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Abstract We prove that the set of directions of lines intersecting three disjoint balls
in R

3 in a given order is a strictly convex subset of S
2. We then generalize this result

to n disjoint balls in R
d . As a consequence, we can improve upon several old and new

results on line transversals to disjoint balls in arbitrary dimension, such as bounds on
the number of connected components and Helly-type theorems.

Keywords Transversal · Geometric permutation · Convexity

1 Introduction

Helly’s theorem [12] of 1923 opened a large field of inquiry designated now as geo-
metric transversal theory. A typical concern is the study of all k-planes (also called
k-flats) which intersect all sets of a given family of subsets (or objects) in R

d . These
are the k-transversals of the given family and they define a certain subspace of the
corresponding Grassmannian. True to its origin, transversal theory usually implicates
convexity in some form, either in its assumptions, its proofs or most likely, both.

In what follows, k = 1 and the objects will be pairwise disjoint closed balls with
arbitrary radii in R

d . Our main result is the following convexity theorem:
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Theorem 1 The directions of all oriented lines intersecting a given finite family of
disjoint balls in R

d in a specific order form a strictly convex subset of the sphere
S

d−1.

As a first consequence, the connected components in the space of line transver-
sals correspond to the possible geometric permutations of the given family, where a
geometric permutation is understood as a pair of orderings defined by a single line
transversal with its two orientations. This is not true in general, not even for n ≥ 4
disjoint line segments in R

3.
Before discussing other implications, we want to emphasize that the key to our

theorem resides in the case of three disjoint balls in R
3, and the approach we use

to settle this case is geometrically quite revealing, in that it shows the nuanced de-
pendency of the convexity property on the curve of common tangents to the three
bounding spheres.

1.1 Relation to Previous Work

Helly’s theorem [12] states that a finite family S of convex sets in R
d has non-empty

intersection if and only if any subfamily of size at most d + 1 has non-empty inter-
section. Passing from k = 0 to k = 1, one of the early results is due to Danzer [7]
who proved that n disjoint unit disks in the plane have a line transversal if and only
if every five of them have a line transversal. Hadwiger’s theorem [11], which allows
arbitrary disjoint convex sets in the plane as objects, showed the importance of the
order in which oriented line transversals meet the objects: when every three objects
have an oriented line transversal respecting some fixed order of the whole family,
there must be a line transversal for the family.

This stimulated interest in comparing, for arbitrary dimension, two equivalence
relations for line transversals: a coarse one, geometric permutation, determined by
the order in which the given disjoint objects are met (up to reversal of orientation)
and a finer one, isotopy, determined by the connected components of the space of
transversals.

In general, for d ≥ 3, the gap between the two notions may be wide [8], and fami-
lies for which the two notions coincide are thereby “remarkable”. The first examples
of such families are “thinly distributed” balls1 in arbitrary dimension, as observed by
Hadwiger [9, 10]. Then, the work of Holmsen et al. [14] showed that disjoint unit
balls in R

3 provide remarkable cases as well. They verified the convexity property
in the case of equal radii, and their method can be extended to the larger class of
“pairwise inflatable” balls2 in arbitrary dimension [6], inviting the obvious question
regarding disjoint balls of arbitrary radii. The significance of this problem is also dis-
cussed in the recent notes [19, p. 191–195] where one can find ample references to
related literature.

1A family of balls is thinly distributed if the distance between the centers of any two balls is at least twice
the sum of their radii.
2A family of balls is pairwise inflatable if the squared distance between the centers of any two balls is at
least twice the sum of their squared radii.
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Our solution for the case of arbitrary radii is based on a new approach, suggested
by the detailed study of the curve of common tangents to three spheres in R

3 [2]. The
main ideas are outlined in Sect. 3 as a preamble to the detailed proof in Sects. 4 to 6.

In dimension three particularly, there are connections with other problems in visi-
bility and geometric computing. Changes of visibility (or “visual events”) in a scene
made of smooth obstacles typically occur for multiple tangencies between a line and
some of the obstacles [20]. Tritangent and quadritangent lines play a prominent role in
this picture as they determine the 1- and 0-dimensional faces of visibility structures.
An attractive case is that of four balls in R

3 which allow, generically, up to twelve
common real tangents [17]. Degenerate configurations are identified in [3]. Variations
on such problems, where reliance on algebraic geometry comes to the forefront, are
surveyed in [22]. See also a brief account in [1].

