
ASTRONOMY & ASTROPHYSICS FEBRUARY 1997, PAGE 343

SUPPLEMENT SERIES

Astron. Astrophys. Suppl. Ser. 121, 343-368 (1997)

Line-profile variations due to adiabatic non-radial

pulsations in rotating stars

I. Observable characteristics of spheroidal modes

C. Schrijvers1, J.H. Telting1, C. Aerts2,⋆, E. Ruymaekers3, and H.F. Henrichs1

1 Astronomical Institute Anton Pannekoek, University of Amsterdam, and Center for High Energy Astrophysics, Kruislaan
403, 1098 SJ Amsterdam, The Netherlands
2 Instituut voor Sterrenkunde, Katholieke Universiteit Leuven, Celestijnenlaan 200 B, B-3001 Heverlee, Belgium
3 St. Antoniusstraat 139, B-8500 Kortrijk, Belgium

Received February 29; accepted June 3, 1996

Abstract. We present a useful formulation of the surface-
velocity field of a rotating, adiabatically pulsating star,
which accounts for the effects of the Coriolis force. We
use this model to investigate the observable spectroscopic
characteristics of non-radial pulsations. We calculate time
series of absorption line profiles in a carefully chosen do-
main of parameter space. Only mono-periodic spheroidal
modes are investigated; atmospheric changes due to the
pulsation are neglected. The line-profile variations, as well
as their behavior inferred from two well-defined diagnos-
tics, are presented in two-dimensional parameter grids. We
show that the intensity variations in time series of theo-
retical spectra, at each position in the line profile, cannot
be described by a single sinusoid: at least one harmonic
sinusoid needs to be included. Across the line profile the
relative amplitudes and phases of these sinusoids vary in-
dependently. The blue-to-red phase difference found at the
main pulsation frequency turns out to be an indicator of
the degree ℓ, rather than the azimuthal order |m|; the
phase difference of the variations with the first harmonic
frequency is an indicator of |m|. Hence, the evaluation of
the variability at the harmonic frequency can improve the
results derived from an analysis of observed line profiles.
We find, that if line-profile variations at the line center
dominate over the variations in the line wings, this does
not give conclusive information on the ratio of the hori-
zontal to the vertical pulsational surface motions. Tesseral
modes, when observed at not too high inclinations, are as
much capable of producing considerable line-profile vari-
ations as sectoral modes. We find that, within the limits
of our model, the effects of rotation on the appearance
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of the line-profile variations are important for low-degree
sectoral modes, and for the sub-class of the tesseral modes
with ℓ−m an even number.
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1. Introduction

The study of stellar pulsations can improve our under-
standing of stellar structure. By measuring the photo-
metric and spectral line-profile variations caused by pul-
sations, one can determine the time dependent state of
the stellar surface, and eventually probe the interior of
the star. The development of high-precision spectroscopy
with solid-state detectors initiated the discovery of sev-
eral classes of non-radially pulsating early-type stars (e.g.,
Smith 1977; Vogt & Penrod 1983; Baade 1984; Gies &
Kullavanijaya 1988), and offered much higher accuracy in
measuring time variability of line profiles. The increase in
computing power allowed the numerical synthesis of line-
profile variations, based on analytical descriptions of the
surface velocity and/or temperature perturbations due to
non-radial pulsations (Osaki 1971; Kambe & Osaki 1988;
Lee & Saio 1990; Aerts & Waelkens 1993). Such numerical
simulations are indispensable for the correct interpreta-
tion of observed line-profile variability. An excellent text-
book on the theory of stellar pulsations is written by Unno
et al. (1989).
Spectroscopic identifications of pulsation modes have

been attempted by fitting theoretical line profiles to ob-
served spectra (e.g. Smith 1977). A serious problem with
such an approach is the large number of free parameters,
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and the associated question of the uniqueness of the solu-
tion. Currently, two powerful Fourier-analysis techniques
are in use, which attempt to resolve this problem. The
first is based on the Doppler imaging principle (Vogt et
al. 1987), in which one assumes a mapping of photospheric
features (e.g. local velocity, brightness or EW variations)
onto line profiles that are Doppler broadened by the ro-
tation of the star. From a Fourier transform applied to
each velocity bin of a time series of observed spectra one
obtains the power of variability as a function of frequency
(periodogram), for all velocity positions in the line pro-
file (e.g. Gies & Kullavanijaya 1988; Kambe et al. 1990;
Reid et al. 1993; see Kennelly et al. 1992 for an alterna-
tive version of this technique which comprises a 2D Fourier
transform). Additionally, the Fourier analysis provides in-
formation about the phase change of the periodic varia-
tions across the line profile. Using the power and phase
information, some of the pulsation parameters can be de-
rived.
The second technique involves the computation of ve-

locity moments of the line profile (Balona 1986; Aerts et
al. 1992). A comparison of the Fourier components de-
rived from the observed moment variations with those of
the velocity moments generated by means of a non-radial
pulsation model, gives in principle all the desired pulsation
parameters.
In this paper we apply a technique, that is similar to

the first mentioned method, to theoretical spectra. Our
aim is to illustrate the dependence of the observable diag-
nostics (which will be defined in Sect. 4) on the relevant
stellar and pulsational parameters. To allow a comparison
with the work of Aerts et al. (1992), we calculated the
first two velocity moments as well. We present calcula-
tions for rotating early-type stars, but in many cases our
description applies to other types of stars as well.
We use a description of the pulsational velocity field of

a rotating star that incorporates terms due to the Coriolis
force, which is equivalent to the one presented by Aerts &
Waelkens (1993, hereafter AW), but with a few modifica-
tions to allow straightforward calculation. We investigate
only single spheroidal pulsation modes. A generalization
of the velocity field to multiple modes in a rotating star is
straightforward if a linear pulsation theory applies. In all
our models, we assume the symmetry axis of the pulsation
to be aligned with the axis of rotation. In our line pro-
file synthesis we neglect the atmospheric variations due to
the pulsation, which is justified for those absorption lines
for which the pulsational velocity variations dominate the
temperature effects (Simon 1991).
In subsequent papers we present the results of bulk

computations of the diagnostics (Paper II, Telting &
Schrijvers 1996a), we discuss the peculiar line-profile be-
havior of nearly equator-on tesseral modes with odd ℓ−m
(Paper III, Telting & Schrijvers 1996b), and we investi-
gate the effect of brightness and EW changes caused by
the pulsation on the observational diagnostics (Paper IV,

Schrijvers & Telting 1996). Preliminary results of the di-
agnostic value of phase diagrams derived from time series
of spectra of non-radially oscillating stars are presented
by Telting & Schrijvers (1995).
The outline of this paper is as follows. In Sects. 2.1 and

2.2 we briefly summarize the traditional model describ-
ing the surface velocity field of non-radial adiabatic pul-
sations, in the limit of no rotation. The effect of rotation
on the velocity field of pulsation is included in Sect. 2.3.
In Sect. 2.4 we derive an expression for the ratio of the
horizontal to the vertical pulsational amplitude, k, which
accounts for effects of the Coriolis force, and in Sect. 2.5
we verify this expression in the case of a polytropic model.
The synthesis of line profiles is described in Sect. 3. We
discuss the observable diagnostics in Sect. 4. The relevant
domains of the pulsational and stellar parameters are dis-
cussed in Sect. 5. The results of our computations are pre-
sented in Sect. 6. We summarize our findings in Sect. 7.

2. Surface velocity field of adiabatic pulsations

We first briefly summarize the traditional expression for
the surface velocity field of non-radial pulsations in the
limit of no rotation. We will refer to this as the zero-
rotation model. Subsequently, we give a more general de-
scription which accounts for the effects of the Coriolis force
on the displacement field of the pulsation. This descrip-
tion, which we refer to as the slow-rotationmodel, is equiv-
alent to those of Saio (1981), Martens & Smeyers (1982)
and Aerts & Waelkens (1993). Hereafter we will refer to
these three papers jointly as SMA.

