be set to f (s)  = 1. Equation (4) 
can also be expressed in terms of the cartesian coordinates x or y 

m (1) = f xPy(x)q~/1 + y'(x) 2 dx = f x(y)Pyqv/1 + x'(y) 2 dy. (5) 
C C 

If the contour pattern is approximated by a polygone with edge-points 
(x~, Yi), i = 1, 2 , . . . ,  n + 1, each line segment can be parameterized to 

ci: y = a i x + y i - a ~ x ~ ,  x ~ < x < x i + l ,  i = l , 2 , . . . , n  (6) 

whith a~ = (Yi+l - y~)/(xi+l - x~) as the slope of segment i. (The index j is 
omitted in the following.) Let Di be the contribution of c~ to the line integral of 
eq.(5) the moments are given by 

m(~ ) '~ D = E i = l  ' ,  D , =  f xPy%/l  + a  2 dx (7) 
Cl 

Inserting eq.(6) in (7) we get 

2 dx D , =  f xP(aix + y , - a ~ x ~ ) q V / T + a  i 

q a k ( 8 )  = ~/1 + a  2. )-'~-~=0 (k) i(Yi - alxl) q-k" ~+~ - p + k + l  

If ci is vertical, we take the alternative paxameterization 
c~: x = x l ,  y~__Y_<YI+I, i = l , 2 , . . . , n  (9) 

which leads to 
Yi~-I Y i + l  q+ l  q-{-1 

P Y'+~-Y' (10) D, = f =~y~ / l  + ~'(y)~ ~y = f ~fy~ dy = ~, . ~+1 
Yl Yl 

To obtain invariance under translation the central moments 

t~(p~ ) = f (x( s) - ~F(y(s )  - y)q f ( s )  ds (11) 
C 

have to be calculated where ~ = ,~(1)/~(1),0o10/"~o0, ~ = ~,(1)/~,(1)0.o0~ ~"oo0 �9 To obtain scaling 
invariance the following normalisation by the contour length Ic leads to the 
result 

fc~(~)-~F(~(,)-~) ~ ~, 
( ~ . _ ( ~  (~o-~V ~, _ o = #~) (~2) 

C 

where ",/= p + q + 1. It has to be stated, that  in the case of LM's 7 differs from 
the exponent, Hu derived for area based moments in [HU62]. The normalisation 
of eq.(12) is also given in [SARD94]. 
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3 A l g o r i t h m s  

In this section we will give a direct and a fast, recursive algorithm to compute 
the LM's. The algorithm is similar to those given in [JIAN91]. Nevertheless it 
has to be emphasized that Jiang and Bunke computed area based moments out 
of the closed contours of objects through the Green's formula which is totally 
different from the approach to LM's presented here. 
Figure 2 gives the direct algorithm to compute the LM's of polygonal contour 
patterns. 

foral l  (pq) do m ~  ) = 0; 
for i = 1 to n do begin 

if  vertical(cl) then  
foral l  (pq) do m(p~ ) = m(p~ ) + D,; 

else 
fo~all (pq) do  ~1~ = m~i) + D,; 

end 

(* Di by eq.(10) *) 

(* Di by eq.(8) *) 

Fig. 2. Direct algorithm to compute the line moments 

The direct algorithm does not take into account relationships between the mo- 
ments of higher order to those of lower order. To derive a recursive algorithm 
we define 

Xi-{-1 

A~(p, q) = f xP (a~x + y~ - a~x~)q ax (13) 
Xl 

(see eq.(S)).  For q > 1 we get 

A~(p,q) = f =P (a~x + y~ - .~x~)q-l(a~z + y~ - .~x~) ax 

~'i+1 

= ai f x p+I (aiz  + yl - aix~) q-1 dx + 

(y~ - .~=~) /" ~p (.~= + y~ - a ~ ) " - '  d= 
z l  

= aiAi (p  + 1, q - 1) + (Yi - a lx i )Ai (p ,  q - 1) . (14) 

To start the recursion we have 

A,(p, 0 ) =  f xP d x =  + (15) p+ l  

The recursive dependencies of the terms Ai(p,  q) are illustrated in figure 3a for 
an example with (p, q) _< 4. 
The notation (Pl, ql) ~ (P2, q2) expresses that for the calculation of A~(p2, q2) 
the value of A~(pl, ql) has to be known. Based on these dependencies the order 
of calculation for all Ai(p,  q) with (p, q) ~ 4 can be derived as shown in figure 
35. The variables B[0].. .B[4] (see also fig. 4) store temporary results during 