1.2 Further Implications

Danzer’s theorem [7] motivated several other attempts to generalize Helly’s result for
k = 1, that is, for line transversals. Whereas Helly’s theorem only requires convexity,
the case k = 1 appears to be more sensitive to the geometry of the objects. In partic-
ular, Holmsen and Matoušek [15] showed that no such theorem holds in general for
families of disjoint translates of a convex set, not even with restriction on the ordering
à la Hadwiger. Our Theorem 1 has consequences in this direction, presented below
in Sect. 7.

Hadwiger’s proof of his Transversal Theorem [11] relies on the observation that
any minimal pinning configuration, that is, any family of objects with an isolated line
transversal that would become non-isolated should any of the objects be removed,
has size 3 if the objects are disjoint convex sets in the plane. Theorem 1 implies that
any minimal pinning configuration of disjoint balls in R

d has size at most 2d − 1
(Corollary 14). A generalization of Hadwiger’s theorem for families of disjoint balls
then follows (Corollary 15).

2 Preliminaries

2.1 Notations and Prerequisites

For any two vectors a, b of R
3, we denote by 〈a,b〉 their dot product and by a × b

their cross product. These expressions will retain their algebraic meaning when a and
b are complex vectors.

The space of directions in R
3 is the real projective space P

2 = P
2(R) envisaged

either as the space of lines through the origin (and then the direction of a line is
given by its parallel through the origin) or as the “plane at infinity” in the completion
P

3 = R
3 ∪ P

2 (and then the direction of a line is simply its point of intersection
with the plane at infinity). A non-zero vector u ∈ R

3 may also stand for the direction
(u1 : u2 : u3) it defines in P

2.
Convexity in P

2 is relative to the metric induced by the standard metric of the
sphere through the identification S

2/Z2 = P
2. All considerations can be pulled-back

to S
2 by orienting the lines.
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In following our convexity arguments related to three disjoint balls in R
3, it

may be helpful to bear in mind that the regions of P
2 determined by directions of

line transversals are always contained in the simply-connected side of some smooth
conic3. When testing convexity, one may use affine charts R

2, and verify locally, then
globally, that the boundary curve “stays on the same side of its tangent”. If this prop-
erty were to fail at some point, one must have an inflection point there or, in one word,
a flex.

We denote by B0,B1,B2 three balls in R
3 with respective centers c0, c1, c2 and

squared radii s0, s1, s2, sk = r2
k . Since degenerate cases are eventually shown to

follow from the generic case (Lemma 10), we assume here that we have a non-
degenerate triangle of centers.

2.2 Direction-sextic

The directions of common tangent lines to B0,B1,B2 make up an algebraic curve
of degree six in P

2, which we call the direction-sextic and denote by σ . To take
advantage of symmetries in expressing σ , we introduce the edge vectors eij = cj − ci

and denote by δij = 〈eij , eij 〉 their squared norms. For a direction u ∈ R
3 \ {(0,0,0)},

we put:

q = q(u) = 〈u,u〉,
tij = tj i = 〈eij × u, eij × u〉 = δij q − 〈eij ,u〉2.

Thus in P
2(C), the equation tij = 0 gives the two tangents from eij to the imaginary

conic q = 0.

Proposition 2 The direction-sextic for B0,B1,B2 can be given by means of the Cay-
ley determinant:

σ = σ(u) = det

⎛
⎜⎜⎜⎜⎝

0 1 1 1 1

1 0 qs0 qs1 qs2

1 qs0 0 t01 t02

1 qs1 t01 0 t12

1 qs2 t02 t12 0

⎞
⎟⎟⎟⎟⎠

.

