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Abstract— An essential ability of autonomous unmanned
surface vessels (USVs) and autonomous underwater vehicles
(AUVs) moving in a horizontal plane is to follow a general two-
dimensional path in the presence of unknown ocean currents.
This paper presents a method to achieve this. The proposed
guidance and control system only requires absolute velocity
measurements for feedback, thereby foregoing the need for
expensive sensors to measure relative velocities. The closed-loop
system consists of a guidance law and an adaptive feedback
linearizing controller combined with sliding mode, and is
shown to render the path cross-track error dynamics UGAS
and USGES. Simulation results are presented to verify the
theoretical results.

I. INTRODUCTION

The use of unmanned marine vehicles is rapidly increasing
within several fields, such as marine biology, environmental
monitoring, seafloor mapping, oceanography, military use
and in the oil and gas industry. Therefore, control of such
autonomous vessels is considered an important area within
the marine control research community. This paper addresses
a cornerstone ability for an underactuated USV, namely path
following of a general path in the presence of unknown ocean
currents. Note that the results presented in this paper are also
applicable to an AUV moving in the horizontal plane. Path
following is a motion control scenario where the controlled
vessel has to follow a predefined path without time constra-
ints [1]-[3]. In this paper, the vessel should converge to and
follow a certain path while fulfilling a velocity assignment.
Thus, it may be considered a maneuvering control problem
[4] with a geometric and a dynamic task.

A commonly used approach for path following and maneu-
vering control is the Line of Sight (LOS) method [1],[5]-[10].
LOS is a guidance method providing a heading reference to
the USV that, if satisfied, will ensure convergence to the
desired path. However, this control approach is susceptible
to environmental disturbances such as ocean currents, waves
and wind: path deviation and convergence problems will
occur if the vessel is affected by environmental disturbances
[11]. For straight line paths, LOS can be used with integral
action [11]-[13] or adaptive estimation techniques [7] by
allowing the USV to side-slip to compensate for the effect
of the ocean current. In [12] the steady state of the marine

1S.Moe, K.Y.Pettersen and T.I. Fossen are with the NTNU Center
for Autonomous Marine Operations and Systems (AMOS), at The De-
partment of Engineering Cybernetics, Norwegian University of Scien-
ce and Technology (NTNU), Trondheim, Norway {signe.moe,
kristin.y.pettersen, thor.fossen}@ntnu.no

2J.T. Gravdahl is with The Department of Engineering Cybernetics,
Norwegian University of Science and Technology (NTNU), Trondheim,
Norway jan.tommy.gravdahl@itk.ntnu.no

vessel is used to estimate the ocean current magnitude and
direction, and in [7] the estimates of the ocean current is
used directly in the LOS guidance law.

For curved path following, the USV has to sideslip even
without ocean currents to achieve path following due to the
non-zero curvature of the path. Rigorous stability properties
for LOS with side-slip used on a general, curved path when
ocean current is not considered is given in [14]. The side-
slip is calculated based on velocity measurements. A similar
approach is used in [15], where path following of general
paths for both surface and underwater vehicles is achieved
by analyzing Serret-Frenet equations.

Side-slipping is required both for curved path following
and for ocean current compensation, and thus also in the
case when these two scenarios are combined. In [16], a
LOS path following approach is used with current estimation
techniques and measurements of relative velocities, allowing
the USV to follow curved paths while compensating for
the influence of ocean currents. The Serret-Frenet based
method in [15] is extended to account for the effects of ocean
current for surface and underwater vehicles in [17] and [18],
respectively. Similar to [16], this method requires estimation
of the ocean current, measurements of relative velocities and
a parametrization of the path as a function of arc length,
which can make it challenging to find a parametrization of
the desired path. Furthermore, for the underwater case, it is
also required that the path torsion and curvature is known as
functions of arc length.