2.1. Basic equations

The equations that govern linear, isentropic pulsations of
a rotating star are the equations of motion, continuity,
conservation of entropy, and Poisson’s equation. In our
treatment the distortion of the spherical equilibrium sur-
face by centrifugal forces is neglected, as well as the effects
of centrifugal forces on the pulsation (which are propor-
tional to Ω2, with Ω the angular rotation frequency of
the star): only the effects of the Coriolis force (∝ Ω) are
taken into account. Therefore, our description is only valid
for slowly rotating stars. We will quantify this restriction
in Sect. 5.1. Following SMA, we assume that the evolu-
tion of the star is a succession of quasi-static states of
hydrostatic and thermal equilibrium, and that the tempo-
ral part of the pulsation can be written as eiωt, where ω is
the angular frequency of pulsation in the corotating frame
and t is time. (Hereafter, we speak of frequencies when we
mean angular frequencies.) We write the perturbed and
linearized equations as

ω2ξ + 2iω(Ω × ξ) =∇Φ′ − ρ
′

ρ2
∇P +

1

ρ
∇P ′ , (1)

ρ′

ρ
+
1

ρ

dρ

dr
ξr +∇ · ξ = 0 , (2)
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ρ′

ρ
+
1

ρ

dρ

dr
ξr =

1

Γ1

(

P ′

P
+
1

P

dP

dr
ξr

)

, (3)

∇2Φ′ = 4πGρ′ , (4)

in which ξ ≡ (ξr , ξθ, ξφ) is the Lagrangian displacement
vector, ρ, P and Φ are the mass density, the pressure,
and the gravitational potential, ρ′, P ′, and Φ′ are their
Eulerian perturbations, i =

√
−1, and Γ1 is the first gen-

eralized isentropic coefficient. This set of six equations de-
termines the state of a rotating, pulsating star.

2.2. Description in the limit of no rotation

Since our aim is to calculate line-profile variations, we need
to describe the pulsational velocity field at the surface of
the star. Neglect of the term proportional to Ω in Eq. (1)
leads to the well-known solution of the perturbation prob-
lem for which the angular dependence of the displacement
field of a normal mode is specified by one spherical har-
monic Y mℓ (θ, φ) and its derivatives. The spherical har-
monic describes the shape of the perturbation as a func-
tion of co-latitude θ measured from the polar axis, and
azimuth φ. We write the spherical harmonics as

Ymℓ (θ, φ) ≡ P
|m|
ℓ (cos θ) eimφ , (5)

and the Associated Legendre polynomial Pmℓ (x) as

Pmℓ (x) ≡
(−1)m
2ℓℓ!

(

1− x2
)m/2 dℓ+m

dxℓ+m
(

x2 − 1
)ℓ
, (6)

where ℓ and m = −ℓ, ...,+ℓ denote the degree and az-
imuthal order of the mode respectively. The Lagrangian
displacement vector for spheroidal modes of a non-rotating
star in spherical coordinates is then given by

ξ =

(

a(0), b(0)
∂

∂θ
, b(0)

1

sin θ

∂

∂φ

)

Nmℓ Y
m
ℓ (θ, φ) e

iω(0)t , (7)

with a(0) and b(0) the vertical and horizontal displacement
amplitudes. The superscripts (0) refer to quantities in the
non-rotating case. Nmℓ is a normalization constant

Nmℓ = (−1)
m+|m|
2

√

2ℓ+ 1

4π

(ℓ− |m|)!
(ℓ+ |m|)! . (8)

Note that our definition of Nmℓ differs from those of SMA
and Unno et al. (1989), but that this difference is not im-
portant for our computations of the line-profile variability
since we use the maximum surface velocity to parameter-
ize the pulsation amplitude (see Sect. 5.4).
The useful parameter k is defined as the ratio of the

horizontal to the vertical amplitude. In the Cowling ap-
proximation (Φ′ = 0), k can be evaluated at the stellar
surface by

k(0) ≡ b
(0)

a(0)
=

GM

(ω(0))2R3
, (9)

with G, M and R the gravitational constant, the stellar
mass and radius, respectively. We discuss the validity of
the Cowling approximation for the determination of k in
Sect. 2.5.
The surface velocity field in the corotating frame is

then completely specified by ℓ, m, a(0), k(0), and ω(0). We
refer to this description as the zero-rotation model. Note
that this does not mean that the star does not rotate, but
rather that we are using the zero-rotation approximations
to describe its pulsational behavior.

2.3. Velocity field of adiabatic pulsations of a rotating star

We now consider the effects of the Coriolis force on the
properties of the pulsation of a rotating star. Following
SMA we expand all unknown quantities in a zero-rotation
part and a correction term due to the Coriolis force. The
correction terms are proportional to the parameter Ω/ω(0)

(which is assumed to be smaller than unity, see below).
The vertical and horizontal Lagrangian displacement am-
plitudes a and b become

a ≡ a(0) + Ω

ω(0)
a(1) , b ≡ b(0) + Ω

ω(0)
b(1) , (10)

and similarly, the pulsation frequency is written as (in
analogy with Ledoux 1951)

ω ≡ ω(0) + Ω

ω(0)
ω(1) = ω(0) +mΩCnℓ , (11)

which describes the frequency splitting caused by the ro-
tation of the star. The constant Cnℓ (Ledoux 1951; Hansen
et al. 1978) depends on the internal structure of the star,
and on the degree ℓ and radial order n of the mode, and
hence Cnℓ contains asteroseismological information.
Since the effects of the centrifugal force (∝ (Ω/ω(0))2)

are neglected, the expansions above are, in general, only
applicable to cases where Ω/ω(0) ≪ 1. Substituting expan-
sions similar to those in Eqs. (10) and (11) for all quanti-
ties in the set of Eqs. (1-4), and neglecting all terms of the
second and higher orders in Ω/ω(0), leads to a new system
of equations which needs to be solved to determine the
unknown first-order quantities.
As shown by SMA, the eigenfunctions of the star can

now be written as a superposition of the zero-rotation
eigenfunctions (Eq. 7) and one spheroidal and two toroidal
terms. The three latter terms are due to the Coriolis force.
We express the Lagrangian displacement field at the sur-
face of a rotating star by

ξ = asph,ℓ

(

1, k
∂

∂θ
, k
1

sin θ

∂

∂φ

)

Nmℓ Y
m
ℓ (θ, φ) e

iωt (12)

+ator,ℓ+1

(

0,
1

sinθ

∂

∂φ
,− ∂
∂θ

)

Nmℓ Y
m
ℓ+1 (θ, φ) e

i(ωt+π2 )

+ator,ℓ−1

(

0,
1

sin θ

∂

∂φ
,− ∂
∂θ

)

Nmℓ Y
m
ℓ−1 (θ, φ) e

i(ωt−π2 ) ,
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in which the zeroth and first order spheroidal terms are
combined in the first term. We note that, instead of
Nmℓ , AW incorrectly use N

m
ℓ+1 and N

m
ℓ−1 to normalize the

toroidal terms in their Eq. (19), and that their implemen-
tation of the velocity field contains a small error (Aerts
& Waelkens 1995). With our definition of Ymℓ , the am-
plitudes asph,ℓ, ator,ℓ+1, and ator,ℓ−1 in Eq. (12) are given
by

asph,ℓ = a
(0) +

Ω

ω(0)
a(1) , (13)

ator,ℓ+1 =
Ω

ω(0)
ℓ− |m|+ 1
ℓ+ 1

2

2ℓ+ 1

(

1− ℓk(0)
)

a(0) , (14)

ator,ℓ−1 =
Ω

ω(0)
ℓ+ |m|
ℓ

2

2ℓ+ 1

(

1 + (ℓ+ 1) k(0)
)

a(0). (15)

Note that for sectoral (ℓ = |m|) and radial (ℓ = 0) modes
the term proportional to Ymℓ−1 in Eq. (12) equals zero.
For a given stellar model, the amplitude of the first-

order spheroidal correction a(1) in Eq. (13) can be de-
termined from the zeroth-order solution of the pulsation
mode. In our general treatment we avoid the introduc-
tion of an additional parameter a(1), making use of an
approximation that is allowed in a first-order approach:
instead of a(0), we substitute asph,ℓ into Eqs. (14) and (15),
which introduces an error of the second order in Ω/ω(0) in
Eq. (12). This substitution allows us to study the effect of
the toroidal terms, which arise as a consequence of rota-
tion. The effect of rotation is then determined only by the
rotation parameter Ω/ω(0), which becomes the sixth pa-
rameter of the surface velocity field in addition to the five
mentioned above: ℓ, m, asph, k

(0), ω(0), and Ω/ω(0). In the
following, we refer to this description as the slow-rotation
model.

