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SUMMARY

Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations

that enable uncontrolled growth, expansion to neighboring and distal tissues, and therapeutic

resistance. The study of phylogenetic relationships between cancer cells provides key insights

into these processes. Here, we introduced an evolving lineage-tracing system with a single-cell

RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven lung adenocarcinoma which

enabled us to track tumor evolution from single transformed cells to metastatic tumors at

unprecedented resolution. We found that loss of the initial, stable alveolar-type2-like state was

accompanied by transient increase in plasticity. This was followed by adoption of distinct

fitness-associated transcriptional programs which enable rapid expansion and ultimately clonal

sweep of rare, stable subclones capable of metastasizing to distant sites. Finally, we showed that

tumors develop through stereotypical evolutionary trajectories, and perturbing additional tumor

suppressors accelerates tumor progression by creating novel evolutionary paths. Overall, our

study elucidates the hierarchical nature of tumor evolution, and more broadly enables the

in-depth study of tumor progression.

KEYWORDS

Lineage Tracing; Tumor Evolution; Phylogenetics; Single Cell; Fitness; Plasticity;

Transcriptome Heterogeneity; Genetically Engineered Mouse Model; Lung Cancer
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INTRODUCTION

Cancer is an evolutionary process characterized by sequential subclonal selections, driven

by progressive genetic and epigenetic changes (Nowell, 1976). Throughout this process, cancer

cells can acquire phenotypic heterogeneity that increases fitness by enabling them to grow more

aggressively, invade neighboring tissues, evade the immune system and therapeutic challenges,

and metastasize to distant sites (Hanahan and Weinberg, 2011; McGranahan and Swanton, 2017;

Vogelstein et al., 2013). Interrogating the molecular bases of subclonal selection and metastatic

seeding, the origins of and transitions between transcriptional states, as well as the identities and

genetic determinants of evolutionary paths that tumors undergo will not only illuminate

fundamental principles governing tumor evolution, but also have immediate clinical implications

(Black and McGranahan, 2021). To fully understand these processes, it is essential to study the

evolutionary dynamics giving rise to a tumor in its native setting, preferably in experimentally

defined conditions (Amirouchene-Angelozzi et al., 2017).

Tumor phylogenetic analysis, the study of lineage relationships among the cells

comprising the tumor population descended from a single transformed progenitor, can provide

key insights into the dynamics of tumor progression. Classically, phylogenies have been

constructed using naturally-occurring somatic genomic variations (mutations or copy-number

variations [CNVs]) as natural lineage tracers, and have yielded key insights into the evolutionary

dynamics of human tumor development (Gao et al., 2021; Gerstung et al., 2020; Ludwig et al.,

2019; Schwartz and Schäffer, 2017; Sjöblom et al., 2006; Vogelstein et al., 1988). These efforts

have illuminated several key evolutionary processes underpinning tumor development, including

the acquisition of critical subclonal genetic or epigenetic changes (Gerlinger et al., 2014; Neftel

et al., 2019; Williams et al., 2018), the timing and routes of metastatic dissemination (Hu and
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Curtis, 2020; Turajlic and Swanton, 2016), and the development of therapeutic resistance

(Abbosh et al., 2017; Kim et al., 2018; Maynard et al., 2020; Powles et al., 2021; Salehi et al.,

2021). Nonetheless, these studies are limited by the inherent variation in naturally-occurring

somatic mutations, incomplete cell sampling, and other confounding variables (e.g.

environmental exposures and genetic background), and are not amenable to further perturbations

or functional studies.

Genetically engineered mouse models (GEMMs) of cancer provide a critical tool for

modeling tumor progression as they allow one to study tumor evolution in its native

microenvironment and experimentally defined conditions (Frese and Tuveson, 2007; Hann and

Balmain, 2001). The KrasLSL-G12D/+; Trp53fl/fl (KP) model of lung adenocarcinoma allows tumor

initiation via viral delivery of Cre recombinase to a small number of lung epithelial cells, leading

to activation of oncogenic Kras, homozygous deletion of the p53 tumor suppressor gene, and

clonal tumor outgrowth. It faithfully models the major steps of tumor evolution from nascent cell

transformation to aggressive metastasis, recapitulating human lung adenocarcinoma progression

both molecularly and histopathologically (Jackson et al., 2001, 2005; Winslow et al., 2011).

Moreover, recent work has revealed that substantial transcriptomic and epigenomic heterogeneity

emerges during tumor evolution in this model (LaFave et al., 2020; Marjanovic et al., 2020),

consistent with human tumors (Laughney et al., 2020). The tractability of this model provides an

appealing opportunity to probe several unanswered, but crucial tumor evolutionary-related

questions: how a single transformed cell expands into an aggressive tumor, how various cell

states contribute to subclonal evolution, how different transcriptional states transition to each

other, and what is the evolutionarily relationship between metastases and the primary tumor.

3

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.464111doi: bioRxiv preprint 

https://paperpile.com/c/kdJk68/6O1bj+EWir1
https://paperpile.com/c/kdJk68/CPeD1+VgKki+JeRus+DNHa8+EChb
https://paperpile.com/c/kdJk68/CPeD1+VgKki+JeRus+DNHa8+EChb
https://paperpile.com/c/kdJk68/WpgS+qdEw
https://paperpile.com/c/kdJk68/WpgS+qdEw
https://paperpile.com/c/kdJk68/ncJL3+jafNN+EgYf0
https://paperpile.com/c/kdJk68/7dN0Y+lnuWe
https://paperpile.com/c/kdJk68/3b5HU
https://doi.org/10.1101/2021.10.12.464111
http://creativecommons.org/licenses/by-nc-nd/4.0/


Approaches that permit simultaneous measurements of cell lineage and cell state

information have the potential to provide unique insights into these questions (Stadler et al.,

2021; Tammela and Sage, 2020; Wagner and Klein, 2020). While previous studies have used

synthetic “static” barcoding techniques to study clonal relationships (Bhang et al., 2015;

Driessens et al., 2012; Lan et al., 2017; Livet et al., 2007; Pei et al., 2017; Schepers et al., 2012),

studying the subclonal evolution within individual tumors remains challenging. This limitation is

in large part due to the low mutational burden in GEMM tumors, thus offering little lineage

resolution within individual tumors (McFadden et al., 2016; Westcott et al., 2015). The recent

development of high resolution CRISPR/Cas9 continuous lineage tracing paired with single-cell

RNA-seq (scRNA-seq) readouts provides a robust tool for overcoming these limitations.