This paper proves that the LOS guidance law suggested in
[14] for curved path following is suitable also for curved path
following in combination with ocean current compensation
by using adaptive feedback linearization combined with
sliding mode. The proposed guidance and control system
requires measurements of absolute velocities only, thereby
foregoing the need for expensive sensors to measure relative
velocities. Furthermore, the guidance law is not based on
Serret-Frenet frames, which allows for any parametrization
of the path and removes the need for an update law for the
Serret-Frenet frame.

This paper is organized as follows. Section II presents the
USV model before the control objectives are formalized in
Section III. The suggested control system is then introduced
in Section IV followed by the main result in Section V.
Finally, simulations results and conclusions are presented in
Sections VI and VII, respectively.



II. VESSEL MODEL

This section presents the 3-DOF surface vessel maneuve-
ring model that is considered and the assumptions on which
this is based.

A. Model Assumptions

Assumption 1. The motion of the USV is described by 3
degrees of freedom (DOF), that is surge, sway and yaw.
Assumption 2. The USV is port-starboard symmetric.
Assumption 3. The body-fixed coordinate frame b is located
at a distance (x?g,0) from the USV’s center of gravity (CG)
along the center-line of the USV, where x?g is to be defined
later.
Remark 1. The body-fixed coordinate system can always be
translated to the required location x?g [1].
Assumption 4. The ocean current in the inertial frame i
VVV c , [Vx,Vy,0]

T is constant, irrotational and bounded. Hence
there exists a constant Vmax > 0 such that Vmax >

√
V 2

x +V 2
y .

B. The Vessel Model

The state of the surface vessel is given by the vector ηηη ,
[x,y,ψ]T and describes the position (x,y) and the orientation
ψ of the USV with respect to the inertial frame i. The vector
ννν , [u,v,r]T contains the linear and angular velocities of the
USV defined in the body-fixed frame b, where u is the surge
velocity, v is the sway velocity and r is the yaw rate. The
ocean current velocity in the body frame b, νννc , [uc,vc,0]

T ,
is obtained from νννc = RRRT (ψ) [Vx,Vy,0]

T , where RRR(ψ) is
defined as

RRR(ψ),

cos(ψ) −sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 . (1)

The relative velocity

νννr =

ur
vr
r

, ννν−νννc =

u
v
r

−
uc

vc
0

 (2)

is defined in the body frame b.
The following 3-DOF maneuvering model is considered

[1], [11]:

η̇ηη = RRR(ψ)ννν

MMMRBν̇νν +CCCRB(ννν)ννν =−MMMAν̇ννr−CCCA(νννr)νννr−DDD(νννr)νννr +BBB fff
(3)

The vector fff , [T,δ ]T contains the control inputs: T is
the thruster force and δ is the rudder angle. The matrix
MMMRB = MMMT

RB > 0 is the rigid-body mass and inertia matrix
and CCCRB is the rigid-body Coriolis and centripetal matrix.
Similarly, MMMA = MMMT

A > 0 and CCCA are mass and Coriolis
matrices for hydrodynamic added mass. The strictly positive
hydrodynamic matrix is given by DDD and BBB ∈R3×2 is the ac-
tuator configuration matrix. The matrices have the following
structure:

MMMx ,

mx
11 0 0
0 mx

22 mx
23

0 mx
23 mx

33

 , DDD(νννr),

d11 +dq
11ur 0 0

0 d22 d23
0 d32 d33

 ,
BBB ,

b11 0
0 b22
0 b32

 , CCCx(zzz),

 0 0 −mx
22z2−mx

23z3
0 0 mx

11z1
mx

22z2 +mx
23z3 −mx

11z1 0

 ,
(4)

for x ∈ {RB,A}. Assumptions 1-3 justify the structure of the
matrices MMMx, x ∈ {RB,A}, and DDD and the structure of CCC is
obtained as described in [1]. Furthermore, the distance x?g
from Assumption 3 is chosen so that MMM−1BBB fff = [τu,0,τr]

T .
This point (x?g,0) exists for all port-starboard symmetric
ships [11]. Here, MMM = MMMRB +MMMA.
Remark 2. Note that the model (3) does not depend on
wave frequency. Hence, the parameters in MMMA and DDD can
be considered constant.
Remark 3. It is shown in [1] that since the ocean current is
constant and irrotational in i, the USV can be described by
the 3-DOF maneuvering model in (3).
Remark 4. The above model is valid for ships with a non-
negative relative surge velocity ur, implying that the ship is
not moving backwards relative to the ocean current. This is
a valid assumption for a ship with a path-following task.