351 

(4,0) 

(3,0)§ § F(3;0) 

(2,0)*(2,1)*(2,2)~ § § F (2;0)] (2;1) 

(1,0)*(1,1)*(1,2)*(1,3)~ ~ i ~ F (lI0) I (i ; l)l (1;2) 
(0,0) * (0,1) * (0,2) § (0,3) * (0,4) (0,0) J (0,1) J (0,2) J (0,3) 
(a) (b) 

. (4 ,o ) - , -  

(3,1) -~  
§ 

(2,2) -* 
§ 

(1,3) - ~  

§ 
(0,4) - ~  

Fig. 3. (a) recursive dependencies of A i ( p ,  q) (b) order of computation 

for o r d e r  = 0 to m a z _ o r d e r  do begin 
B[order]  = A i ( o r d e r ,  0); (* by eq.(15) *) 
m (1) = rn (1) " / 1  z . B[order];  o~de'r,O o','der',O -r V + al 
for p = order  - 1 downto 0 do begin 

q = o r d e r  - p; 

B[p] = a , S [ p  + 11 + (y, - aizi)B~]; (* eq.(14) *) 
re(l)  = m(1) V/1 2 p,q p,q + + a~ - B~o]; 

end; 
e n d ;  

B[4] 

B[31 

B[2] 

B[1] 

B[0] 

Fig. 4. Recursive algorithm to compute the line moments 

computation. To evaluate the LM's according to eq.(7) we get (compare (8) and 
(13))  

: 2 D i  V / 1  + a i �9 A i ( p ,  q) �9 (16) 

Hence the recursive algorithm shown in figure 4 is appropriate to calculate the 
LM's in a very efficient way. 

4 E x p e r i m e n t a l  r e s u l t s  

As an application of the LM's we present an analysis system for quality control 
of structured textures in this section. 
It has to be emphasized, that  the whole theory of moment invariants is app- 
licable to LM's. Since the various types of moments, e.g. Legendre Moments, 
Zernike Moments, Complex Moments and others can be expressed through the 
geometric moments ([TEH88]) their formulation as line moments is possible. 
In our experiments we calculated line moment invariants (LMI's) to characterize 
the extracted texture primitives. We implemented the 7 well known Hu moment 
invariants ([HU62]), as they are still a benchmark for other invariants. To ex- 
tract texture primitives from the vectorized contour data  a rule based algorithm 
described in [AMEL94] was applied. In a learning phase the LMI's of the dif- 
ferent texels are calculated from texture samples and stored as feature vectors. 
During the defect detection phase the following tasks have to be applied to each 
texture scene: texel segmentation, calculation of LMI's and classification with 
a Mahalanobis distance classifier. The processing is based on the output of the 
hardware vectorizer V e c t E x .  
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( )  ~ ,  . ~ "  'dlrectl 

~ o / 
(J  , /"  

0 0 O " / "  
..x ~ / recur ;lye 

0 2 3 4 5 6 7 8 9 10 
(.~ (-fl p+q (max. order of moments) 

(a) (b) 
Fig. 5. (a) Detection of the corrupted texture element marked by a frame. (b) Com- 
puting time for the direct and the recursive algorithm (80486DX2-66MHz processor). 

Figure 5a shows the result of a texture analysis with 4 different texel classes. 
The corrupted texture primitive is detected by the system. The computat ion 
has been done on a PC with a 80486 processor, 66 Mhz clock rate and VL 
bus. To calculate the HU invariants all moments up to the maximum order of 
(p + q) < 3 have to be determined. Using the iterative algorithm, the moment 
computation takes 0.16 sec for the above scene. Computation of all other tasks as 
texture primitive generation, invariants calculation and classification takes 0.15 
sec. Hence the whole analysis requires 0.31 sec. on a scene with 1505 polygone 
points in 213 contours and 29 texture elements. 
To point out the effectiveness of the iterative algorithm compared with the direct 
one, figure 5b depicts computation times for all the line moments up to an order 
(p + q) _< N. For N = 10 the iterative algorithm is 20 times faster than the 
direct one. 
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