Generally, this technology leverages Cas9-induced DNA cleavage and subsequent repair to

progressively generate heritable insertions and deletions (“indels”) at synthetic DNA target sites

engineered into the genomes of living cells (Chan et al., 2019; Frieda et al., 2017; Kalhor et al.,

2018; McKenna and Gagnon, 2019; McKenna et al., 2016). Importantly, these DNA target sites

are transcribed into poly-adenylated mRNAs, allowing them to be captured and profiled along

with all other cellular mRNAs using droplet-based scRNA-seq. In doing so, this approach makes

it possible to directly link the current cell state (as measured by scRNA-seq) with its past history

(as captured by the lineage recorder), and to do so on a massive scale (Alemany et al., 2018;

Bowling et al., 2020; Chan et al., 2019; Raj et al., 2018; Spanjaard et al., 2018). Recently, this

technology has been introduced into cancer cell lines before transplanting them into mice to track

metastatic behaviors in vivo (Quinn et al., 2021; Simeonov et al., 2021; Zhang et al., 2021).

Here, we have developed an autochthonous “KP-Tracer” mouse model which allows us

to simultaneously initiate an engineered lineage tracing system and induce Kras and Trp53
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oncogenic mutations in individual lung epithelial cells. This enabled continuous and

comprehensive monitoring of the processes by which a single cell harboring oncogenic

mutations evolves into an aggressive tumor. The resulting tumor phylogenies reveal that rare but

consequential subclones drive tumor expansion by adopting distinct fitness-associated

transcriptional programs. By integrating lineage and transcriptome data, we uncovered changes

in cancer cell plasticity and parallel evolutionary paths of tumor evolution in this model, which

could be profoundly altered by perturbing additional tumor suppressor genes commonly mutated

in human tumors. We have also identified the subclonal origins, spatial locations and cellular

state of metastatic progression. Collectively, this technology allowed us to reconstruct the

lifespan of a tumor from a single transformed cell to a complex and aggressive tumor population

at unprecedented scale and resolution.

RESULTS

KP-Tracer mouse enables continuous and high-resolution lineage tracing of tumor

initiation and progression

To generate high-resolution reconstructions of tumor phylogenies, we sought to develop a

lineage-tracing competent mouse model of lung adenocarcinoma capable of months-long

continuous cell lineage recording within individual tumors (Fig 1A). To accomplish this, we

engineered mouse embryonic stem cells (mESCs) harboring the conditional alleles KrasLSL-G12D/+

and Trp53fl/fl (KP) to additionally encode conditional SpCas9 and mNeonGreen fluorophore at

the Rosa26 locus; Rosa26LSL-Cas9-P2A-mNeonGreen (KPCas9). We then engineered these mESCs with a

refined version of our lineage tracing technology (Figure S1A; Chan et al., 2019; Quinn et al.,
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2021). Specifically, we introduced a library of piggyBac transposon-based lineage tracing vector

containing two essential components: first, target sites for lineage recording, each contained

three cut sites and positioned within the 3’ UTR of a mCherry fluorescent reporter, and

containing a 14-base-pair randomer integration barcode (“intBC”) to distinguish individual

copies; and second, three constitutively expressed single-guide RNAs (sgRNAs) for directing

Cas9 to each of the three individual cut-sites within the target sites, thereby generating indels for

lineage recording (Fig S1A). We then isolated engineered mESC clones with high mCherry

expression by fluorescence activated cell sorting (FACS), indicating a high copy number of

genomically-integrated target sites and thus high lineage-tracing capacity (Fig S1B-C). We

further selected clones with 10-30 target sites, which were measured by quantitative PCR

(qPCR) with genomic DNA input and then confirmed by DNA sequencing (Fig S1D-E). Finally,

we generated chimeric mice (referred to here as “KP-Tracer” mice) from five validated mESC

clones to ensure evolutionary behavior was not idiosyncratic to a specific clone (Premsrirut et al.,

2011; Zhou et al., 2010).

In KP-Tracer mice, intratracheal administration of lentivirus expressing Cre recombinase

simultaneously initiates lung tumors by activating conditional oncogenic alleles, and lineage

tracing by inducing the expression of Cas9, which together with the expressed sgRNAs causes

accumulation of indels in the target sites (DuPage et al., 2009). Previous static lineage tracing

studies, using lentiviral barcoding or multi-color reporters, have shown that KP tumors induced

with this strategy are clonal (Caswell et al., 2014; Chuang et al., 2017). To validate tumor

clonality in KP-Tracer mice, we induced tumors with a barcoded lentiviral-Cre construct

(lenti-Cre-BC) serving as a clonal barcode that uniquely marks each tumor which is expressed

and can be captured via scRNA-seq (Adamson et al., 2016).
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Individual tumors from KP-Tracer mice with clear boundary separation to adjacent

tumors were harvested 5-6 months after tumor initiation, microdissected, and dissociated

completely to ensure unbiased cell sampling (Fig1B; Table S1). Samples were labeled with

Multiplexing Using Lipid-Tagged Indices for scRNA-seq (MULTI-seq) method (McGinnis et al.,

2019) and cancer cells were purified by FACS based on mCherry and mNeonGreen expression

(indicating target site and Cas9 expression, respectively). Four datasets were generated for each

cell: (1) a scRNA-seq gene expression profile to assess cell state, (2) a target site amplicon

library to uncover lineage relationships, (3) a MULTI-seq amplicon library to deconvolve sample

identity, and (4) a lenti-Cre-BC amplicon to verify tumor clonality. After processing and

integrating all four datasets for each cell with a customized pipeline (Fig 1C; STAR Methods),

we proceeded with paired lineage and transcriptome measurements for 40,385 cells across 35

tumors (29 primary tumors and 6 metastases). Importantly, we observed that target sites were

highly and consistently expressed across tumors, as detected by scRNA-seq (Fig 1D, S1F-G).

We next reconstructed phylogenies for each tumor with Cassiopeia, a package for

large-scale single-cell lineage reconstruction (Jones et al., 2020), after preprocessing and filtering

based on lineage tracing quality control and ensuring tumor clonality with lenti-Cre-BC

information (STAR Methods). Figure 1E displays the inferred phylogeny and its corresponding

indel status (summarized in an “allele heatmap”) of a single representative tumor, consisting of

772 cells after unbiased sampling and quality control filtering. Notably, this tumor showed clear

evidence of clonality, indicated by ubiquitous expression of a single, specific lenti-Cre-BC and

several target site indels shared across the majority of cells (Fig 1E). The observed indel

diversity revealed a rich subclonal structure and deep lineage relationships, resulting in a tree

with a median depth of 12 and maximum depth of 15. Intuitively, closely related cells should
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share similar indels, and as expected, we observed strong correlations between phylogenetic and

allelic distances across our trees, supporting the integrity of our lineage reconstruction (Fig 1F;

Table S1). With these high-resolution tumor phylogenies, we next turned to studying the

relationship between subclonal dynamics and cellular state as determined by gene expression.