C. The Model in Component Form

For the control design it is useful to expand (3) into
component form:

ẋ = cos(ψ)u− sin(ψ)v

ẏ = sin(ψ)u+ cos(ψ)v

ψ̇ = r,

u̇ =−
d11 +dq

11u
m11

u+
(m22v+m23r)r

m11
+φφφ

T
u (ψ,r)θθθ u + τττu

v̇ = X(ur,uc)r+Y (ur)vr

ṙ = Fr(u,v,r)+φφφ
T
r (u,v,r,ψ)θθθ r + τr

(5)

Here, mi j , mRB
i j + mA

i j and θθθ u = θθθ r =

[Vx,Vy,V 2
x ,V

2
y ,VxVy]

T . The expressions for φφφ
T
u (ψ,r),

X(ur,uc), Y (ur), Fr(u,v,r) and φφφ
T
r (u,v,r,ψ) are given in

Appendix A.

III. CONTROL OBJECTIVES

This section formalizes the control problem solved in this
paper: The control system should make the vessel follow a
given smooth path C and maintain a desired constant surge
velocity udes in the presence of unknown constant irrotational
ocean currents. C is parametrized with respect to the inertial
frame i. Let θ ≥ 0 denote the path variable. Then, the path
C is parametrized by (xp(θ),yp(θ)).

The cross-track error ye is computed as the orthogonal dis-
tance between the vessel position (x,y) to the path-tangential
reference frame defined by the point (xp(θ),yp(θ)). The path
variables are illustrated in Fig. 1. Note that the position of the



path-tangential reference frame is always such that the along-
track error xe = 0. The path-tangential frame corresponds to
the inertial frame rotated by γp(θ), where

γp(θ) = atan

(
y
′
p(θ)

x′p(θ)

)
. (6)

Hence, [
0
ye

]
= RRRT (γp(θ))

[
x− xp(θ)
y− yp(θ)

]
(7)

where RRR is the rotation matrix defined in (1). Thus, the cross-
track error is given as

ye =−(x− xp(θ))sin(γp(θ))+(y− yp(θ))cos(γp(θ)), (8)

where the propagation of θ is given by [1]:

θ̇ =
U√

x′p(θ)
2
+ y′p(θ)

2
> 0, (9)

and
U =

√
u2 + v2. (10)

Note that it is assumed that the path is an open curve, i.e.
the end point is different from the start point. Definition [14]
guarantees that there is a unique solution for the cross-track
error ye obtained by minimizing θ .

It can be shown that the cross-track error dynamics can
be expressed as [14]

ẏe =−(ucos(ψ)− vsin(ψ))sin(γp(θ))

+(usin(ψ)+ vcos(ψ))cos(γp(θ)).
(11)

It is obvious from Fig. 1 that ye = 0 implies that the vessel is
on the desired path. Hence, we define the control objectives
as

lim
t→∞

u(t) = udes

lim
t→∞

ye(t) = 0
(12)

North&

East&

C

(xp(θ), yp(θ))"

(x, y)"

γp"

ye"

Fig. 1: Desired path C, path-tangential reference frame with
orientation γp(θ) and cross-track error ye illustrated.

IV. THE CONTROL SYSTEM

This Section presents the proposed guidance law and
controllers. The system uses absolute velocity measurements
only, making it unnecessary to buy expensive sensors to
measure relative velocities. The reason why only absolute
velocity measurements are required, is that the absolute
velocity is the sum of relative velocity and ocean cur-
rents, and thus implicitly contains information about these
two components although the exact composition of relative
velocities and ocean currents are unknown. Thus, by the
design of the control system. the vessel is able to compensate
both for the curvature of the path and the ocean current wit-
hout knowing the exact components of these measurements.