2.4. An expression for k, correct to the first order in
Ω/ω(0)

In the slow-rotation model, k is modified by rotation and
may differ significantly from Eq. (9). AW give an expres-
sion for k which is correct up to the first order in Ω/ω(0),
but their result contains the unknown parameters a(1) and
b(1) and therefore cannot be used in applications. We de-
rive a new expression to approximate k, up to the first
order in Ω/ω(0), from the boundary condition

δP = P ′ + ξ·∇P = 0 , (16)

at the surface of the star. Our derivation of k is similar to
the one in the zero-rotation model. Under the assumptions
of spherical symmetry and hydrostatic equilibrium, the
condition (16) leads to

P
′(0)
ℓ

ρR
+
Ω

ω(0)
P
′(1)
ℓm

ρR
=
GM

R3
(a(0) +

Ω

ω(0)
a(1)) . (17)

From the φ-component of the equation of motion of
order zero in Ω/ω(0) (Eq. 1), we find that

P
′(0)
ℓ

ρR
≈ 1
R

(

P
′(0)
ℓ

ρ
+ Φ′

(0)
ℓ

)

= (ω(0))2b(0) . (18)

Similarly, an expression for P
′(1)
ℓm is given by

P
′(1)
ℓm

ρR
≈ 1

R

(

P
′(1)
ℓm

ρ
+Φ′

(1)
ℓm

)

(19)

= (ω(0))2

(

b(1) + 2mCnℓb
(0) − 2m

(

a(0) + b(0)
)

ℓ(ℓ+ 1)

)

(see e.g. Eq. (13) in AW). Note that we used the Cowling
approximation (Φ′ = 0) in both Eq. (18) and (19). We use
Eqs. (10–11, 17–19), and neglect terms of order (Ω/ω(0))2

to obtain

b =
GM

ω2R3
a+

2m

ℓ(ℓ+ 1)

Ω

ω
(a+ b) . (20)

This leads to the following expression for k, correct to the
first order in the parameter Ω/ω(0)

k ≡ b
a
=
GM

ω2R3
+

2m

ℓ(ℓ+ 1)

Ω

ω

(

1 +
GM

ω2R3

)

. (21)

Relating k to the zero-rotation frequency ω(0) rather than
to the pulsation frequency ω leads to the desired expres-
sion, correct up to the first order in Ω/ω(0)

k ≡ b
a
= k(0) + 2m

Ω

ω(0)

(

1 + k(0)

ℓ(ℓ + 1)
−Cnℓk(0)

)

, (22)

in which we used Eqs. (9) and (11).
Equation (22) shows that the structure constant Cnℓ

enters the description of the surface-velocity field, when
first-order terms due to the rotation are included. In the
case of p-modes with high radial order, Cnℓ tends to
zero, while for g-modes with high radial order it tends
to 1/ℓ(ℓ+ 1) (Unno et al. 1989). For high-order p-modes,
the term with Cnℓ in Eq. (22) vanishes (k

(0) → 0). On the
other hand, as we will discuss in Sect. 5.6, for large k(0)-
values (i.e. high-order g-modes) a small change in k does
not change the characteristics of the line-profile variations.
Hence, for these two limiting cases of high order p- and g-
modes, the line profiles do not depend on the actual value
for Cnℓ. For cases with intermediate k

(0)-values, Cnℓ co-
determines the line profiles via the first-order correction of
k. In the slow-rotationmodel, we assume Cnℓ = 1/2ℓ(ℓ+1)
for simplicity, which is in between the two limiting cases
for p- and g-modes of high radial order. This approxima-
tion might not be accurate for fundamental modes. For
numerical calculations of Cnℓ we refer to Hansen et al.
(1978) and to Carroll & Hansen (1982).
By means of Eq. (22), we draw the following conclu-

sions about the correction of k(0) by the rotation of the
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star. In the case of high-order g-modes (large k(0)), the
first-order correction term for k is smaller than the zeroth-
order component if Ω/ω(0) < 0.5. This means that for
these modes horizontal motions dominate like in the non-
rotating case. For p-modes (i.e. low k(0)), however, the
first-order correction term of k may become larger than
the zeroth-order term, reflecting the fact that the rota-
tion can reduce radial motion in favor of horizontal mo-
tion. For certain prograde modes (m < 0), this could the-
oretically give rise to negative k-values. However, as will
be discussed in Sect. 5.1, for the small k(0)-values associ-
ated with p-modes, the relative rotation rate Ω/ω(0) is also
small. Therefore, the small k(0)-values associated with p-
modes will never be corrected by the rotation in such a
way that a large negative k-value is found. We note that
the first-order correction of k is most important for modes
of low degree ℓ.

2.5. Verification of the derived expression for k for a
polytropic model

Here we address the question: how large is the error in k
due to the Cowling approximation? For this purpose, we
have used the computer code by De Boeck (De Boeck, in
preparation) to determine the ratio of the amplitudes b
and a by means of an approach that does not make use
of the Cowling approximation. The code performs a nu-
merical integration of a system of differential equations
describing the pulsations up to first order in Ω/ω(0) in
the case of a polytropic model with index 3. The numeri-
cal values for k obtained in this way were then compared
with the ones obtained from Eq. (22), for both p- and
g-modes (p1, . . . , p5 and g1, . . . , g10). For each mode we
have considered ℓ = 0, . . . , 5, with m = −ℓ, . . . , ℓ, and
Ω/ω(0) = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5. In all the considered
cases, the two k-values differ less than 5%.
To derive the k-value for a real star, we need to know

its mass, radius, and pulsation frequency in the corotating
frame. Since in practice the uncertainty in M/R3 is likely
to be larger than 5%, we conclude that the error in k due to
the Cowling approximation is much smaller than that due
to the inaccuracy of the stellar parameters. The expression
for k is therefore accurate enough for our purposes.

3. Line-profile synthesis

The velocity field of pulsation, described in the corotating
frame, is given by the time derivative of the Lagrangian
displacement field

V =
∂ξ

∂t
= i ωξ , (23)

which we calculate on a spherical grid of typically more
than 5000 equally sized visible surface elements. For each
visible element, the corresponding rotational velocity of a
uniformly rotating sphere is added. Neglecting all atmo-
spheric effects due to the pulsation, we attribute to each

surface element a Gaussian intrinsic line profile with width
W

fintr(V ) = 1−
dintr
W
√
π
e−((V−V0)/W)

2

, (24)

where the free parameter dintr is a measure of the line
depth and V0 the central velocity position of the Doppler-
shifted line profile of the regarded surface element. The
line profile I(V ) is then obtained by a weighted integra-
tion of the Doppler-shifted Gaussian profiles of all visible
surface elements. Finally, the profile I(V ) is normalized
by means of a division by its continuum value.
We note that our conclusions will not depend on the

actual shape of the intrinsic line profile. The difference be-
tween profiles calculated with either a Gaussian or, for ex-
ample, a rectangular shape is only noticeable in the wings
of the rotationally broadened line profile. If the rotational
broadening is large enough (i.e. V e sin i > W ), only the
effective width of the intrinsic line profile is important.
The weights in the integration are determined by the

aspect angle of each element, neglecting the rotational and
pulsational deformation of the stellar surface, and by a
linear limb-darkening correction of the form

I (ϑ)

I (0)
= 1− α+ α cos ϑ , (25)

in which ϑ is the angle between the surface normal of the
sphere and the line of sight. We adopt a limb-darkening
coefficient α = 0.35, which is appropriate for early B-type
stars in the optical region (Wade & Rucinski 1985). For
simplicity we apply the same limb-darkening correction to
the continuum and to the wavelength region of the intrin-
sic line profile itself. This means that we keep the shape
of the intrinsic profile constant over the stellar disk. For
very strong lines this might not be a good approximation.
We checked whether or not the use of other values

of the limb-darkening coefficient α affects the validity of
any of the conclusions in this paper. The phases of vari-
ability across the profiles do not change, but the ampli-
tude distribution (see Sect. 4) does. In our representation
of the amplitudes of line-profile variability (see Sect. 4.1),
a high limb-darkening coefficient results in higher varia-
tional amplitudes at the line center, and lower amplitudes
at the wings of the profile. A limb-darkening coefficient of
1.0 can lead to changes up to 20% of the variational am-
plitudes with respect to the case with no limb darkening.
Nevertheless, our conclusions do not depend on our choice
for the limb-darkening coefficient.
In this work we aim to investigate the observational

characteristics of line-profile variations in the best sit-
uation one can consider, namely that of perfect data.
Following this approach, we can establish which pul-
sation parameters one may ultimately derive from ob-
servations. For this reason, we generate data that per-
fectly sample the pulsation period, with sufficient spectral
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resolution, and we do not include noise in the synthesis of
our spectra.
In the case of real data, the data sampling and data

quality (e.g. signal to noise ratio, S/N, spectral resolution,
and correct continuum rectification) govern the detectabil-
ity of the pulsation characteristics. The interplay between
the time sampling and the S/N is complicated and may
hamper the detection of characteristics of certain pulsa-
tion modes in a complex fashion. Generally, we expect that
from lengthy data sets the most conclusive results can be
derived.