Proof One way to find the equation of the direction curve is to begin with a de-
scription of lines in R

3 by parameters (p,u) ∈ R
3 × P

2, where p is the orthogonal
projection of the origin on the given line, and u is the direction of the line. With
c0 = 0 and abbreviations:

ai = ai(u) = 〈ci × u, ci × u〉 + (s0 − si)〈u,u〉 = t0i + (s0 − si)q, i = 1,2,

3The complement of any proper non-empty conic in the real projective plane consists of two connected
components, one homeomorphic to a Möbius strip and the other to a disc.
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affine common tangents obey the system (see e.g. [3] or [17]):

〈p, ci〉 = ai(u)

2〈u,u〉 , i = 1,2, 〈p,u〉 = 0, 〈p,p〉 = s0.

The direction-sextic is obtained by eliminating p from this system. The fact that
the resulting equation allows the stated Cayley determinant expression is given a
natural explanation in [2], but can be directly verified by computation. �

The direction of an oriented line can be represented either by a point on the unit
sphere or, by the whole ray emanating from the origin and passing through that point.
Our expression “cone of directions” stems from the latter representation, which con-
verts questions of convexity in S

2 into equivalent questions of convexity in R
3. In the

projective context, it will be understood that we mean the image via S
2/Z2 = P

2.

2.3 Cone of Directions

The cone of directions K(B0B1B2) of B0,B1,B2 is the set of directions of all ori-
ented line transversals to these balls which meet them in the stated order: B0 ≺
B1 ≺ B2. The boundary of K(B0B1B2) consists of [6, Lemma 9] certain arcs of
the direction-sextic σ and certain arcs of directions of inner special bitangents i.e.
tangents to two of the balls passing through their inner similitude center [13]. Fig-
ure 1 offers an illustration of a cone of directions. The plane of the picture must be
conceived as an affine piece R

2 ⊂ P
2.

We recall the fact that a common tangent (here called bitangent) for two disjoint
spheres (more precisely, the boundary of two disjoint balls) passes through their inner
similitude center if and only if it is contained in a common tangent plane which has
the two spheres on opposite sides. If a transversal for the two balls has the direction
of an inner special bitangent, it must actually be that bitangent. The cone of directions

Fig. 1 Left: The trace of three balls B0,B1,B2 on their plane of centers. Right: A planar depiction
(hatched area) of K(B1B0B2). The direction-sextic is drawn in thick grey, the Hessian in black, and the
conics of inner special bitangents in thin grey
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for a pair of disjoint balls is bounded precisely by their inner special bitangents. In
P

2 they trace a (circular) conic.
The points of σ that appear on the boundary ∂K(B0B1B2) can be characterized as

follows:

Proposition 3 The direction of a tritangent � meeting the three balls B0,B1,B2 in
the prescribed order belongs to ∂K(B0B1B2) if and only if � intersects the triangle
of centers c0c1c2.

Proof The set of directions of common transversals to disjoint balls is a proper subset
of P

2.
Assume that � is neither parallel to the plane of centers, nor contained in it.
If � does not intersect the triangle of centers, then, in the projected configuration

on �⊥, there is a line λ through two of the projected centers, separating the foot of
� from the third projected center. When moving � parallel to itself and closer to λ,
along a perpendicular to the latter, all distances to centers decrease. This shows that
there are lines parallel to � intersecting the open balls, and therefore the direction of
� is not on the boundary.

On the other hand, when the tritangent � intersects the triangle of centers in a
point P , there is no motion of � parallel to itself which can decrease all distances to
the centers. Indeed, reasoning in �⊥ with respect to the triangle of projected cen-
ters, this would decrease all areas over edges, while these areas have a constant
sum. This shows that no other transversal but � can have its direction.4 Looking
now in the plane spanned by � and the normal ν to the plane of centers at P ,
the rotation of �, with center P , brings its direction inside K(B0B1B2) when ap-
proaching the plane of centers, and takes it outside K(B0B1B2) when approach-
ing ν. Indeed, when rotating towards the plane of centers all distances to centers
decrease, while increasing in the opposite sense. Some other transversal with di-
rection between � and ν (and parallel to the �, ν-plane) cannot exist since by the
same argument of rotating towards the plane of centers, one would obtain a real-
ization of the direction of � not passing through P . Thus, the direction of � is in
∂K(B0B1B2).