A. Guidance Laws

The desired surge velocity is chosen to be constant and
positive.

udes(t)> 0 (13)

The guidance law for the USV heading is chosen as

ψdes = γp(θ)− atan
(

v
udes

)
︸ ︷︷ ︸

,βdes

−atan
(ye

∆

)
. (14)

B. Surge and Yaw Controllers

We define the following error signals:

ũ = u−udes (15)
ψ̃ = ψ−ψdes (16)
˙̃ψ = r− ψ̇des (17)

ξξξ =
[
ũ ψ̃ ˙̃ψ

]T (18)

An adaptive feedback linearizing PD-controller is used to
ensure tracking of the desired heading ψdes:

τr =−Fr(u,v,r)−φφφ
T
r (u,v,r,ψ)θ̂θθ r + ψ̈des

− (kψ +λkr)ψ̃− (kr +λ ) ˙̃ψ− kdsign( ˙̃ψ +λψ̃)
(19)

˙̂
θθθ r = γrφφφ r(u,v,r,ψ)

( ˙̃ψ +λψ̃
)

(20)

The gains kψ ,kr,λ ,γr > 0 are constant and positive, and the
function sign(x) returns 1, 0 and −1 when x is positive, zero
or negative, respectively.

An adaptive feedback linearizing P-controller is used to
ensure tracking of the desired surge velocity udes:

τu =−
1

m11
(m22v+m23r)r+

d11

m11
udes−φφφ

T
u (ψ,r)θ̂θθ u

+
dq

11
m11

u2 + u̇des− kuũ− kesign(ũ) (21)

˙̂
θθθ u = γuφφφ u(ψ,r)ũ (22)

The gains ku,ke,γu are strictly positive constant controller
gains.

The proposed controllers are similar to the controllers
in [11], but in this paper the terms kdsign( ˙̃ψ + λψ̃) and



kesign(ũ) have been added to increase the robustness of
the controller with respect to model uncertainties. Note that
the controllers (19) and (21) rely only on absolute velocity
measurements, as relative velocities are not available for
feedback.

Proposition 1. Given an underactuated surface vessel de-
scribed by the dynamical system (5). If Assumptions 1-4 hold,
the adaptive controllers (19)-(20) and (21)-(22) ensure that
ξξξ = 000 is a uniformly globally exponentially stable (UGES)
equilibrium point and that the references provided by the
guidance system are exponentially tracked.

Proof. Defining

θ̃θθ r = θ̂θθ r−θθθ r, (23)

s = ˙̃ψ +λψ̃, (24)

the error dynamics of the heading controller system can be
expressed as[ ˙̃ψ

ṡ

]
=

[
−λ 1
−kψ −kr

][
ψ̃

s

]
−
[

000
φφφ

T
r

]
θ̃θθ r−

[
0

kdsign(s)

]
(25)

˙̃
θθθ r = γrφφφ r(u,v,r,ψ)s (26)

To analyze the stability properties of the interconnected sys-
tem (25)-(26), we consider the positive definite and radially
unbounded Lyapunov function candidate

V =
1
2

kψ ψ̃
2 +

1
2

s2 +
1

2γr
θ̃θθ

T
r θ̃θθ r (27)

⇓
V̇ =−λkψ ψ̃

2− krs2− kd |s| ≤ 0. (28)

V̇ is negative semi-definite, and thus the origin (ψ̃,s, θ̃θθ r) =
(0,0,000) is a uniformly globally stable (UGS) equilibrium
point of the interconnected system (25)-(26) [19]. Since
V (t) ≤ V (0), ψ̃ , s and θ̃θθ r are bounded. Thus, there exists
some bounds α , β , ζ such that

|ψ̃(t)| ≤ α (29)
|s(t)| ≤ β ∀ t ≥ 0 (30)

||θ̃θθ r(t)|| ≤ ζ (31)