Rare subclones expand during tumor progression, marked by increased DNA copy number

variation, cell cycle score, and fitness score

A key question in tumor evolution is how subclonal selection, based on the acquisition of

growth-promoting genetic or epigenetic changes, and the resulting population dynamics, leads to

the expansion of aggressive subclones relative to other parts of the same tumor (Davis et al.,

2017; McGranahan and Swanton, 2017; Nowell, 1976). We identified subclones under positive

selection by adapting a statistical test comparing the number of cells in each subclone to what

would be expected under a neutral coalescent model of evolution (STAR Methods; (Griffiths and

Tavaré, 1998; Speidel et al., 2019)). Using this method on a high-quality subset (21/29) of

primary tumors (Fig S1H; STAR Methods), we found examples of tumors that appeared to be

neutrally evolving (i.e., with no evidence for positive selection) and tumors with subclones

determined to be under positive selection (Fig 2A). Tumors had one or sometimes two subclones

undergoing expansion, and across tumors there was a broad distribution in the proportion of cells

within expansions (Fig 2B). This fraction was poorly explained by technical covariates,

including the age of the tumor (R2=0.25±0.14, Fig S2A), the depth of the tumor phylogeny

(R2=0.23±0.15, Fig S2B), the number of cells in the tumor (R2=0.09±0.07, Fig S2C), and the

proportion of unique cell lineage states (R2=0.28±0.15, Fig S2D).
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The aggressive nature of expanding subclones identified from tree topology were

supported by several lines of evidence. First, lineage trees inferred by an alternative phylogenetic

reconstruction algorithm, Neighbor Joining, revealed consistent subclonal expansion proportions

((Saitou and Nei, 1987); Pearson’s ρ = 0.87, Fig S2E). Second, subclonal expansions had distinct

copy number variation (CNV) profiles - a widely used approach for identifying subclonal

structure in tumors (Tarabichi et al., 2021). To show this, we first inferred CNVs from our

single-cell transcriptome data using inferCNV, a Bayesian method that infers CNV status for

each cell from scRNA-seq data (inferCNV of the Trinity CTAT Project.

https://github.com/broadinstitute/inferCNV). Cell lineages inferred by Cassiopeia and CNVs

were significantly consistent despite the low-resolution hierarchies of CNV-based lineages (Fig

S2G-I; Permutation Test; see STAR Methods). Moreover, expanding subclones were

significantly enriched for CNVs both overall (Mann-Whitney U Test p < 0.0001, Fig 2C-D) and

within individual tumors (Fig S2J). Interestingly, we found that independent subclonal

expansions from the same tumor could harbor distinct CNV patterns (Fig S2K), further

supporting the accuracy of our subclonal expansion calling. Given that somatic variation has

been widely used to infer phylogenetic relationships in tumor evolution (Patel et al., 2014; Tirosh

et al., 2016), and that previous analyses indicated that CNVs rather than point mutations are the

major mutations in the KP model (Chung et al., 2017; McFadden et al., 2016; Westcott et al.,

2015), this CNV analysis served as a strong corroboration of the inferred lineages. Third, we

scored the expression of cell cycle genes from the scRNA-seq profiles and found that cancer

cells in expansions were significantly more proliferative, regardless of which tree reconstruction

method was used (Mann-Whitney U test; Fig 2E, S2F; STAR Methods). Together, these
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orthogonal lines of evidence strongly support the fidelity of our tumor phylogeny and expansion

calling, and indicate the aggressive nature of subclonal expansions.

In population genetics, the relative “fitness” of a sample can be defined as the growth

advantage of an individual compared to the rest of the population (Williams et al., 2018). The

fine-scale structure of our lineages offers us the opportunity to predict this selective advantage,

or fitness, at single-cell resolution. Using a recently published probabilistic model for the “birth”

process, we quantified the relative fitness of each cell within individual primary tumors in a

continuous manner (Fig 2F; STAR Methods; (Neher et al., 2014)). This analysis revealed a

spectrum of intratumoral fitness distributions across tumors (Fig 2G). Furthermore, as expected,

expanding regions were consistently associated with higher single-cell fitness scores than

non-expanding regions across all tumors (Mann-Whitney U Test p < 0.0001, Fig 2F and 2H).

Overall, these results argue that we can quantitatively infer the relative fitness of individual cells

within a tumor and that cell fitness is consistent with the subclonal dynamics revealed by the

tumor phylogeny.

Integration of phylodynamics and transcriptome uncovers fitness-associated gene

programs for KP tumors

With quantitative measurements of single-cell fitness in each tumor, we next sought to

identify the molecular features consistently associated with subclonal expansions. Consistent

with KP tumors having low mutational burden and progression mainly utilizing epigenetic

changes as major drivers (Arnal-Estapé et al., 2020; LaFave et al., 2020), CNV profiles within

expansions were largely inconsistent across tumors and thus unlikely to be the only driver of

tumor expansion (Fig S2L). We therefore examined the transcriptomic differences underpinning
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expansion. We first integrated the scRNA-seq data across all tumors to generate a unified map of

transcriptomic states, visualized using Uniform Manifold Approximation and Projection

(UMAP; McInnes et al., 2018; STAR Methods). Using a batch-corrected latent space inferred

with scVI (Lopez et al., 2018), we found 15 distinct subpopulations with the Leiden community

detection algorithm (Traag et al., 2019; Fig 3A). These distinct transcriptional states were

characterized by marker genes previously described in the KP model: spanning from an

early-stage Alveolar type 2 (AT2)-like population, characterized by expression of Lyz2 and Sftpc,

to late-stage Epithelial-Mesenchymal transition (EMT)-related clusters characterized by

expression of Vim, Twist1, and Zeb2 ((LaFave et al., 2020; Marjanovic et al., 2020); Fig 3A,

S3A; Table S2). The agreement of transcriptomic states observed here and in previous studies

implies that the continuous lineage tracing system did not drastically perturb tumor progression.

Combining the aforementioned single-cell fitness scores with single-cell transcriptomes

for each tumor, we identified genes differentially expressed along the phylogenetic fitness

continuum in individual tumors by linear regression (Fig 3B; STAR Methods). We then utilized a

majority-vote meta-analysis of differentially expressed genes across tumors to find genes

consistently associated with cells predicted to be more fit (Fig 3C; STAR Methods; Table S3).

The consensus gene list suggested broad transcriptomic changes associated with elevated fitness

and was enriched for gene sets associated with ribosome biogenesis, stem cell differentiation,

and wound healing (Fig S3B).