4. Diagnostic tools for the analysis of line-profile

variability

In practice one aims to derive pulsation parameters from
observed spectra. To enable a comparison of our results
with that of observational studies, we analyze the artificial
time series of spectra with two diagnostic methods, each
closely related to techniques discussed in the literature
(Gies & Kullavanijaya 1988; Aerts et al. 1992).

4.1. Morphology of amplitude- and phase distribution

across the line profile

We calculated amplitude and phase diagrams as diagnostic
tools for studying line-profile variations. The diagrams are
equivalent to the power and phase diagrams obtained by
the popular method of Fourier analysis proposed by Gies
& Kullavanijaya (1988).
The apparent frequency of observed line-profile vari-

ability (ωobs) has to be determined by Fourier techniques.
For synthetic line profiles it is equal to the input fre-
quency of the variations. Since the intensity variations in
the line profile are not strictly sinusoidal (see Fig. 8b in
Gies 1991), there will be also some fraction of the total
variational power distributed over harmonics. Once the
main frequency of the line-profile variation is known, the
variability of the normalized intensity can be decomposed
into its harmonic contributions, which is in our case con-
veniently achieved by fitting a combination of sinusoids of
the form

∆I(V, t) = I0(V ) sin(ωobst+Ψ0(V ))

+ I1(V ) sin(2ωobst+Ψ1(V )) (26)

+ I2(V ) sin(3ωobst+Ψ2(V ))

to the intensity variations of a time series of generated
spectra. In general, the amplitudes of the intensity vari-
ations decrease for higher harmonics. Harmonics higher
than the second (3ωobs) are not taken into account in the
fits since their amplitudes are too small to be of impor-
tance in practice.
In Fig. 1 we illustrate the importance of harmonics in

the analysis line profile variations. It appears that in gen-
eral at least one harmonic is needed to properly describe

Fig. 1. Line-profile variability for a pulsation mode with input
parameters ℓ = 5, m = −5, Vmax = 0.1Ve sin i, k

(0) = 0.0, W
= 0.1Ve sin i, i = 75

◦, and Ω/ω(0) = 0.0 (zero-rotation model).
Left: Line profiles during one pulsation cycle, with time in-
creasing upwards. The first and the last profile are identical.
The dotted line indicates the mean of the time series. The sepa-
ration between the tick marks at the velocity axis is Ve sin i. The
two arrows at the bottom refer to V = 0 and V = 0.7Ve sin i.
Right: Top: Intensity variations in line center (V = 0). The
variations are shown during two pulsation cycles. The time tick
marks correspond to those at the vertical axis of the left plot.
The intensity variation is indicated by a thick line and is mea-
sured with respect to the mean profile. The thin lines show the
decomposition of the signal into sinusoids with once and twice
the apparent frequency. Bottom: Same as top panel but at
velocity V = 0.7Ve sin i. The intensity scales are equal for top
and bottom panel

the variability. The phases of the sinusoids, as a function
of position in the line profile, describe the motion of the
bumps that cross the profile. Through the line profile the
phases and amplitudes of the sinusoids show independent
behavior, which is a clear indication that the inclusion of a
harmonic provides additional information to the analysis
of the line-profile variability. Taking into account one or
more harmonics can therefore improve the identification
of pulsation parameters from observed spectra.

For the apparent frequency and its first two harmon-
ics, we calculate the amplitudes (I0, I1, I2) and phases
(Ψ0, Ψ1, Ψ2) for each position in the line profile. We re-
move the 2π wrap from Ψ0, Ψ1 and Ψ2 to create con-
tinuous blue-to-red phase diagrams. In the figures which
result from our grid calculations (Figs. 3–9) we only plot
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Fig. 2. Example diagram for a pulsation mode with input pa-
rameters ℓ = 4, m = −4, Vmax = 0.15Ve sin i, k

(0) = 0.15, W
= 0.1Ve sin i, i = 90

◦, and Ω/ω(0) = 0.0.
Left: Line profiles, and first (thick line, M1) and second (thin
line, M2) velocity moments during one whole pulsation cy-
cle, with time increasing upwards. The last profile and the
first are identical. The tick marks at the velocity axis indicate
Ve sin i. The first moment varies sinusoidally around zero with
amplitude ∆M1×Ve sin i. The second moment varies between
M2min×(Ve sin i)

2 and M2max×(Ve sin i)
2.

Right: Top: Three pulsation cycles of residual (mean sub-
tracted) spectra are shown in a grey-scale image. Intensities
less than average are indicated black; bright regions in the
profile are indicated by lighter shades. Middle and bottom:
Amplitude distribution and phase diagram. From thick to thin:
the amplitude and phase of the line-profile variations at the in-
put frequency (I0(V ) and Ψ0(V )), the first harmonic frequency
(I1(V ) and Ψ1(V )), and the second harmonic frequency (I2(V )
and Ψ2(V )). In the middle panel, the maximum values of the
amplitude distributions are given in units of the average cen-
tral line depth dmean. The total blue-to-red phase differences
∆Ψ0, ∆Ψ1, and ∆Ψ2 are given inside the bottom panel, in ra-
dians. In all other figures we show only I0(V ), I1(V ), Ψ0(V ),
Ψ1(V )

the first-harmonic amplitude and phase diagrams, because
of the relatively low amplitude of the second harmonic.

For a Gaussian intrinsic profile, the amplitudes of the
intensity variations (in continuum units) are proportional
to the depth of the intrinsic profile, dintr, and consequently
also to the time-averaged depth of the time-series. We
give the maxima of the amplitudes across the line pro-
file (I0,max, I1,max, and I2,max) in units of the central
depth of the mean of the time series, i.e. we present them

in units of dmean = Pmean(V = 0) (see Fig. 2), where
P (V ) = 1 − I(V ) is the profile function. Therefore, our
results are independent of the line depth dintr, and thus
applicable to a wide range of absorption lines.

In Fig. 2 we see that the line-profile variations, and
therefore the amplitude and phase distributions, extend
significantly beyond Ve sin i. In fact, the variability extends
to Ve sin i+W+ the maximum projected pulsation veloc-
ity, and reading off the phase diagrams at Ve sin i can lead
to a significant underestimate of the blue-to-red phase dif-
ference. We measure the blue-to-red phase difference over
the full range at which variability is found. The advantage
of this is that one does not need to have a priori knowledge
of Ve sin i; the disadvantage is that the investigated lines
must not be affected by line blending. For blended lines,
the phase diagram will continue from one line into the
other, and can therefore not be used to determine ∆Ψ0,
∆Ψ1, ∆Ψ2.

The blue-to-red phase differences ∆Ψ0, ∆Ψ1, and ∆Ψ2
(printed inside the bottom panel at the right in Fig. 2)
are obtained by taking the maximum phase difference be-
tween the outermost velocity values at which the corre-
sponding amplitude exceeds dmean/10000. For real obser-
vations, this cut-off velocity will always be smaller because
of noise which makes the phase diagram indeterminate at
the wings of the profile.

In most cases, the phase diagrams are monotonic over
the entire line profile, so that the maximum phase differ-
ence ∆Ψ is found between the outer ends of the region in
which variability is found. In some cases, however, there
are slope reversals in Ψ(V ), so that the maximum differ-
ence ∆Ψ is found in a smaller region in the line profile
(see e.g. the middle row of Fig. 7b).