It is straightforward to show that∣∣Ṽx
∣∣≤√Ṽ 2

x +Ṽ 2
y +Ṽ 2

x
2
+Ṽ 2

y
2
+ ˜VxVy

2
= ||θ̃θθ r(t)||< ζ

(32)∣∣Ṽy
∣∣≤ ||θ̃θθ r(t)||< ζ (33)

:∣∣ ˜VxVy
∣∣≤ ||θ̃θθ r(t)||< ζ (34)

Thus,∣∣φφφ T
r θ̃θθ r

∣∣= |φ1Ṽx +φ2Ṽy +φ3Ṽ 2
x +φ4Ṽ 2

y +φ5 ˜VxVy|
≤ |φ1||Ṽx|+ |φ2||Ṽy|+ |φ3||Ṽ 2

x + |φ4||Ṽ 2
y |+ |φ5|| ˜VxVy|

≤ ζ (|φ1|+ |φ2|+ |φ3|+ |φ4|+ |φ5|) = ζ |φφφ r| (35)

Since the equilibrium point (ψ̃,s, θ̃θθ r) = (0,0,000) is UGS, the
states have no finite escape time and the system (25)-(26)

is forward complete. Thus, we can analyze (25) under the
assumption that θ̃θθ r is a bounded time-varying signal. Con-
sider the positive definite and radially unbounded Lyapunov
function candidate

Vψ =
1
2

kψ ψ̃
2 +

1
2

s2 (36)

⇓
V̇ψ =−λkψ ψ̃

2− krs2−φφφ
T
r θ̃θθs− kd |s|

≤ −λkψ ψ̃
2− krs2 +(|φφφ T

r θ̃θθ |− kd)|s|
≤ −λkψ ψ̃

2− krs2 +(ζ |φφφ r|− kd)|s|
(37)

We choose the gain kd > 2ζ |φφφ r|. Thus,

V̇ψ ≤−λkψ ψ̃
2− krs2−ζ |φφφ r||s|

≤ −λkψ ψ̃
2− krs2 < 0. (38)

V̇ψ is negative definite, and thus the origin (ψ̃,s) = (0,0) is a
uniformly asymptotically globally stable (UGAS) equilibri-
um point of the system (25). Furthermore, Theorem 4.10 [20]
is satisfied with k1 = min(kψ/2,1/2), k2 = max(kψ/2,1/2),
k3 = min(λkψ ,kr) and a = 2. This implies that the origin
(ψ̃,s) = (0,0) is a uniformly exponentially globally stable
(UGES) equilibrium point of the system (25), and

lim
t→∞

ψ̃ = 0, (39)

lim
t→∞

˙̃ψ = lim
t→∞

s−λψ̃ = 0. (40)

Similarly, defining

θ̃θθ u = θ̂θθ u−θθθ u, (41)

the error dynamics of the surge controller system is given by

˙̃u =−
(

d11

m11
+ ku

)
ũ−φφφ

T
u (ψ,r)θ̃θθ u− kesign(ũ) (42)

˙̃
θθθ u = γuφφφ y(ψ,r)ũ (43)

To analyze the stability properties of the interconnected sys-
tem (42)-(43), we consider the positive definite and radially
unbounded Lyapunov function candidate

V =
1
2

ũ2 +
1

2γu
θ̃θθ

T
u θ̃θθ u (44)

⇓

V̇ =−
(

d11

m11
+ ku

)
ũ2− ke|ũ| ≤ 0. (45)

V̇ is negative semi-definite, and thus the origin (ũ, θ̃θθ u) =
(0,000) is an UGS equilibrium point of the interconnected
system (42)-(43). Since V (t)≤V (0), ũ, and θ̃θθ u are bounded.
Thus, there exists some bounds α , β , ζ such that

|ũ(t)| ≤ ι ∀ t ≥ 0 (46)

||θ̃θθ u(t)|| ≤ κ (47)

Similarly as the analysis for system (25), we can analyze
(42) under the assumption that θ̃θθ u is a bounded time-varying



signal. Consider the positive definite and radially unbounded
Lyapunov function candidate