The genes detected in our majority-vote meta-analysis represented a transcriptional

program (hereafter referred to as the “FitnessSignature”) consistently associated with tumor

expansions that could be used to describe state trajectories underlying tumor evolution. Indeed,

after quantifying the FitnessSignature score for each cell with VISION (DeTomaso et al., 2019;
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Fig 3D), we found that on average the AT2-like state cluster had the lowest FitnessSignature

score and that Mesenchymal clusters scored highest (Fig 3E). Interestingly, the ranking of Leiden

clusters in between these extremes suggested that an increase in FitnessSignature was

concomitant with dedifferentiation from the AT2-like state through various Gastric,

Endoderm-like, or Lung Mixed states to an eventual Mesenchymal state (Fig 3D-E). Moreover,

we found the FitnessSignature scores correlated well with progression signatures in separate

datasets of the KP tumors harvested from several tumor developmental stages ((Chuang et al.,

2017; Marjanovic et al., 2020); Fig S3C-D) and was also significantly associated with poor

prognosis in lung adenocarcinoma patients from The Cancer Genome Atlas (TCGA; The Cancer

Genome Atlas Research Network, 2014; Fig 3F).

Previous work studying tumor evolution has suggested that tumor expansions may occur

in waves of clonal sweeps (Greaves and Maley, 2012; Wang et al., 2020). In support of these

observations, although the majority of tumors had a distinct AT2-like population, the rest of the

cells in these tumors occupied qualitatively different transcriptional states (Fig S3E). The

progression into these states could be categorized into three stereotyped, non-overlapping gene

modules decomposed from the FitnessSignature using Hotspot (DeTomaso and Yosef, 2021, Fig

S3F-G): Module 1 contained genes enriched for gastric and endoderm signatures (Tff1, Hnf4a,

Gkn2), Module 2 contained a subset of EMT marker genes and some neuronal genes (Hmga2,

Inhba, Gap43) and Module 3 contained classical mesenchymal and pro-metastasis genes (Vim,

Twist1, Cdh2, Cd109, Runx2) (Fig 3G-H; Table S3). Additionally, we observed that tumor

subclonal expansions could preferentially deploy a particular module, though some expansions

exhibited co-expression of multiple modules (Fig 3I, S3I-J; STAR Methods). Importantly, we

found that the expression of each of these modules was predictive of worse patient survival in the
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TCGA lung adenocarcinoma cohort (Fig S3H; STAR Methods). Collectively, these results argue

that increased cell fitness in lung adenocarcinoma can be achieved via at least three distinct

transcriptional modules.

Intratumoral transcriptional heterogeneity is driven by transient increases in plasticity of

cell states

We next turned to investigating the dynamics of how tumors traverse various intratumoral

transcriptional states, whose presence can be a key characteristic of tumor progression, often

underlying aggressiveness and therapeutic resistance (Kim et al., 2018; Marjanovic et al., 2020;

Maynard et al., 2020; Patel et al., 2014; Rathert et al., 2015; Shaffer et al., 2017). In our model,

tumors varied widely in the transcriptional states they occupied, rarely being dominated by a

single state. While tumors with low FitnessSignature scores were enriched for the AT2-like state,

score increases were associated with Gastric-like, Lung Mixed, and Mesenchymal states (Fig

S4A). Moreover, we found that tumors had generally similar levels of transcriptional state

heterogeneity, as measured by Shannon’s Entropy Index ((LaFave et al., 2020; Marjanovic et al.,

2020); Fig S4B).

How is this intratumoral diversity established and maintained? In principle, this diversity

reflected by the entropy index can be achieved either by rare transitions and stable commitment

to distinct states or by frequent transitions between these states. Lineage tracing is uniquely

positioned to distinguish these two models as it directly reports how intermixed transcriptomic

states are in subclonal lineages, thus providing a measure of effective plasticity. Interestingly, we

found that tumor subclones exhibited varying amounts of plasticity: some tumor subclones were

dominated by a single transcriptomic state that rarely mixed with other states, suggesting strong
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stability (Fig 4A), while others were characterized by strong mixing between transcriptomic

states (Fig 4B). We quantified this subclonal behavior with the Fitch-Hartigan maximum

parsimony algorithm (Fitch, 1971; Hartigan, 1973), which computes the minimum number of

unobserved cellular state changes required to generate the observed state distribution at the

leaves (STAR Methods). We computed this score for each phylogeny and normalized it by the

size of the tree, thus creating an empirical measurement of the tree plasticity (hereafter referred

to as the “EffectivePlasticity” score) and extended this measure to a single-cell statistic

(“scEffectivePlasticity”) by averaging together the EffectivePlasticity scores for all the subclades

that contained a particular cell (Quinn et al., 2021; STAR Methods). In two representative

tumors, we observed that cells from the AT2-like state exhibited consistently low

scEffectivePlasticity, whereas other states like the Gastric- and AT1-like state had elevated

scEffectivePlasticity scores (Fig 4C-D).

To systematically quantify the relative effective plasticity of the different cell states

across all tumors, we averaged scEffectivePlasticity scores for each Leiden cluster on a

tumor-by-tumor basis (Fig 4E). Mesenchymal (Leiden clusters 1 & 2) and AT2-like clusters

(Leiden cluster 4) represented the most stable states, while the previously reported “High

Plasticity Cell State” (Marjanovic et al., 2020; Leiden cluster 5) , Gastric-Like (Leiden clusters 3,

8, 12) and Endoderm-like states (Leiden cluster 0) exhibited high EffectivePlasticity (Fig 4F).

Importantly, we observed that these scores were consistent when measured by two alternative

statistics that quantified this effective plasticity either by comparing transcriptional states

between cells with similar indel states (without trees; Fig S4C-E) or by computing dissimilarity

in gene expression profiles between nearest neighbors on the phylogeny (Fig S4F-H; STAR

Methods).
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We next investigated the relationship of tumor plasticity, as measured by

EffectivePlasticity, and aggressiveness, as measured by the FitnessSignature. While previous

studies have indicated that transcriptional heterogeneity is a hallmark of tumor progression

(Marjanovic et al., 2020), we found that the average EffectivePlasticity score was maximized

when the FitnessSignature score was in the intermediate regime and minimized when the

FitnessSignature was extremely low or high (Fig 4G and S4I). This relationship suggested that

states with transient stability could be identified as those with higher FitnessSignature and lower

EffectivePlasticity (Fig S4J). Taken together, these findings support a model of tumor

progression whereby loss of AT2-like state unlocked high plasticity by enabling rapid, parallel

transitions to generate high intratumoral transcriptomic heterogeneity, which permitted

subsequent selection of increasingly stable states with higher-fitness and ultimately resulted in

subclonal expansion and tumor progression (Fig 4H).