4.2. The moment variations

Another important diagnostic for the determination of the
properties of line-profile variations is the evaluation of the
first few velocity moments of the line profile (Balona 1986;
Aerts et al. 1992). It is not our aim to present a detailed
study of the moment variations as a function of the differ-
ent parameters. Such an analysis is presented by De Pauw
et al. (1993) in the case of the zero-rotation model. In this
work we compute the first and second velocity moment
to allow a comparison with De Pauw et al. and Aerts et
al. (1992), and to show what global line-profile variations
(line shifts, line-width changes) go along with the inten-
sity variations as expressed by the amplitude and phase
distributions.

We calculate the first and second velocity momentM1
and M2, by a weighted summation of the normalized in-
tensity across the line profile

Mj ≡
∫

(V − Vref)jP (V )dV , (27)
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where P (V ) = 1 − I(V ) is the profile function and Vref
is a reference velocity. The zeroth momentM0 (equivalent
width) is constant since local variations of the intrinsic
profile are not taken into account here. The first moment
is calculated with the rest wavelength of the line as refer-
ence, and corresponds to the centroid velocity of the line
profile. The second moment is calculated using the first
moment as reference velocity Vref , and is a measure of the
squared width of the line. We normalize the velocity mo-
ments with respect to the equivalent width M0, and scale
the normalized first and second moments to Ve sin i and
(Ve sin i)

2 respectively. The first velocity moment varies
sinusoidally with the pulsation frequency; the second mo-
ment shows variations with the pulsation frequency as well
as its harmonics.
Our definition of the momentsM1 andM2 is related to

the definition of velocity moments < vj > used by Aerts
et al. (1992) by

M1 =
< v1 >

Ve sin i
, (28)

M2 =
< v2 >

(Ve sin i)2
−M21 . (29)

5. Relevant domains in parameter space

In the zero-rotation approximation, our model of the line-
profile variations has six parameters. In the slow-rotation
model, the relative rotation rate Ω/ω(0) is the seventh pa-
rameter. Of course, real line profiles and their variations
also depend on Ve sin i and dintr. These two parameters
can be removed from the model by proper scalings, which
are described in Sects. 4.1 and 5.5. A single representation
of the line-profile variability is then applicable to a wide
range of rotational velocities and line strengths.

5.1. Rotation and Ω/ω(0)

Following AW, we use values for Ω/ω(0) up to 0.5 for the
slow-rotation model. The parameters k and Ω/ω(0) are
closely related because of their joint dependence on ω(0).
Nevertheless, we have chosen to keep them as separate
parameters, and consequently, every combination corre-
sponds to a star with different mass, radius and/or rota-
tional frequency. For a given rotational velocity, a large
value for Ω/ω(0) corresponds to a large k-value. This im-
plies that certain domains in the k(0)-(Ω/ω(0))-plane be-
come irrelevant, depending on the ratio, η, of the centrifu-
gal force to the gravitational force at the equator of the
star

η ≡ Ω
2R3e
GM∗

=
(Ω/ω(0))2

k(0)
. (30)

In our work we only use combinations of k(0) and Ω/ω(0)

that satisfy η <= 0.25. This corresponds to an equato-
rial rotation velocity that is at most 50% of the equa-
torial break-up velocity. Clement (1994) has found that

the spheroidal part of axisymmetric modes (zonal, m
= 0), does not maintain its basic zero-rotation spatial dis-
tribution. Therefore, our model might be inaccurate for
zonal modes with high Ω/ω(0).

5.2. Prograde and retrograde modes

The frequencies that we use for our line-profile calcula-
tions are those as observed in the corotating frame of the
star. In this way the retrograde modes lead to bumps that
move from red to blue in the line profiles, while the bumps
of prograde modes move from blue to red. This makes it
easier to distinguish prograde and retrograde modes in
our figures. In the zero-rotation approach, the line-profile
variations associated with prograde (m < 0) and retro-
grade (m > 0) modes behave symmetrically in time (see
Fig. 6, right two columns). This symmetry is broken by
the effects of rotation on the mode, which necessitates a
separate investigation of prograde and retrograde modes
in the case of the slow-rotation model.

5.3. The inclination angle i

Symmetries in the expressions of the displacement field
allow us to restrict the inclination angle i to the interval
[0◦, 90◦] (Aerts 1993).

5.4. The use of Vmax instead of asph

A comparative study of line profiles with different val-
ues of ℓ, m, k(0), or Ω/ω(0), in which the model ampli-
tude asph is kept constant, is not convenient, since this
implies physical situations with substantially different ve-
locities, and correspondingly different amplitudes of the
line-profile variations. To facilitate a fair comparison be-
tween the line-profile variations resulting from different
parameter settings, we adjust the displacement amplitude
asph in each case such that the calculated maximum pul-
sational surface velocity

Vmax ≡
(√

V 2r + V
2
θ + V

2
φ

)

max
(31)

is kept the same whereas the other parameters may vary.

5.5. The use of Ve sin i as a scaling factor

Two profiles will have identical shapes if the combination
of Vmax/Ve sin i and W/Ve sin i is the same for both pro-
files. Such profiles differ only in velocity (wavelength) and
intensity scale. We therefore use Ve sin i as a scaling factor
for the velocity amplitude, for the width of the intrin-
sic profile, and for the velocity scale of the line profile.
We adopt only one specific value of Ve sin i and vary the
pulsation amplitude and intrinsic width to investigate the
response in the line-profile variations.
The amplitude of pulsation Vmax and the intrinsic pro-

file width W have a broad range of physically relevant
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values. The more rapid rotators are best accounted for
by relatively small values of Vmax/Ve sin i and W/Ve sin i,
while the slower rotators have values of Vmax and W of
order Ve sin i.

5.6. The ratio k(0) of the horizontal to the vertical
amplitudes

Theoretically, the value for k can range from approxi-
mately zero up to infinity (Eq. 22). If we keep Vmax the
same for each calculated mode, the profiles do not change
much for k values higher than a certain value k+. Above
this value, the magnitude of the velocity vector is almost
proportional to k, because the radial velocity component
becomes negligible. For all investigated modes we found
k+ >∼ 1 , depending somewhat on the considered ℓ value. In
Figs. 7 and 9, where k(0) is one of the two running param-
eters, we adjust the range of k(0) according to the value of
k+. The line-profile characteristics for the highest values
that we use for k(0) can be considered as representative
for all higher values as well.

For the calculation of line profiles, we have chosen to
use k(0) as model parameter and to calculate the corrected
k from Eq. (22). Such an approach allows to separate the
effect of the rotation on k, and to study the line profiles by
comparing different rotation rates for the same k(0)-value
(Fig. 9).

6. Results

We computed a large number of time series of line pro-
files on two-dimensional grids. For each grid we varied 2
out of 7 relevant pulsational and stellar parameters: ℓ, m,
Vmax, k

(0), i, Ω/ω(0), and W . From these calculations, we
selected a few grids to serve as illustrations in this paper
(Figs. 3–9). The domains of the parameters in these grids
are chosen to bring out the most illustrative examples,
while covering the physically relevant cases. The results
of each grid calculation are displayed in two parts. The
left part displays the time series of line profiles along with
the corresponding behavior of the first and the second ve-
locity moment. The right part shows the corresponding
residual spectra, and the distributions of variational am-
plitudes and phases across the line profile. See Fig. 2 for
an example.

Note that in Figs. 3–9 we present time series of line
profiles during 3 pulsation cycles, without specifying the
time scale of the variability; the velocity axes are scaled
to Ve sin i. This means that in some of the Figs. 3–9, the
parameters that change along the axes of the grid imply
stars with different mass, radius, rotation period and/or
pulsation frequency.

6.1. Line-profile variations with the pulsation frequency

and its harmonics

As shown in Sect. 4.1, line-profile variability is in general
not only found at the input frequency of the variations but
also at its multiples (i.e. its harmonics), even for an as-
sumed sinusoidal behavior of the surface velocity field (e.g.
for k = 0 and Ω/ω(0) = 0) (see also Fig. 1). This effect
is due to the Doppler-mapping of the three-dimensional
stellar surface velocity field onto one-dimensional veloc-
ity (or wavelength) space, which has only a one-to-one
correspondence1 in the limit of zero pulsation amplitude.
Sharply peaked moving bumps give rise to strongly non-
sinusoidal line-profile time-variability, which results in
large harmonic amplitudes.