Vu =
1
2

ũ2 (48)

⇓

V̇u =−
(

d11

m11
+ ku

)
ũ2−φφφ

T
t θ̃θθ uũ− ke|ũ|

≤ −
(

d11

m11
+ ku

)
ũ2 +(|φφφ T

t θ̃θθ u|− ke)|ũ|

≤ −
(

d11

m11
+ ku

)
ũ2 +(κ|φφφ t |− ke)|ũ| (49)

We choose the gain ke > 2κ|φφφ u|. Thus,

V̇ψ ≤−
(

d11

m11
+ ku

)
ũ2−κ|φφφ t ||ũ|

≤ −
(

d11

m11
+ ku

)
ũ2 < 0. (50)

V̇u is negative definite, and thus the origin ũ0 is a uniformly
asymptotically globally stable (UGAS) equilibrium point of
the system (42). Furthermore, Theorem 4.10 [20] is satisfied
with k1 = k2 = 1/2, k3 = d11/m11+ku and a= 2. This implies
that the origin ũ = 0 is a uniformly exponentially globally
stable (UGES) equilibrium point of the system (42), and

lim
t→∞

ũ = 0. (51)

Thus, the errors ξξξ =
[
ũ ψ̃ ˙̃ψ

]T converge exponentially
to zero.

Assumption 5. The controllers (19) and (21) are tuned such
that the error dynamics in (25) and (42) is fast compared
to the cross-track error dynamics (11). Hence, ξξξ can be
assumed to be zero.

C. State Measurements

The control system proposed in this paper assumes that
ηηη and ννν are measured. Ships are usually equipped with a
large variety of sensors that combined provide sensor data
to estimate the vessel state [1]. We assume that the ship is
equipped with Global Navigation Satellite System (GNSS)
receivers to provide position and velocity measurements and
a gyrocompass to measure yaw ψ yaw rate r. Furthermore,
we assume that the measurements are filtered to remove first-
order wave-induced motions and measurement noise.

V. MAIN RESULT

This section presents the conditions under which the
proposed control system achieves the control objectives (12).

Theorem 1. Given an underactuated surface vessel descri-
bed by the dynamical system (5). If Assumptions 1-5 hold, the
controllers given by (19) and (21), and the guidance laws
given by (13) and (14), give a cross-track error dynamics
for which the equilibrium point ye = 0 is uniformly globally
asymptotically stable (UGAS) and uniformly semi-globally

exponentially stable (USGES), and the control objectives (12)
are achieved.

Proof. The dynamics of the path cross track error is given
in (11), and can be rewritten as follows:

ẏe =−(ucos(ψ)− vsin(ψ))sin
(
γp(θ)

)
+(usin(ψ)+ vcos(ψ))cos

(
γp(θ)

)
= u

(
sin(ψ)cos(γp(θ))− cos(ψ)sin(γp(θ))

)
+ v
(
cos(ψ)sin(γp(θ))+ sin(ψ)cos(γp(θ))

)
= (udes + ũ)sin(ψ− γp(θ))+ vcos(ψ− γp(θ))

=Udes sin
(
ψ− γp(θ)+βc,des

)
+ ũsin(ψ− γp(θ)), (52)

where
Udes =

√
u2

des + v2. (53)

Inserting the expressions for the guidance law in yaw (14)
and error signal (16), the sine terms in (52) can be rewritten
as below:

sin
(
ψ− γp(θ)+βdes

)
= sin

(
ψ̃ +ψdes− γp(θ)+βdes

)
= sin

(
ψ̃− atan

(ye

∆

))
= sin(ψ̃)cos

(
atan

(ye

∆

))
− cos(ψ̃)sin

(
atan

(ye

∆

))
=−sin

(
atan

(ye

∆

))
+ sin(ψ̃)cos

(
atan

(ye

∆

))
− (cos(ψ̃)−1)sin

(
atan

(ye

∆

))
=− ye√

∆2 + y2
e

+ sin(ψ̃)
∆√

∆2 + y2
e
− (cos(ψ̃)−1)

ye√
∆2 + y2

e
(54)

sin
(
ψ− γp(θ)