If � is parallel to the plane of centers (but not contained in it), we may consider any
parallel plane which is closer to c0c1c2 than � is, and find in this plane transversals to
the open balls parallel to �. Thus, � cannot be on the boundary.

Finally, if � is in the plane of centers, we look at the “section configuration” traced
in that plane. Either all three discs are on one side of � and then � does not cross the
triangle of centers and is not on the boundary, or � has two discs on one side with the
third on the other side and must cross the triangle of centers. Then, it is actually an
inner special bitangent for two pairs of balls (and an outer special bitangent for the
third pair) and belongs to the boundary. �

4One could conclude from here using [6, Lemma 9], which shows that a direction of K(B0B1B2) is in the
interior if and only if there is a line transversal to the open balls with that direction.



164 Discrete Comput Geom (2008) 39: 158–173

Proposition 4 For three disjoint balls, we have:

(i) The cone of directions K(B0B1B2) consists of a single point if and only if there
is a tritangent contained in the plane of centers and tracing in it a pinned pla-
nar configuration, that is, the disc traced by B1 is on the opposite side of the
tritangent from the discs traced by B0 and B2;

(ii) In all other cases, the cone of directions K(B0B1B2) is the closure of its interior.

Proof (i) Sufficiency: the plane intersecting the plane of centers along the tritangent
and perpendicular to it, will have B1 on one side, and B0 and B2 on the other. An
oriented transversal meeting B0 first, then B1, and then B2 must be contained in this
separating perpendicular plane, and thus coincide with the given tritangent. Necessity
is covered by our arguments in (ii).

(ii) Suppose we are not in case (i), and the centers are not aligned. If we have a
transversal � with direction belonging to the boundary of K(B0B1B2), we may as-
sume the transversal is not in the plane of centers, since a non-pinned planar case is
clear. But then � and its reflection in the plane of centers define a plane perpendicu-
lar to the latter and all lines between them (passing through their intersection) have
directions belonging to the interior, because all distances from centers decrease.

The case of collinear centers is trivial; there is only one geometric permutation
(given by the line of centers) and the cone of directions is a disc-like region bounded
by a conic. �

Corollary of the proof Cones of directions and connected components of transversals
for three disjoint balls in R

3 are contractible.
Indeed, the argument above shows that we may contract first to the segment in

K(B0B1B2) consisting of directions in the plane of centers, and then contract this
segment.

Obviously, the same holds true at the level of the connected components in the
space of transversals.

2.4 Hessian and Flexes

The Hessian of the direction-sextic σ is defined as the determinant of the matrix of
second derivatives:

H(σ) = H(σ)(u) = det

(
∂2σ

∂ui∂uj

)
.

The Hessian curve, or simply “the Hessian”, is the projective curve defined by the
zero-set of this determinant.

The Hessian of a direction-sextic for three balls in R
3 is thus an algebraic curve

of degree twelve. The intersection between σ and its Hessian H(σ) consists of all
singular points of σ and all flexes of σ [4].

3 Outline of the Proof

For d = 2 the convexity theorem is elementary, and for d ≥ 3 it is easily reduced to
the case of three disjoint balls in R

3. The key property used to settle this case is the
following:
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Proposition 5 For disjoint balls B0,B1,B2, any arc of their direction-sextic σ which
belongs to the boundary ∂K(B0B1B2) contains no flex or singularity of σ between
its endpoints.

The convexity of the cone of directions K(B0B1B2) can then be inferred from the
known fact that a simple C1-loop in R

2 ⊂ P
2 with no inflection (in Euclidean terms:

with positive curvature on its algebraic arcs) bounds a convex interior [23].
Thus, what is essential for this approach, is to obtain sufficient control over the

flexes of σ . At first sight, the fact that the intersection of σ and the Hessian H(σ) in
P

2(C) has, counting multiplicities, 6×12 = 72 points, leaves little hope for the possi-
bility of “tracking” all flexes. However, there is another way to exploit the Hessian: fix
a direction and consider the ball configurations which have a tritangent with that di-
rection and give the same planar configuration of four points when projecting, tangent
and centers, on some orthogonal plane; evaluate the Hessians of the corresponding
direction-sextics and determine which can vanish for the given direction.