Mapping the phylogenetic relationships between cell states reveals common paths of tumor

evolution

In principle, the observed cellular plasticity and subsequent transcriptional heterogeneity

in the KP model could arise from either random or structured evolutionary paths through

transcriptional states. To investigate the consistency of evolutionary paths across tumors, we

developed a statistic termed “Evolutionary Coupling”, which extends a clonal coupling statistic

(Wagner et al., 2018; Weinreb et al., 2020) to quantify the phylogenetic distance between pairs of

cell states (STAR Methods). Qualitatively, states that transition between one another can be

considered closely related on the tumor phylogeny and thus have higher Evolutionary Couplings.
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Applying this approach to individual tumors uncovered distinct coupling patterns

between transcriptomic states. In one example tumor, the Lung Mixed state was more closely

related to the High Plasticity state than to the AT2-like state (Fig 5A-B). In another tumor, the

Gastric-like and High Plasticity states clustered together, whereas the AT1-like and Early Gastric

states clustered together (Fig 5C-D). Relationships for these two tumors were consistent with

alternative definitions for inter-state coupling, inferred directly from the indel information

(without relying on trees; Fig S5A-B; STAR Methods) or based on local neighborhoods on the

tree (Fig S5C-D; STAR Methods); these statistics were generally consistent across trees (Fig

S5E).

A data-driven hierarchical clustering of the full set of tumors based on the transcriptional

states they occupy and their Evolutionary Couplings revealed that tumors could be classified into

three distinct groups, which we termed “Fate Clusters” (Fig 5E and S5F; STAR Methods; Table

S4). While some transcriptional states were shared between Fate Cluster 1 and 2 (including the

AT2-like, AT1-like, and High-Plasticity states), Fate Cluster 1 was predominantly distinguished

by couplings that include the Gastric-like (Leiden clusters 3, 8, and 12) and Endoderm-like states

(Leiden cluster 0; Fig 5F, left, Fig S5G) and Fate Cluster 2 by evolution towards the Lung Mixed

state (Leiden cluster 10; Fig 5F, middle, Fig S5G). The evolution of Fate Cluster 3 was more

difficult to interpret as it lacked couplings with the AT2-like state. Instead, tumors from Fate

Cluster 3 were dominated by high-fitness states, such as early EMT (Leiden clusters 7 and 13)

and Mesenchymal states (Leiden cluster 1 and 2; Fig 5F, right, Fig S5G), which could in theory

progress from transcriptional states in Fate Cluster 1 or 2. We thus hypothesized the majority of

differences between tumors was driven by tendencies towards Fate Cluster 1 and 2. Indeed,

Principal Component Analysis (PCA) on Evolutionary Couplings and state composition revealed
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that the first two principal components explained a substantial amount of the observed variance

(~32%; Fig S5H) and that among the strongest features separating tumors were those indicating

whether or not tumors had couplings involving the Gastric & Endoderm states (Fate Cluster 1;

Leiden clusters 3, 8, 0) or the Mixed Lung state (Fate Cluster 2; Leiden cluster 10; Fig S5I).

Taken together, these data argue that tumor progression from the initial AT2 state preferentially

follows one of the two paths, characterized by Fate Clusters 1 and 2, to aggressive states like

those found in Fate Cluster 3.

To characterize the transcriptional changes that underlie these two alternative fates (Fate

Cluster 1 & 2), we developed “Phylotime”: a single-cell statistic that quantifies the evolutionary

distance between an individual cell and cells in the progenitor, AT2-like state (STAR Methods).

Phylotime is proportional to the number of generations elapsed since the more recent ancestral

node that, under a maximum-parsimony approach, could have been an AT2-like cell, and it is

smoothed between transcriptionally similar cells. This measure is conceptually related to a

pseudotime statistic (Trapnell et al., 2014), but is learned directly from the phylogenetic tree.

Importantly, estimates of Phylotime were consistent with different metrics for approximating

time on the tree: either by the absolute number of mutations or the number of mutation-bearing

edges to AT2-like cells (Fig S5J-K). Integrating Phylotimes from tumors within Fate Clusters 1

and 2 confirmed two separate evolutionary routes (Fig 5G) and using an approach to find genes

differentially expressed along Phylotime, we found distinct transcriptional changes associated

with each route (Van den Berge et al., 2020; Fig 5H; STAR Methods; Table S5). Specifically,

expression of early markers like Lyz2 and Sftpc were shared in early Phylotime of both Fate

Clusters. However, late Phylotime in Fate Cluster 1 was enriched for gastric and endoderm

markers like Gkn2, whereas late Phylotime in Fate Cluster 2 was characterized by markers of
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airway progenitors, such as Sox2 and Scgb1a1, and markers of tumor propagating cells like

Cd24a and Itgb4. Although Fate Cluster 3 tumors generally had poor couplings with earlier

states, our data suggest that tumors can evolve from either the Fate Cluster 1 or Fate Cluster 2

into an EMT state and progress to late-stage Mesenchymal states (Fig S5L). Overall, our data

provides evidence that KP tumors could evolve predominantly through two major paths with one

towards Gastric-like and Endoderm-like state, and the other through the Mixed-Lung state

(summarized in Fig 5I).

Loss of tumor suppressors alters tumor transcriptome, plasticity and evolutionary

trajectory

Tumor suppressor genes regulate diverse cellular activities and the loss of which is

associated with increased tumor aggressiveness (Sherr, 2004; Weinberg, 1991); however, it

remains unclear how these genes affect tumor evolutionary dynamics in vivo. Here, we combined

genetic perturbations with our quantitative phylodynamic approaches to interrogate how

additional oncogenic mutations altered KP tumor evolutionary trajectories.

We focused on two frequently mutated tumor suppressors in human lung

adenocarcinoma, LKB1 and APC (Ding et al., 2008; The Cancer Genome Atlas Research

Network, 2014; Skoulidis et al., 2015). Both genes have been studied extensively in both human

and mouse models and appear to regulate progression through distinct mechanisms (Carretero et

al., 2010; Hollstein et al., 2019; Ji et al., 2007; Kerk et al., 2021; Murray et al., 2019; Nguyen et

al., 2009; Parsons et al., 2021; Tammela et al., 2017). We engineered our lenti-Cre-BC vector to

carry an additional sgRNA targeting Lkb1 or Apc, such that delivery of this vector

simultaneously initiated tumor induction, lineage tracing, and disruption of the targeted tumor
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suppressor gene. Using this system, we collected paired transcriptome and lineage profiles from

18,321 cells across 57 KP tumors with Lkb1 knockout (24 primary and 33 metastatic tumors;

referred to as KPL tumors), and 13,825 cells across 35 KP tumors with Apc knockout (23

primary and 12 metastatic tumors; referred to as KPA tumors). Targeting of either Lkb1 and Apc

increased tumor burden (Rogers et al., 2018), but did not appear to alter the number and relative

size of subclonal expansions (Fig S6A-B). However, genes associated with tumor fitness were

largely distinct across genetic backgrounds (Fig S6C; Table S3).