6.1.1. The amplitude distribution at harmonic frequencies

The shape of the amplitude distribution across the line
profile depends on all parameters, in many cases in a very
complicated manner. Only the behavior of the amplitude
distribution of sectoral modes with different values of k are
easy to understand (e.g. see Sects. 6.2 and 6.3). In general,
the shape of the amplitude distribution of the variations
at the harmonic frequency resembles that at the input
frequency.
The relative magnitude of the variations at the dif-

ferent frequencies is another aspect of the variability. The
ratio of the variational amplitude at the first harmonic fre-
quency to that at the input frequency, I1(V )/I0(V ), is an
indicator of the non-sinusoidal nature of the line-profile
variations, and depends on the position in the line pro-
file. We write the ratio of the maxima of the individual
distributions (that may occur at different velocity posi-
tions) as (I1/I0)max. We find that for all investigated cases
(I0/I2)max > 1 and (I1/I2)max > 1. For most but not all
cases we find (I0/I1)max > 1.
We find that (I1/I0)max depends mostly on W and

on Vmax. This is illustrated in Fig.8. The relative har-
monic amplitudes (I1/I0)max and (I2/I0)max increase for
increasing pulsation amplitude Vmax. The width of the in-
trinsic line profile causes a blurring of the moving bumps.
Therefore, the contrast (sharpness) of the bumps will de-
crease with increasing intrinsic width, and consequently
also (I1/I0)max.

We find weaker dependences of (I1/I0)max and
(I2/I0)max on k and i. A small decrease of (I1/I0)max
is found towards the high k-values and low inclination
angles.

1 For a non-pulsating uniformly rotating spherical star there
is a one-to-one relation between a straight line on the stellar
disk, parallel to the stellar rotation axis, and a position in the
line profile: the integrated stellar light emitted by the surface
elements on this line is Doppler-mapped to a single position in
the line profile by the rotation of the star.
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In Fig.5 we illustrate the peculiar line-profile behav-
ior that we found for modes with ℓ − m an odd num-
ber and with an inclination angle very close to 90◦. For
these modes, we find that the apparent number of moving
bumps in the line profile is doubled. This behavior leads
to a variability that is found at even multiples of the input
frequency, but not at the input frequency itself (Fig. 5, see
Reid &Aerts 1993). Towards an inclination of 90◦ the vari-
ation at the input frequency disappears because of cancel-
lation effects, whereas the variability at the first harmonic
is unaffected. The cancellation at the input frequency is
caused by the symmetric behavior of the pulsation with
respect to the stellar equator, and will already disappear
at inclinations that differ only a few degrees from 90◦ (see
Paper III).

6.1.2. Determination of ℓ and |m| from the phase
differences across the line profile

If the power at the harmonics relative to that at the input
frequency is small, the blue-to-red phase difference ∆Ψ0
is directly related to the number of traveling bumps that
migrate through the line profile. In such cases of sinusoidal
line-profile variations, the phase difference across the line
profile can be measured by counting the number of trav-
eling bumps. We find that the phase diagrams themselves
provide a more objective measure of the number of cycles
across the line profile, regardless of the importance of the
harmonics. For multiple modes, the number of traveling
bumps in the line profile is determined by the combined
effect of all modes, in which case the blue-to-red phase
differences can only be successfully determined if the ap-
parent frequencies of each of the modes can be resolved
(see Paper II).
Many authors (e.g. Smith 1986; Gies & Kullavanijaya

1988; Kambe & Osaki 1988; Yang et al. 1988; Kambe et
al. 1990) have used the number of visible bumps or, equiv-
alently, the blue-to-red phase difference ∆Ψ0 to identify
|m| according to ∆Ψ0 = |m|π. However, from our calcula-
tions we find that the line-profile behavior for both tesseral
and sectoral modes displays a blue-to-red phase difference
proportional to ℓ rather than to |m|. Such a relation was
already suggested by Merryfield & Kennelly (1993), who
found for one tesseral mode that their apparent azimuthal
order m̂ corresponds more closely to ℓ than to |m|. In ad-
dition, we find that the phase difference ∆Ψ1 at the first
harmonic frequency 2ωobs is an indicator of |m|. Figure
4 gives a typical example of this behavior of the phase
diagrams.

We tentatively conclude that it is possible to deter-
mine both the degree ℓ and the azimuthal order |m| from
the phase information provided by a Fourier analysis of an
observed time series of high-resolution spectra with suffi-
cient signal to noise ratio; in Paper II we elaborate on this
subject. An independent check of the (ℓ,|m|)-value can be
performed by an application of the moment method (for

l <∼ 4, and if effects of rotation and temperature variation
can be neglected).
In several of our diagnostic diagrams (see Figs. 6 and

9) for modes with intermediate to high k-values, we find a
blue-to-red phase difference ∆Ψ0 that differs by 2π from
the empirical relation with ℓ that is shown by the ma-
jority of our calculations. Modes with low k-values show
line-profile variations mainly caused by radial motions,
causing a phase of variability that changes across the line
profile along with the change of phase of the traveling
waves at the surface of the star. For intermediate to high
k-values the profile variations do not follow the continuous
phase change at the stellar surface. A positive azimuthal
motion (Vφ > 0) will cause a negative Doppler-shift at
the blue wing of the profile, but a positive shift at the
red wing. This results in an additional change of phase
by π around the line center. Other sources of variability
at the line center determine whether this change will be
positive or negative, which leads to differences of 2π in
∆Ψ0 for modes with the same ℓ-value. The blue-to-red
phase difference of modes with intermediate to high k is
therefore co-determined by other possible sources of vari-
ability at the line center (e.g. toroidal terms; radial and
θ-movements; local brightness and EW changes). In this
work, differences in ∆Ψ0 of 2π are found by using different
parameters i and Ω/ω(0) (see Figs. 6 and 9).
A detailed analysis of the determination of ℓ and |m|

from the phase diagrams at the input frequency and its
harmonics is the subject of investigation in Paper II.

6.2. The effects of rotation on the line-profile behavior

The effects of the Coriolis force on the line-profile vari-
ations are hard to classify, because they depend on the
specific combination of parameter values. However, the
effects of the Coriolis force increase for higher values of k.
For high-degree sectoral modes (say ℓ > 4), the effects

of rotation are negligible for values of Ω/ω(0) up to 0.5.
This is because the toroidal amplitude of these sectoral
modes is too small, compared to the spheroidal amplitude,
to have a large effect on the line profiles. Under the same
conditions the value of k is also not modified by rotation
(Eq. 22). The effects of rotation increase in importance for
sectoral modes of lower degree. If ℓ is small enough (0, 1
or 2) the first-order terms can lead to drastic changes in
the line profiles and their variations.
Figure 3 shows the line-profile behavior of a prograde

sectoral ℓ = 2 mode and a radial (ℓ = 0) mode. It shows
that radial modes in rotating stars can easily be confused
with ℓ = −m = 2 modes. In spite of the completely differ-
ent surface velocity fields of these modes, the presence of
rotation induces a very similar line-profile behavior. The
reason for the similarity is purely accidental; in case of
the ℓ = 2 mode the dominant rotational effect is a change
in k-value, whereas the radial mode is changed only by
one toroidal term (see Eq. 12) which induces a periodic
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Fig. 3. Line-profile variability for two different pulsation modes as a function of Ω/ω(0). See Fig. 2 for a description of the
figures. For clarity we do not plot I2(V ) and Ψ2(V ). Top row: radial pulsation (ℓ = 0). Bottom row: non-radial pulsation mode
(ℓ = 2, m = −2). The values of the other parameters are (for both modes): Vmax = 0.15Ve sin i, W = 0.1Ve sin i, k

(0) = 0.8 (not
relevant if ℓ = 0), and i = 90◦. The effect of the rotation is large for these low-degree modes. In both cases power is added to
the line center, leading to similar line-profile behavior. For the radial mode this is caused by the rotationally induced toroidal
term; for the non-radial mode the effect is mainly caused by the first-order correction of k

increase/decrease of the rotational velocity at the sur-
face. Note the similarity with the line-profile variations
presented by Gies (1994).