The important point is that one can anticipate, from the form of the equations, that
the computations must result in polynomials of low degree, which will be subject, in
their turn, to geometric control.

The unfolding of this scenario is presented below and involves a certain amount
of explicit computations. Although no part is too complicated to be done by hand, we
have relied on Maple [18] in a few instances.

4 Absence of Flexes and Singularities

4.1 The Hessian Test

Following Proposition 3, we need only consider directions of tangents to the three
balls that cross the triangle of centers and are not directions of inner special bitan-
gents. When projecting along such a tangent on a perpendicular plane, the projected
centers form a triangle containing the point image of the tangent as an interior point.
One may start with the latter planar configuration, a triangle and an interior point,
and ask which ball configurations yield this picture (by projection along a common
tangent intersecting at the interior point)? Since the radii of the balls are given, one
has only to “lift” the vertices of the triangle in the normal direction and obtain all the
desired configurations.

We equip R
3 with a coordinate frame such that the triangle lies in the plane

e⊥
3 ⊂ R

3 and has its vertices at c̃0 = 0, c̃1, c̃2, with the understanding that there is
a point inside, with squared distances si to these vertices. Then, we use three real
parameters, x0, x1 and x2, to describe the possible positions of the three centers:

c0 = c̃0 + x0e3, c1 = c̃1 + x1e3, c2 = c̃2 + x2e3.

We use Proposition 2 to express the corresponding direction-sextic σ and its
Hessian H(σ) as functions of x = (x0, x1, x2) ∈ R

3 depending on c̃0, c̃1, c̃2, s0, s1, s2.
Proposition 5 is now equivalent to proving that

H(σ)(0,0,1) 
= 0
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holds for all initial data (triangle and interior point) and all (x0, x1, x2) corresponding
to disjoint balls.

4.2 A Quadric and a Quartic

We have reduced the probe for flexes to the study of a polynomial function of x (and
parameters) which can be explicitly computed.

The parameters involved are the following:

c̃0 = (0,0,0), c̃1 = (a,0,0), c̃2 = (b, c,0),

the triangle of centers (c̃0, c̃1, c̃2) having interior point:

p =
∑

pi c̃i∑
pi

= p1c̃1 + p2c̃2∑
pi

, p0,p1,p2 > 0.

Let vk = p − c̃k . Then sk = r2
k = 〈vk,vk〉.

The computation gives the result:

H(σ)(0,0,1) = 21252a6c6

(
∑

pi)5
[H2(x) + H4(x)],

where H2 and H4 have degree respectively 2 and 4 in x = (x0, x1, x2):

H2 = H2(x) = −a2c2
(∏

pk

)∑
pipj (xi − xj )

2,

H4 = H4(x) =
∑

p3
ksk(xi − xk)

2(xj − xk)
2,

with cyclic products and sums for {i, j, k} = {0,1,2}. Thus, away from (0,0,0), H2
is negative and H4 is positive. The aim is now to show that ball disjointness is enough
to ensure the positivity of H2 + H4.

4.3 Hyperboloid and Octant

We can further transform these expressions by retaining as parameters the (positive
numbers) pi and qj = pj rj , and renaming the squares zk = (xi − xj )

2. This gives:

H2 = H2(z) = −a2c2
(∏

pk

)∑
pipj zk,

H4 = H4(z) =
∑

pkq
2
k zizj .

From now on, assume that
∑

pi = 1. We have to replace � = a2c2, which is
four times the squared area of the triangle c̃0, c̃1, c̃2, by its expression in terms of pi

and qj .

Lemma 6 We have:

� = a2c2 = Q

4
∏

p2
k

, with Q =
∑

(2q2
i q2

j − q4
k ).
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Proof This is an elementary computation, which may be conducted as follows. By
the definition of vi , we have

∑
pivi = 0.