To examine whether perturbations alter the transcriptional landscape of KP tumors, we

integrated transcriptional states of KPL and KPA tumors with the prior KP dataset. While many

cells could be classified into existing Leiden clusters identified in the KP analysis, the additional

perturbations also created four new transcriptional states (Fig 6A; STAR Methods). As expected

from Apc’s role as a negative regulator of Wnt signaling (Barker et al., 2009)), we observed high

Axin2 expression in the three KPA-specific clusters, indicative of elevated Wnt signaling (Fig

S6D). Interestingly, these three clusters also upregulated the expression of Wnt antagonists such

as Notum and Nkd1 (Fig S6D; Table S3). Moreover, targeting of Lkb1 or Apc resulted in broad

changes to the relative occupancies of transcriptomic states: KPL tumors were primarily enriched

in the Pre-EMT state (Leiden cluster 9), while KPA tumors were enriched in Apc-specific early,

mesenchymal, and metastatic clusters (Leiden clusters 15, 16, and 17; Fig 6B-C and S6E).

In light of the specific enrichment of KPL tumors in the Pre-EMT state (Leiden cluster

9), we used our phylogenetic data to investigate whether loss of Lkb1 decreased the plasticity of

the Pre-EMT state. Interestingly, although most cell states had comparable EffectivePlasticity

across tumor genotypes (Fig S6F), the Pre-EMT state in KPL tumors had significantly less

EffectivePlasticity, indicating stabilization of this cell state. (p < 0.05, Mann-Whitney U Test; Fig
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6D). To identify gene programs that underlie this specific stabilization, we performed differential

expression analysis on cells within the Pre-EMT cluster from KPL tumors versus other tumor

genotypes (Fig 6E; Table S2), and identified gene programs that have been reported to drive

pro-metastatic chromatin remodeling (Sox17; Pierce et al., 2021), promote tumor progression

(Ifitm1 and loss of Gata6; (Cheung et al., 2013; Yan et al., 2019)), increase metastatic ability

(Mmp7; (He et al., 2018)), and increase tumor fitness by modulating cancer-immune cell

interaction (Cd24a, Il33, and loss of Apoe; (Li et al., 2019; Sinjab et al., 2021; Tavazoie et al.,

2018)). These together potentially explain why the Pre-EMT state was uniquely stabilized in

KPL tumors.

To examine how loss of tumor suppressors altered evolutionary trajectories, we

performed PCA on the transcriptional state proportion and Evolutionary Coupling vectors of

individual tumors and found that tumors broadly segregated according to their genotypes (Fig

6F; STAR Methods; Table S4). To identify the features that drive this separation, we evaluated

the loadings of the principal components (Fig 6G) and found that KPA tumors created a unique

trajectory including a coupling between the AT2-like and the Apc-early states (cluster 4 and

cluster 16), while KPL tumors were characterized by elevated couplings between the Pre-EMT

state and nearby states.

In summary, although the targeting of the tumor suppressors Lkb1 or Apc both increased

tumor growth, their effects on cell states, plasticity and paths of evolution varied substantially.

Specifically, KPL tumors quickly progressed to and became stabilized in the Pre-EMT state,

while KPA tumors largely exploited a distinct path through new Apc-specific states (Fig S6G and

summarized in Fig 6H and Table S4). Together, our analyses highlight how lineage tracing offers

rich information for dissecting the multifaceted role of tumor suppressors in tumor evolution.
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Metastases originate from spatially localized, expanding subclones of primary tumors

Metastases account for 90% of cancer mortality and remain difficult to study because of

their spatially and temporally sporadic nature (Ganesh and Massagué, 2021). An outstanding

question is how metastases originate from the primary tumor. Here we integrated lineage tracing

with spatial and transcriptomic information to investigate the subclonal origins and evolution of

metastases.

We first focused on a single primary tumor, which consisted of two independent

subclonal expansions (3724_NT_T1; Fig 2B), and its four related metastases (three colonizing

the liver and one in soft tissue; Fig 7A, S7A). We performed multi-regional analysis of the

primary tumor (Fig 7A, inset) and inferred a combined phylogeny relating all cells in the primary

tumor and metastases. Integrating lineage-spatial information revealed that metastases originated

from distinct spatial locations (Fig 7A-C; STAR Methods). To understand the relationship

between subclonal expansion and metastasis, we examined the lineage relationship of metastases

and the subclones of their related primary tumor. Phylogenetic analysis revealed that individual

metastases originated from specific subclonal expansions (Fig 7C-D).

To investigate the consistency of these results, we extended this phylogenetic analysis to

five other tumor-metastasis families, across KP, KPL, and KPA backgrounds, comprising a total

of six primary tumors and twenty-two metastases. Importantly, we found metastases were

consistently more closely related phylogenetically to specific subclonal expansions than to

non-expanding regions regardless of tumor genotype (Fig 7D and Fig S7D). Collectively, our

results argue that metastases generally originated from subclonal expansions within primary
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tumors. Independent metastases from the same primary tumor could nevertheless arise from

spatially and phylogenetically distinct expanding subclones.

Having linked metastases to the primary tumors from which they are derived, we could

now evaluate to what degree metastases preserved the transcriptional state of their origins in the

primary tumor. Analysis of metastases arising from an example primary tumor (3724_NT_T1)

revealed that liver metastases appeared to be more similar to the subclone from which they

originated, whereas the soft tissue metastasis evolved to a new transcriptional state (Fig 7E-F).

This was further quantified by measurements of total transcriptional distance between each

metastasis and the subclonal expansions in the metastatic primary tumor (Fig 7G). Liver

metastases were significantly more similar to its originating subclonal expansion (p < 0.0001, 1,

one-sided Mann-Whitney U Test), while the soft tissue metastasis did not clearly resemble its

subclonal origin (p < 0.0001, one-sided Mann-Whitney U Test; Fig 7G; STAR Methods). We

consistently observed that metastases from KP, KPL, and KPA mice were significantly more

similar, as measured by transcriptional state, to their respective expanding subclades in the

primary tumor as compared to non-expanding regions, further suggesting that progression at the

primary site is a prerequisite for metastasis (LaFave et al., 2020; Fig S7E).

In addition, our high-resolution lineage tracing offered evidence of complex metastatic

behaviors, including multi-subclonal seeding from a primary tumor to the lymph node, and

cross-seeding from one metastatic primary tumor to another primary tumor, or from one

metastasis to another. (Fig S7A-C). Collectively, these results highlight the ability of

phylogenetic analysis to trace the origins and evolution of metastases.