Tesseral modes are much more affected by the Corio-
lis force than sectoral modes since for tesseral modes the
rotation gives rise to a relatively large second toroidal cor-
rection term (see Eq. 12), which is zero for sectoral modes.
We find remarkable line-profile behavior for tesseral modes
with a high k(0)-value and no node line at the equator (ℓ
− m even). In the slow-rotation model, these tesseral

modes lead to dominant variability at the line center, sim-
ilar to a sectoral mode with small k(0)-value (see Figs. 6).

In his discussion of the so called k-problem, Smith
(1986) mentioned that for high k(0)-values, the toroidal
term(s) caused by rotation might be able to mimic the
amplitude-distribution characteristics of a low-k(0) mode.
For sectoral modes with ℓ > 3 and values of Ω/ω(0) <= 0.5,
we find that the toroidal term induced by the Coriolis force
is not capable of generating enough variability near the
line center. However, as mentioned above, tesseral modes
are modified by a second toroidal term that can indeed
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contribute to the amplitude at the line center, mimicking
the characteristics of a low-k(0) mode.

For the line-profile variations that are significantly af-
fected by the effects of the Coriolis force, we find differ-
ences between the prograde and the retrograde modes.
We find only modest differences between the amplitude
diagrams of both cases. As mentioned in Sect. 6.1.2, the
blue-to-red phase difference of modes with intermediate
to high k values is co-determined by the toroidal motions
caused by the Coriolis force. In some cases this leads to
a difference of ≈ 2π between the prograde and the retro-
grade case (see rightmost 2 columns in Fig. 6).

6.3. The difficulty to derive k-values from amplitude

diagrams

The determination of the k-value from observed line-
profiles has been discussed by several authors (e.g. Smith
1986; Kambe et al. 1990; Lee & Saio 1990). Many factors
may play a role in the appearance of modes with high
k-values, of which a few are discussed below.

For sectoral modes, the most significant effects of the
parameter k on the line-profile behavior can be described
as follows (see Fig. 7, top row). A convex amplitude dis-
tribution is found for k ∼ 0. For a somewhat higher value
of k (depending on the values of m and ℓ), the amplitude
distribution takes a rectangular shape, as a consequence
of larger horizontal motions. This trend persists towards
the higher k-values so that above a certain value of k
all variability is concentrated in the wings of the absorp-
tion profile, and the amplitude distribution has acquired
a double-peaked shape with almost no power in the line
center. Proceeding to still higher values of k, while keeping
Vmax constant, has no further effect on the line profiles and
their amplitude distribution, since the horizontal motions
already dominate.

The rectangularly shaped and double-peaked ampli-
tude distributions of sectoral modes with intermediate to
high k-values are blurred at high values of the intrinsic
width W/Ve sin i (see Fig. 7). If W/Ve sin i is sufficiently
large, a change in k does not lead to any effect on the
amplitude distribution at all. A correct determination of
k, by means of amplitude distributions, should therefore
include a reasonable estimate for the intrinsic line-profile
widthW/Ve sin i. This is especially relevant for line profiles
of light ions in slow/moderate rotators.

The k-characteristics of tesseral modes depend cru-
cially on the relative rotation rate Ω/ω(0). As we have
shown in Sect. 6.2 and Fig.6, slow rotation changes the
amplitude distribution of many high-k tesseral modes in
such a way that the highest amplitude is found at the
line center, whereas for other high-k tesseral modes the
maximum amplitudes are found in the wings of the pro-
file. Therefore, we cannot identify high-k characteristics
for tesseral modes in general.

Finally, it has been shown previously (Lee & Saio 1990;
Lee et al. 1992; Townsend 1996) that if temperature ef-
fects (i.e. local surface brightness and EW variations) co-
determine the line-profile formation, the k-characteristics
may generally disappear. We intend to describe the influ-
ence of these temperature effects on the amplitude and
phase diagrams in a separate paper (Paper IV).

We conclude that in general it is difficult to determine
the k-value of a pulsation mode from the amplitude dis-
tributions of observed time series of line profiles alone.
However, a double-peaked amplitude distribution always
reflects a high k-value, if the blue-to-red phase difference
∆Ψ0 exceeds 2π radians. A double-peaked amplitude dis-
tribution together with a blue-to-red phase difference of
less than 2π, can also occur for a radial or an ℓ = 1 mode.

6.4. Amplitudes of line-profile variations of tesseral modes

It is well known that, if the star is seen equator-on, sectoral
modes are much more effective in producing line-profile
variations than tesseral modes. For smaller inclination an-
gles, this effectiveness is reduced. For tesseral modes, this
efficiency behaves different with respect to the inclination
angle. Towards smaller inclination angles, tesseral modes
are increasingly efficient in producing line-profile variabil-
ity. In general one could state that at inclinations around
45◦ the tesseral modes are more efficient in producing line-
profile variations than sectoral modes, for equal surface
velocities. This aspect of tesseral modes is illustrated in
Figs. 5.

As expected, the line-profile amplitude characteristics
of tesseral modes are much more sensitive to the incli-
nation angle, than those of sectoral modes. Especially in
the cases that the Coriolis force causes significant toroidal
terms, the line-profile formation of tesseral modes is very
complex (see Sect. 6.2).

6.5. Retrieval of the inclination

We have not found a clear indication that one can derive
the inclination from the IPS diagnostics. The presence of
red-to-blue moving bumps, due to the traveling waves at
the far side of the star, coexisting with blue-to-red moving
bumps might be indicative for a low i (see Baade 1984,
1987). The presence of coexisting bumps moving in op-
posite directions, has been discussed by Kambe & Osaki
(1988) for the case of toroidal modes with small inclina-
tions. Since for some modes there is enough information
in the line-profile variability to derive i with the moment
method, we conclude that it should be possible to estimate
the inclination by fitting generated time-series of line pro-
files or IPS amplitude and phase diagrams to the observed
ones. However, such an attempt can only be successful if
both ℓ and m are precisely known.
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7. Conclusions

We presented a description of the oscillatory displace-
ment field at the surface of a non-radially pulsating ro-
tating star. This description accounts for the effects of the
Coriolis force on the pulsation, and is relatively simple to
implement in models.
We modeled time series of line profiles of rotating stars

that exhibit non-radial pulsations, and obtained ampli-
tude and phase diagrams by means of a Fourier decom-
position of the intensity variations in the line profile. We
found a number of interesting aspects of the line profiles
and their temporal behavior, which are either new or have
not been mentioned elsewhere.
The precise shape of the intrinsic profile function only

affects the characteristics of the line-profile variability if
the width of the intrinsic line profile becomes of the order
of the projected equatorial rotation velocity Ve sin i.
Limb darkening does not fundamentally change the

line-profile behavior. The phase diagrams are hardly af-
fected by limb darkening. However, the amplitudes of in-
tensity variations in the normalized line profiles do depend
somewhat on the limb-darkening coefficient.
For a sufficiently inclined star, tesseral modes can pro-

duce large line-profile variations; the variations can be-
come even larger than those of a sectoral mode.
For large pulsational velocities, harmonics of the ob-

served pulsation frequency are needed to describe the line-
profile variability. The larger the line-profile variations
caused by the velocity variations, the larger is the contri-
bution of harmonics to the variations. The harmonic vari-
ability increases also for a decreased intrinsic line profile
width. We found a steep increase of the relative harmonic
contribution, i.e. an apparent doubling of the number of
bumps in the line profile, for modes with odd ℓ − m with
an inclination close to 90◦.
The apparent number of bumps and troughs in the

line profile is a measure of ℓ only if the harmonics of the
line profile variations are relatively unimportant, and if

the star is pulsating in a single mode. However, one can
circumvent these restrictions with a Fourier analysis of
the time behavior of line profiles: the degree ℓ and the az-
imuthal order m are related to the blue-to-red phase dif-
ferences at the apparent frequency and its first harmonic
respectively. It should therefore be possible to derive ℓ and
to put constraints on |m| from IPS phase diagrams.
The ability to detect high-k characteristics in the line-

profile variations depends on the width of the intrinsic
line profile, W : detection is only possible for cases with
W <∼ 0.4Ve sin i. For tesseral modes, we find no charac-
teristics that distinguish between low and high k-values;
a large subset of the tesseral modes with a high value
of k still gives variability in the line center. In the gen-
eral case, without presuming that the observed line-profile
variations are due to a sectoral mode, we find no charac-
teristics of the variations that make it possible to derive a
conclusive value of k. Only the cases with a double-peaked
amplitude distribution give unambiguous information by
explicitly implying a high k-value, provided that the cor-
responding phase difference ∆Ψ0 exceeds 2π.
The effects of slow rotation on the line-profile behavior

of sectoral modes, are only important for modes of low-
degree. Line-profile variations of tesseral modes can be
heavily affected by the effects of rotation. The rotationally
induced toroidal movements of tesseral modes with even
ℓ − |m| and with large k-values give rise to a line-profile
behavior which is similar to that of sectoral modes with
low k-values. The line-profile variability of a radial mode
in a rotating star can easily be confused with that of a low-
degree non-radial mode, if the Coriolis force is important.
Our study of line-profile behavior has led to an atlas

containing line profiles and their characteristics, for vari-
ous values of the pulsation and relevant stellar parameters.
This atlas can serve as a useful guide for those who plan
to perform an analysis of observed line-profile variations
in many types of rotating pulsating stars.
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Fig. 4. a) Time series of line profiles and their first and second velocity moments, calculated for a grid of different combinations
of ℓ and m. The remaining fixed parameters are: i = 70◦, Ω/ω(0) = 0.0, W = 0.10 Ve sin i, Vmax = 0.15 Ve sin i, k