From 〈∑pivi ,vj 〉 = 0, we obtain a linear system for 〈vi ,vj 〉, i 
= j :

pi〈vi ,vk〉 + pj 〈vj ,vk〉 = −pk〈vk,vk〉 = −pksk,

with solutions:

〈vi ,vj 〉 = p2
ksk − p2

i si − p2
j sj

2pipj

= q2
k − q2

i − q2
j

2pipj

.

Four times the squared area of a triangle p, c̃i , c̃j is a Gram determinant:
∣∣∣∣
〈vi ,vi〉 〈vi ,vj 〉
〈vi ,vj 〉 〈vj ,vj 〉

∣∣∣∣ = sisj − 〈vi ,vj 〉2 = Q

4p2
i p

2
j

,

where Q = ∑
(2q2

i q2
j − q4

k ). Hence the area of the triangle c̃0, c̃1, c̃2 is:

1

4
Q1/2

∑ 1

pipj

= Q1/2

4
∏

pk

,

resulting in:

� = a2c2 = Q

4
∏

p2
k

. �

Several new substitutions will be in order for the study of H2 +H4. Since a positive
factor won’t affect sign considerations, we will use the symbol ∗H for any positive
multiple of H2 + H4. We have found above:

∗H = ∗H(z) = −1

4
Q

∑ zk

pk

+
∑

pkq
2
k zizj ,

with the shorthand Q = ∑
(2q2

i q2
j − q4

k ). We put pipj zk = q2
kwk and obtain, up to a

positive factor:

∗H = ∗H(w) = −1

4
Q

∑
q2
k wk +

∏
q2
k

∑
wiwj .

With one more positive rescaling, and ak = Q

4q2
i q2

j

, we have:

∗H = ∗H(w) =
∑

wiwj −
∑

akwk.

We can turn now to the conditions expressing the fact that the spheres with centers
ci = c̃i + xie3 and radii ri are disjoint. They are:

zk = (xi − xj )
2 > (ri + rj )

2 − δij = (ri + rj )
2 − 〈vi − vj ,vi − vj 〉,
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that is,

zk >
q2
k − (qi − qj )

2

pipj

.

In w-coordinates, the “disjointness conditions” become

wk > 1 −
(

qi − qj

qk

)2

.

Note that from
∑

pivi = 0 it follows that qk = ‖pivi‖ > 0 are the lengths of
the three edges in a triangle, and therefore the latter expressions are positive by the
triangle inequality.

The purpose now is to study the position of the octant defined by the disjointness
conditions relative to the affine quadric in R

3 defined by ∗H(w) = 0. We use first a
translation by β , in order to absorb the linear part in ∗H :

∗H = ∗H(w) =
∑

(wi − βi)(wj − βj ) −
∑

βiβj ,

with β respecting:

βi + βj = ak, that is βk = 1

2
(ai + aj − ak).

This makes

∑
βiβj = 1

4

∑
(ak + ai − aj )(ak − ai + aj ) = 1

4

∑
(2aiaj − a2

k ),

and results in

∑
βiβj = 1

4

(
Q

4
∏

q2
k

)2 ∑
(2q2

i q2
j − q4

k ) = Q3

43
∏

q4
k

> 0.

Thus, with translated coordinates tk = wk − βk we have a hyperboloid of two
sheets:

∗H = ∗H(t) =
∑

ti tj − Q3

43
∏

q4
k

= 0,

which lies on the positive side of its asymptotic cone
∑

ti tj = 0.

Lemma 7
∑

ti tj = 0 is a circular cone with axis t0 = t1 = t2. The two components
of its smooth points circumscribe the positive and negative open octants, which are
both contained in the positive part

∑
ti tj > 0.

The open octant defined by our disjointness conditions wk > 1 − (
qi−qj

qk
)2 is a

translate of the open positive octant, and its position relative to the hyperboloid
∗H(w) = 0 is determined by the position of its vertex V. Continuing to refer here
to w-coordinates, we have:
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Lemma 8 The point V = (1 − (
qi−qj

qk
)2)0≤k≤2 is on the “positive side” of the hyper-

boloid ∗H(w) = 0 and on the “positive side” of the plane
∑

tk = ∑
(wk − βk) = 0,

that is:

∗H(V) > 0 and
∑(

1 −
(

qi − qj

qk

)2)
>

Q

8
∏

q2
k

∑
q2
k .