)
= sin

(
ψ̃ +ψdes− γp(θ)

)
= sin

(
ψ̃−βdes− atan

(ye

∆

))
= sin

(
ψ̃− atan

(
∆v+yeudes

∆udes−yev

))
(55)

Inserting (54)-(55) into (52) yields

ẏe =Udes

(
− ye√

∆2 + y2
e
+ sin(ψ̃)

∆√
∆2 + y2

e

−(cos(ψ̃)−1)
ye√

∆2 + y2
e

)
+ ũsin

(
ψ̃− atan

(
∆v+yeudes

∆udes−yev

))
= f1(t,ye)+ggg(t,ye,ξξξ )ξξξ (56)

with

f1(t,ye) =−Udes
ye√

∆2 + y2
e
, (57)

ggg(t,ye, ψ̃) =

sin
(

ψ̃− atan
(

∆v+yeudes
∆udes−yev

))
Udesg1(t,ye, ψ̃)

0


T

(58)



where

g1(t,ye, ψ̃) =
sin(ψ̃)

ψ̃

∆√
∆2 + y2

e
− cos(ψ̃)−1

ψ̃

ye√
∆2 + y2

e
(59)

By Assumption 5, ξξξ = 000, reducing the error dynamics to

ẏe = f1(t,ye) =−Udes
ye√

∆2 + y2
e

(60)

Stability of the nominal system can be shown using the
quadratic, positive definite, decrescent and radially unboun-
ded Lyapunov function V = 1

2 y2
e .

V̇ = yeẏe =−
Udes√
∆2 + y2

e
y2

e . (61)

Since
Udes =

√
u2

des + v2 ≥ udes > 0 (62)

by (13), V̇ is negative definite along the trajectories of the
system (57), which is UGAS, and

|ye(t)| ≤ |ye(t0)| ∀ t ≥ t0. (63)

Furthermore, using the same approach as the proof in Ap-
pendix A in [14], we define

φ(t,ye) =
Udes√
∆2 + y2

e
(64)

For each r > 0 and |ye(t)| ≤ r, we have

φ(t,ye)≥
udes√

∆2 + r2
, c(r). (65)

Consequently,

V̇ (y,ye) =−2φ(t,ye)V (t,ye)≤−2c(r)V (t,ye) ∀ |ye(t)| ≤ r
(66)

Given (63), the above holds for all trajectories generated
by the initial conditions ye(t0). Therefore, the comparison
lemma (Lemma 3.4 [20]) can be used to prove that the
equilibrium point ye = 0 is USGES. The differential equation
ż = −2c(r)z has the solution z(t) = e−2c(r)(t−t0)z(t0), which
implies that

w(t)≤ e−2c(r)(t−t0)w(t0), w(t) =V (t,ye(t)) (67)

Furthermore,
ye(t) = 2

√
w(t), (68)

which implies that

ye(t)≤ e−c(r)(t−t0)ye(t0) (69)

for all t ≥ t0, |ye(t0)| ≤ r and r > 0. Thus, we can conclude
that the equilibrium point ye = 0 is USGES (Definition 2.7.
[21]).

We have thus proved that the cross track error dynamics
(11) have global convergence to the equilibrium point ye =
0. In addition, the local convergence properties are even
stronger than asymptotic. In particular, it is shown that
ye = 0 is USGES and that the control objectives (12) are
satisfied.

VI. SIMULATION RESULTS

This section presents simulation results for two different
curved paths. The simulated vehicle is a HUGIN AUV,
produced by Kongsberg Maritime, restricted to movement in
the horizontal plane. In all simulations, the desired relative
surge velocity is chosen as udes = 3 m/s and the lookahead
distance ∆ as ∆ = 50 m. The ocean current VVV c = [0.3,0.3]T

m/s, and the controller gains are chosen as kψ = 1.2s−2,
kr = 1.3s−1, λ = 0.5s−1, kd = 0.1s−2, ku = 0.1s−1 and
ke = 0.1ms−2. The dimensionless adaptive gains are chosen
as γu = γr = 0.1. Note that to avoid chattering about the
equilibrium point, in the simulations the discontinuous term
sign(z) in the controllers (19) and (21) has been replaced
with the continuous function tanh(10z).