(0) = 0.20. The
first velocity moments are all plotted at the same scale, as well as the variations of the second moment. The scales at which
the moments are plotted are therefore determined by the maximum moment variations that are found in the grid. See Fig. 2
for a detailed description of the figures. Here we show that the variations of the velocity moments are negligible for high-degree
modes (ℓ >∼ 4). Variations of the first two velocity moments of high-degree modes (say ℓ > 4) will be very hard to detect with
present observational techniques. Due to the nearly edge-on perspective, the line-profile variations of the tesseral modes are
systematically low; they increase for smaller inclination angles (see Figs. 5)
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Fig. 4. b) Residual spectra, amplitude distributions I0(V ) and I1(V ), and phase distributions Ψ0(V ) and Ψ1(V ) of the time
series of line profiles displayed in Fig. 4a. For a detailed description of the figures, see Fig. 2. Note that in the gray-scale
images we show three pulsation cycles of the line-profiles without specifying the time-scale of the variability. In the panels with
amplitude and phase diagrams we give the maxima of the amplitude distributions I0(V ), I1(V ), I2(V ) in units of dmean, and
the total blue-to-red phase differences ∆Ψ0, ∆Ψ1, and ∆Ψ2 in radians. We only show amplitude and phase diagrams for the
input frequency (I0(V ), Ψ0(V )) and its first harmonic (I1(V ), Ψ1(V )). The grid on this page gives a typical example of the
blue-to-red phase difference of the variations at the input frequency, ∆Ψ0, being an indicator of ℓ. This finding rejects earlier
suggestions that the number of bumps in the line profiles is proportional to |m|. The blue-to-red harmonic phase difference of
the variations, ∆Ψ1, does show to be an indicator of |m|
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Fig. 5. a) Same as Fig. 4a but for inclination i and azimuthal order m. Fixed parameters are: ℓ = 6, Ω/ω(0) = 0.0, W = 0.10
Ve sin i, Vmax = 0.15 Ve sin i, k

(0) = 0.20. Note that the velocity moments, which are very sensitive to the inclination angle, have
a far more detailed dependence on i than what can be seen from this 4× 4 grid
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Fig. 5. b) Residual spectra, amplitude distribution and phase distribution of the time series of line profiles shown in Fig. 5a.
One of the things shown here is the canceling of line-profile variability for modes with ℓ−m an odd number, that are observed at
an inclination of nearly 90◦. Another feature seen in this figure is the fact that line-profile variations are not necessarily at largest
for inclinations around 90◦ (Sect. 6.1.1). Opposite to sectoral modes, the amplitudes of line-profile variations from tesseral modes
generally tend to increase for decreasing inclinations. This illustrates that tesseral modes are equally well capable of producing
large moving bumps, if the star is sufficiently inclined. We find that this behavior is not affected by any other parameter. Also
note the wiggles in the amplitude distribution, which are commonly, but not exclusively, found for low inclination profiles
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Fig. 6. a) Same as Fig. 4a but form against relative rotation rate Ω/ω(0). Fixed parameters are: ℓ = 7, i= 70◦,W = 0.10 Ve sin i,
Vmax = 0.10 Ve sin i, k

(0) = 5.0
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Fig. 6. b) Residual spectra, amplitude distribution and phase distribution of the time series of line profiles displayed in Fig. 6a.
This figure shows that the toroidal term due to the Coriolis force hardly affects the line profiles of high-degree sectoral modes.
On the contrary, tesseral modes are affected. Extensive calculations, of tesseral modes at the highest rotation rate allowed in
our model, revealed that the cases with ℓ−m an even number show the zero-rotation characteristics of a low k(0)-value. This is
best illustrated by the amplitude distributions in the column with m = −5. Also illustrated here (rightmost 2 columns) is the
breaking of the symmetry between prograde and retrograde modes, when effects of rotation become important. Furthermore,
the right column is an illustration of the 2π phase jump in ∆Ψ0, that can occur when another source of variability in the line
center (in this case toroidal movements) dominates the effect of radial motions (see Sect 6.1.2 and Fig. 9)
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Fig. 7. a) Same as Fig. 4a but for intrinsic line-profile widthW (expressed in units of Ve sin i) against the ratio of the horizontal
to the vertical velocity amplitudes k(0). Fixed parameters are: ℓ = 8, m = −8, i = 90◦, Ω/ω(0) = 0.15, Vmax = 0.15 Ve sin i. From
the right column it can be seen that, for high values of k(0), the bumps that travel from blue to red through the line profile
tend to disappear at the blue side of the line center, and reappear at the red side. This behavior of high k(0), low W profiles
disappears for the larger values of the intrinsic profile width W
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Fig. 7. b) Residual spectra, amplitude distribution and phase distribution of the time series of line profiles displayed in Fig.
7a. The figure shows the blurring of the line features for an increasing width of the intrinsic profile. The change in contrast of
the bumps with W is most evident from the grey-scale residual plots. For large intrinsic profile widths W and any value of k,
the amplitude distribution always has a shape that was previously considered as characteristic for a lower k-value and more
narrow intrinsic profile. Also, the relation between the blue-to-red harmonic phase difference and the value of |m|, is much less
evident for the higher values of W
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Fig. 8. a) Same as Fig. 4a but for velocity amplitude Vmax against intrinsic line-profile width W (both expressed in units of
Ve sin i). Fixed parameters are: ℓ = 6, m = −6, k

(0) = 0.5, i = 90◦, Ω/ω(0) = 0.10. This figure clearly illustrates the increase of
line-profile variability with increasing pulsation velocity and with decreasing intrinsic width. Also illustrated here, is that the
variations of M1 and M2 are independent of W
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Fig. 8. b) Residual spectra, amplitude distribution and phase distribution of the time series of line profiles displayed in Fig.
8a. This figure shows the dependence of the maximum ratio of amplitudes (I1/I0)max on the surface velocity amplitude Vmax
and the intrinsic profile width W (Sect. 6.1.1). A higher value of W or a lower value of Vmax leads to more sinusoidal line-profile
variability, i.e. a smaller value of (I1/I0)max
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Fig. 9. a) Same as Fig. 4a but for the ratio of the horizontal to the vertical velocity amplitudes k(0) against the relative rotation
rate Ω/ω(0). Fixed parameters are: ℓ = 5, m = −5, i = 75◦, W = 0.10 Ve sin i, Vmax = 0.10 Ve sin i. The empty fields are for
combinations of k(0) and Ω/ω(0) that imply an equatorial rotation velocity of more than 50% of break-up (see Sect. 5.1)
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Fig. 9. b) Residual spectra, amplitude distribution and phase distribution of the time series of line profiles displayed in Fig. 9a.
It is clear that for this pulsation mode the effects of rotation on the line-profile variability are very small. This figure also serves
as an example of the 2π jump in ∆Ψ0 (see Sect 6.1.2), which occurs for intermediate to high k-values, if additional variability
(in this case the toroidal motion induced by the Coriolis force) is present at the line center. An additional source of variability at
the line center can reconnect a bump at the blue side to a different one at the red side, leading to a 2π jump in the blue-to-red
phase difference
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