Proof A Maple assisted computation shows that ∗H(V) factors as

∗H(V) = 3
∏

(qi + qj − qk)
2

4
∏

q2
k

,

from which the first inequality follows.
The second inequality, which determines on which of the two components of the

positive side of the hyperboloid V lies, is satisfied for q0 = q1 = q2, and by continuity,
must be satisfied for any other triangle edges, since vertex V cannot “jump” from one
component to the other. �

It is now clear, geometrically, that the octant where the disjointness conditions are
satisfied and the hyperboloid indicating a flex or a singularity for the corresponding
configuration have no point in common. This completes the proof of Proposition 5.

5 Convexity of the Cone for 3 Balls in R
3

We consider now three disjoint closed balls B0,B1,B2 described by parameters: cen-
ters c0, c1, c2 and radii r0, r1, r2. We shall prove first the convexity of any cone of
directions in the generic case i.e. when the centers and radii are in the complement
of a proper algebraic subset. Then, we will show that the generic case implies the
general case.

Lemma 9 The direction cone K(B0B1B2) of a generic triple of disjoint balls in R
3

is strictly convex.

Proof If ∂K(B0B1B2) is made only of directions of inner special bitangents, strict
convexity is immediate, since K(B0B1B2) is then an intersection of convex regions
bounded by conics. Otherwise, genericity allows us to assume that the direction-
sextic σ is non-singular at all its contacts with any of the three conics determined
by inner special tangents. Since the direction-sextic necessarily lies on the simply-
connected side of each of the three conics, these contacts are tangency points at which
∂K(B0B1B2) is locally convex. Thus, if we start at some point of ∂K(B0B1B2) and
follow the boundary curve, we obtain, by Proposition 5, a differentiable simple loop
of class C1, which is, locally, always on the same side of its tangent. For any affine
plane R

2 ⊂ P
2 covering the loop, and any Euclidean metric in it, this means positive

curvature on all its algebraic arcs and this implies [23] that our simple loop bounds
a compact convex set. In fact strictly convex, because of non-vanishing curvature. By
Proposition 4 and its Corollary, this strictly convex set is K(B0B1B2). �
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The passage from the generic case to the general case is based on:

Lemma 10 Let B = (B0,B1,B2) be a configuration of three disjoint closed balls,
and suppose K(B0B1B2) has non-empty interior. If B is the limit of a sequence
of configurations B(ν) with a convex cone of directions for the given ordering, then
K(B0B1B2) is convex as well.

Proof By Proposition 4, it is enough to prove that, for any two points in the interior,
the (geodesic) segment joining them is contained in K(B0B1B2).

Take two interior points. By assumption, for sufficiently large ν, the segment join-
ing them is contained in all corresponding cones for B(ν). Consider one point of the
segment, and project the sphere configuration along the direction defined by the point,
on a perpendicular plane. We have to prove that the disks representing the projected
balls have at least one point in common.

Suppose they don’t. Then so would discs with the same centers and radii increased
by a small ε > 0. But then we can find, for sufficiently large ν, configurations B(ν)

with centers projecting less than ε/2 away from those of B and corresponding radii
with less than ε/2 augmentation. Then the point of the segment cannot be in the
respective cones of directions, a contradiction.

Note that strict convexity still follows from non-zero curvature on smooth arcs for
non-collinear centers, while for collinear centers it is obvious because of rotational
symmetry. �

Lemmas 9 and 10 immediately imply Theorem 1 for the case of three balls in R
3:

Proposition 11 The directions of all oriented lines intersecting three disjoint balls
in R

3 in a specific order form a strictly convex subset of the sphere S
2.

6 Convexity of the Cone for n Balls in R
d

The convexity result of Proposition 11 generalizes to arbitrary n and d as follows:

Proof of Theorem 1 Recall that, for any collection of balls in R
3, a direction will be

realized by some transversal if and only if the orthogonal projection of the balls on
a perpendicular plane has non-empty intersection. By Helly’s Theorem in the plane,
the direction cone for a sequence of n ≥ 3 balls is the intersection of the direction
cones of all its triples. Thus, the direction cone of n ordered 3-dimensional disjoint
balls is strictly convex for any n.