22

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.464111doi: bioRxiv preprint 

https://paperpile.com/c/kdJk68/lnuWe
https://doi.org/10.1101/2021.10.12.464111
http://creativecommons.org/licenses/by-nc-nd/4.0/


DISCUSSION

In this study, we have developed a genetically engineered mouse model of lung

adenocarcinoma that allows Cre-inducible initiation of oncogenic mutations and simultaneous

continuous in vivo lineage tracing of tumor development over many months, paired with a

single-cell transcriptomic readout. This model system enabled us to track at an unprecedented

resolution the recurring patterns of tumor evolution from activation of oncogenic mutations in

single cells as they grow into large, aggressive, and ultimately metastatic tumors. Three

principles emerged from our study, linking together tumor phylodynamics, fitness, plasticity,

parallel evolutionary trajectories, origins of metastasis, and genetic determinants of tumor

evolution.

First, tumors were driven by rare subclonal expansions that utilized distinct

fitness-associated transcriptional programs and enabled both tumor progression at the primary

site and metastasis to distant tissues. The subclonal expansions identified solely by tree topology

were characterized by increased proliferative rate and copy number variation, as well as by

proximity in space. Furthermore, the identification of gene expression states associated with

tumor fitness illuminated a transcriptional fitness landscape underlying KP-Tracer tumor

development; moreover, this fitness landscape could be decomposed into three representative

fitness-related gene modules, each consisting of distinct biological programs that can act in

concert. Importantly, each of the three signatures of aggressive tumors found in our mouse model

were associated with poor outcomes in human disease. Notably, we found that metastases

consistently originated from expanding subclones, regardless of additional loss of Lkb1 or Apc.

This underscored the importance of tumor progression at the primary site in enabling metastasis,

(Caswell et al., 2014; Hu and Curtis, 2020; Hu et al., 2020; LaFave et al., 2020; Turajlic and
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Swanton, 2016), and argues against parallel evolution models in which metastases arise early

during tumor evolution (Hüsemann et al., 2008; Klein, 2009; Podsypanina et al., 2008; Rhim et

al., 2012). Interestingly, while metastases often retained the same gene expression state as their

original expanding subclones, they could further adopt distinct transcriptional states. This

highlights the importance of using direct phylogenetic information, rather than gene expression

similarity, to determine relationships between primary tumor subclones and metastases. Broadly,

despite the higher somatic mutation burden and longer developing timescales of human tumors

(Campbell et al., 2017; Gerstung et al., 2020; Hill et al., 2021; Jamal-Hanjani et al., 2017), our

data uncovered critical fitness gene programs that are conserved in both mouse and human lung

adenocarcinomas.

Second, our data revealed that tumor progression is accompanied by transient increases in

lineage plasticity (i.e., lack of commitment to a particular state), resulting in rich intratumoral

transcriptional heterogeneity, and providing the substrate for continuous selection. This period of

high plasticity is followed by clonal sweeps of subclones with aggressive cell states that can

remain stable even following metastasis to new environments. Our ability to monitor how often

cells are transitioning between transcriptomic states also allowed us to untangle the relationship

between intratumoral heterogeneity and lineage plasticity, and shed light on the origin of the

previously observed transcriptomic heterogeneity in the KP mouse model and human NSCLC

cancers (Laughney et al., 2020; Marjanovic et al., 2020). The finding that KP tumors progress

via parallel, rapid transitions between cell states suggests that epigenetic instability is a major

driver of tumor progression in this model (LaFave et al., 2020). Given the essential role of

cellular plasticity in tumor progression and therapeutic resistance (Chaffer et al., 2013; Easwaran

et al., 2014; Flavahan et al., 2017; Ge et al., 2017; Quintanal-Villalonga et al., 2020; Yuan et al.,
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2019), the ability of our lineage tracing system to quantitatively explore plasticity provides a

critical tool for understanding the role that cell state plasticity plays in various aspects of tumor

evolution.

Third, tumors evolved through stereotypical trajectories and introduction of additional

oncogenic mutations increased the speed of tumor evolution by creating new evolutionary

trajectories. Specifically, KP tumors followed one of two evolutionary trajectories, and CRISPR

targeting of either the Apc or Lkb1 tumor suppressor genes created a series of new preferred

intermediary transcriptional states. Traditionally, while cellular trajectories inferred by

pseudotemporal approaches have proved to be a versatile tool for scRNA-seq datasets (La

Manno et al., 2018; Trapnell et al., 2014), they make the inviolable assumption that

transcriptional similarity indicates developmental relationship (Tritschler et al., 2019).

Overcoming this, our measurement of cell state coupling directly from phylogenies enabled the

discovery of two distinct evolutionary paths that are substantiated by transcriptional differences.

Future work uncovering the causal factors, such as regulators of path decision and role of the cell

of origin, that underlie these lineage decisions will facilitate a deeper understanding of tumor

evolution. Our platform should be of great utility in elucidating these drivers as it can

accommodate additional genetic perturbations in combination with lineage recording.

Specifically, we illustrated that knocking out tumor suppressors Lkb1 and Apc altered the cellular

plasticity and observed evolutionary paths in a genotype-specific way, which can be explained by

alterations in transcriptional landscape. For example, high expression of multiple pro-tumoral

genes, such as Sox17 and Cd24a, might explain the stability of the Pre-EMT state in KPL

tumors; while the new gene expression states in KPA tumors expresses several Wnt inhibitors,

including Notum and Nkd1, which were recently reported to increase the ability of cancer cells to
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compete with the neighboring niche in human APC mutant colon tumors (Flanagan et al., 2021;

van Neerven et al., 2021). Collectively, our approach offers an orthogonal and more quantitative

evaluation of the multifaceted role genes play in tumor evolution as compared to traditional

growth-based fitness analysis. Future studies combining the KP-Tracer model and

high-throughput in vivo functional genomics will be foundational in assessing the evolutionary

consequences of any genes of interest in lung adenocarcinoma progression (Winters et al., 2018).

Our findings highlight several opportunities for future efforts. First, our efforts to build

accurate models of cell state transition probabilities were limited by the inability to capture

intermediate states and measure time on our phylogenies. This could be resolved experimentally

by harvesting samples from multiple time points of tumor development, or expanding our

lineage-tracing technology to develop multichannel molecular recorders which allow

simultaneous recording of lineage relationship along with the expression of specific marker

genes of intermediate states (Frieda et al., 2017; Tang and Liu, 2018). Second, our phylogenies

do not have concrete notions of time because Cas9-induced indels are stochastic and do not

accrue deterministically in time. To make branch lengths more interpretable, one could engineer

a “molecular clock” by coupling lineage tracing activity with the cell cycle. Computationally,

one can estimate time between Cas9 edits by utilizing probabilistic models of Cas9 activity, such

as one based on cut-site availability (Park et al., 2021). Of note, inference of cell state transition

probabilities would also benefit from accurate branch lengths, which are necessary and can also

be addressed computationally by developing new algorithms to infer unobserved, ancestral cell

states (Ouardini et al., 2021). Third, our multi-regional and CNV analysis demonstrated the

power of combining orthogonal information to understand tumor development. Future

integration of emerging data modalities with lineage tracing, such as multiomic and spatial
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analysis (Chow et al., 2021; Lee et al., 2014; Ma et al., 2020; Mimitou et al., 2021; Stickels et

al., 2021), will illuminate how epigenetic changes and the tumor microenvironment influence

tumor phylodynamics and evolutionary paths.