Two desired paths have been defined and simulated:

C1 :=
{

xp(θ) = θ

yp(θ) = 30sin(0.005θ)
(70)

C2 :=
{

xp(θ) = 1.2θ sin(0.005θ)
yp(θ) = 600cos(0.005θ)−650 (71)

Simulations results for the two paths are presented in Fig.
2-3 and 4-5, respectively. In both simulations, the cross-
track error converges to zero and the relative surge velocity
to the constant desired value. Thus, the control objectives
are satisfied, and the controllers achieve tracking of the
references ψdes and ψ̇des.

Fig. 2 and 4 both illustrate that the USV side-slips to
follow the desired path. The AUV heading is not aligned with
the path heading, but the AUV velocity is aligned with the
path, ensuring that the vessel follows the curved path without
knowledge of the ocean current direction or magnitude.

VII. CONCLUSIONS

In this paper a guidance and control system for underactua-
ted surface vessels is developed to solve the control objective
of making the vessel follow a curved path in the presence
of unknown ocean currents. The results are also applicable
to AUVs moving in the horizontal plane.

The paper is motivated by the guidance law suggested
in [14] designed for curved path following when no ocean
currents are considered. We prove that a similar guidance law
combined with an adaptive feedback linearizing controller
with sliding mode, achieves convergence to the desired path
with UGAS and USGES stability properties under explicit
conditions. Only absolute velocity measurement are required.
Simulation results verify the theoretical results.
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Fig. 3: Cross-track error and desired vs. actual surge velocity,
yaw and yaw rate for C1.
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APPENDIX A

φφφ u(ψ,r) =


d11+2dq

11u
m11

cos(ψ)− mA
11−mA

22
m11

r sin(ψ)
d11+2dq

11u
m11

sin(ψ)+
mA

11−mA
22

m11
r cos(ψ)

−dq
11 cos2(ψ)

−dq
11 sin2(ψ)

−2dq
11 cos(ψ)sin(ψ)

 (72)

X(ur,uc) =
1
Γ

(
m33(−d23−m11ur−mRB

11 uc)

+ m23d33 +m23(m23ur +mRB
23 uc +mA

22uc)
)
(73)

Y (ur) =
1
Γ

(
−m33d22 +m23d32 +m23(mA

22−mA
11ur)

)
(74)

Fr(u,v,r) =
m22

Γ
(−(m22v−m23r)u+m11uv−d32v−d33r)

− m23

Γ
(−m11ur−d22v−d23r) (75)

Here, Γ = m22m33 − m2
23 > 0. Furthermore, the function

φφφ r(u,v,r,ψ) = [φr1, ...,φr5]
T is defined by[

φr1
φr2

]
=

[
cos(ψ) −sin(ψ)
sin(ψ) cos(ψ)

][
a1
a2

]
(76)

φr3 =−
m22

Γ
(mA

11−mA
22)sin(ψ)cos(ψ) (77)

φr4 =
m22

Γ
(mA

11−mA
22)sin(ψ)cos(ψ) (78)

φr5 =
m22

Γ
(mA

11−mA
22)(1−2sin2(ψ)), (79)

where

a1 =−
m22

Γ

(
(mA

11−mA
22)v+(mA

23−mA
22)r

)
− m23

Γ
mA

11r (80)

a2 =
m22

Γ

(
d32− (mA

11−mA
22)u

)
− m23

Γ
d22 (81)

Remark 5. In deriving the expression (74), we have used that mRB
11 −

mRB
22 = 0, which follows from the fact that mRB

11 = mRB
22 = m, where

m is the mass of the vessel [1].
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