Given a sequence S of n disjoint balls in R
d , let K be its direction cone for a

prescribed order of intersection. Let u and v be two directions in K , �u and �v be
two corresponding line transversals and let E denote the 3-dimensional affine space
these two lines span (or a 3-space containing their planar span, should the lines be
coplanar).

E∩S is a collection of 3-dimensional disjoint balls whose corresponding direction
cone is convex on S

2. Thus, for any direction on the small arc of great circle joining
u and v there exists an order-respecting transversal to S , because it already exists
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Fig. 2 a The trace of three disjoint balls on the plane of centers, with ball B1 moving on the horizontal
axis towards ball B0. The small square is used for close-ups below. b, c, d The direction-sextic (in thick
gray), its Hessian (in black) and arcs of inner special bitangent conics, when balls B0 and B1 are disjoint
(b), tangent (c) and intersecting (d)

in E. It follows that K is convex, and again, from the three dimensional case, strictly
convex. �

Let us emphasize the importance of the assumption that the balls are disjoint.
Figure 2 illustrates a transition from convex to non-convex direction cones as three
disjoint balls move and allow an overlap.

7 Implications

This section explores some consequences of Theorem 1. Similar results were proven
for the case of unit balls in [6] and, with Theorem 1, the proofs carry through. We
thus omit all arguments here and point to the relevant lemmata in [6].
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7.1 Isotopy and Geometric Permutations

An immediate corollary of Theorem 1 is the correspondence of isotopy and geometric
permutations for line transversals to disjoint balls:

Corollary 12 The set of line transversals to n disjoint balls in R
d realizing the same

geometric permutation is contractible.

The proof given by Cheong et al. [6, Lemma 14] for disjoint unit balls immediately
extends, with Theorem 1, to the case of disjoint balls.

Smorodinsky et al. [21] showed that in the worst case n disjoint balls in R
d ad-

mit �(nd−1) geometric permutations. The same bound thus applies for the number
of connected components of line transversals, improving on the previous bounds of
O(n3+ε) for d = 3 and of O(n2d−2) for d ≥ 4 due to Koltun and Sharir [16]. If the
radii of the balls are in some interval [1, γ ] where γ is independent of n and d , then
the number of components of transversals is O(γ logγ ), following the bound on the
number of geometric permutations obtained by Zhou and Suri [24]. These results are
summarized as follows:

Corollary 13 In the worst case, n disjoint balls in R
d have �(nd−1) connected com-

ponents of line transversals. If the radii of the balls are in the interval [1, γ ], where
γ is independent of n and d , this number becomes O(γ logγ ).

7.2 Minimal Pinning Configurations

A minimal pinning configuration is a collection of objects having an isolated line
transversal that ceases to be isolated if any of the objects is discarded. An important
step in the proof of Hadwiger’s transversal theorem [11] is the observation that, in
the plane, any minimal pinning configuration consisting of disjoint convex objects
has cardinality 3. Cheong et al. [6, Proposition 13] proved that any minimal pinning
configuration consisting of disjoint unit balls in R

d has cardinality at most 2d − 1.
With Theorem 1, the same holds for disjoint balls of arbitrary radii:

Corollary 14 Any minimal pinning configuration consisting of disjoint balls in R
d

has cardinality at most 2d − 1.

7.3 A Hadwiger-Type Result

A result in the flavor of Hadwiger’s Transversal Theorem [6, Theorem 1] generalizes
to disjoint balls of arbitrary radii:

Corollary 15 A sequence of n disjoint balls in R
d has a line transversal if any sub-

sequence of size at most 2d has an order-respecting line transversal.

The “pure” generalizations [6, 14] of Helly’s theorem, i.e. without additional con-
straints on the ordering à la Hadwiger, use the fact that n ≥ 9 disjoint unit balls have
at most 2 geometric permutations [5]. Since the latter is not true for balls of arbitrary
radii [21], obtaining a Helly-type theorem for line transversals in this case requires
different arguments.
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