In summary, our results represent the first report of tracing the evolutionary history of a

tumor from a single transformed cell to an aggressive tumor using a CRISPR-based lineage

tracer in an autochthonous mouse model. Our continuous and high-resolution tumor lineage

tracing in this setting offers a major advance in tumor evolution modeling by enabling

quantitative inference of fitness landscapes, cellular plasticity, evolutionary paths, origins of

metastases, and the role of tumor suppressors in altering all these facets of tumor development.

With the expanding lineage tracing toolkit and integration of other emerging data modalities, we

expect that the experimental and computational framework presented here will greatly improve

future efforts at building high-dimensional, quantitative, and predictive models of tumor

evolution, thus shedding light on new therapeutic strategies.
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Figure 1. KP-Tracer mouse enables continuous and high-resolution lineage tracing of
tumor initiation and progression

(A) Generation of the KP-Tracer chimeric mouse by introducing lineage tracer library vectors
into KrasLSL-G12D/+; Trp53fl/fl; Rosa26LSL-Cas9-P2A-mNeonGFP mouse embryonic stem cells (mESCs) and
blastocyst injection of selected mESC clone with high copy number of lineage tracers. We use
the chimeric mice strategy because it is challenging to generate stable mouse strains with
multiple random integrations of lineage tracer vectors in the genome. Simultaneous tumor and
lineage tracing initiation is achieved by intratracheal delivery of lentivirus that expresses Cre
recombinase to the KP-Tracer mice. Each lentivirus carries a unique barcode (Lenti-Cre-BC)
which uniquely labels individual tumor clones. Five to six months after tumor initiation,
individual tumors are dissociated into single cell suspension and multiplexed by MULTI-seq.
scRNA-seq libraries are prepared to measure transcriptome, target site, MULTI-seq, and
Lenti-Cre-BC information.

(B) Representative images of tumors developed in KP-Tracer mouse 5 months after initiation.
Tumors are positive for mCherry and mNeonGreen. Scale bars = 5 mm.

(C) Tumor lineage reconstruction data analysis pipeline. Our Cassiopeia-based pipeline that
integrates target site (lineage), MULTI-seq (sample multiplexing), and lenti-Cre-BC (tumor
clonality) to reconstruct lineage trees for individual tumors is shown.

(D) Target sites are consistently captured across different tumors and mice. Tumor samples from
mice generated from one representative mESC clone (2E1) are shown. Each dot represents the
average capture rate of a specific target site in a tumor.

(E) Example phylogeny of a single tumor is shown. Unique MULTI-seq and Lentiviral barcode
(Lenti-Cre-BC) annotations for each cell are presented with unique colors (no detection is
labeled as white). The consistent color across cells within this tumor suggests the tumor cells
share a unique barcode, indicating tumor clonality. In the target sites indel heatmap, each row
represents data from a single cell and each column represents a cut site of the target sites. A total
of 30 target sites (10 intBCs) are detected by scRNA-seq. Unique indels are shown in unique
colors, uncut target sites are indicated in light-gray, and missing data is indicated in white. The
reconstructed lineage based on the accumulated indels using Cassiopeia is shown on the left.

(F) Comparison of phylogenetic distance (from the reconstructed tree) and allele edit distance
(from target sites) for the example tumor in (E). Pearson’s 𝝆 = 0.72.

See also Figure S1 and Table S1
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Figure 2. Rare subclones expand during tumor progression, marked by increased DNA
copy number variation, cell cycle score, and fitness score

(A) Example tumor phylogenies, where expanding subclones are highlighted with red or purple
branches. Some tumors exhibit no expansions (left), while some tumors exhibit one (middle) or
two (right) subclonal expansions.

(B) The number and relative size of subclonal expansions. Independent expansions within
individual tumors are colored with red or purple. The relative size of each expansion is indicated
by the percentage of cells in the expanding subclone. Tumors are ranked by the total percentage
of cells in expanding subclones.

(C-D) Cancer cells from the expanding subclones have more CNVs than the cells in
non-expanding subclones. (C) An example tumor phylogeny is shown in which the expanding
subclone is highlighted in red and the number of CNVs per cell is annotated. The color bar
indicates the number of CNVs. (D) Comparison of the number of CNVs per cell in cancer cells
from non-expansions and expansions. CNVs are significantly more enriched in the expanding
subclones (Permutation test, p<0.0001).

(E) Cancer cells from expansions have higher cell cycle transcriptional scores than those from
non-expansions. Significance of difference is indicated above each violin plot (two-sided
Mann-Whitney U test, * p<0.05, ** p<0.01). Tumors with no expanding subclones are labeled
with N/A.

(F-H) Tumor expansions are characterized by increased phylogenetic single-cell fitness scores.
(F) A representative tumor phylogeny is shown with single-cell fitness scores overlaid. (G)
Violin plots of six representative tumors showing the distribution of single cell fitness scores in
individual tumors. (H) Cancer cells from expansions have significantly higher single-cell fitness
scores than those from the non-expansions. (two-sided Mann-Whitney U test, p < 0.0001)

See also Figure S2.
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Figure 3. Integration of phylodynamics and transcriptome uncovers fitness-associated gene
programs for KP tumors

(A) Gene expression UMAP and Leiden clustering of cancer cells from all KP-Tracer tumors.
The 15 Leiden clusters identified are indicated with unique colors and labeled in the legend.

(B-C) Identification of a transcriptional FitnessSignature. (B) A volcano plot illustrating results
from a regression analysis of a single tumor identifying genes significantly associated with the
single-cell fitness score. Highlighted genes pass a log2-fold-change cutoff of log2(1.5) and an
FDR-cutoff of 0.05. Genes positively associated with fitness are colored in red and genes
negatively associated with fitness are colored in blue. (C) Meta-analysis of genes that were
consistently associated with single-cell fitness scores across all 21 KP tumors analyzed.
Consistency was evaluated via sign consistency (i.e., the net direction of a gene’s effect across
tumors) and frequency at which a gene was identified to be significantly associated with fitness.

(D) Gene expression UMAP is colored by individual cells’ single cell FitnessSignature scores.
Values are normalized to a 0-1 interval.

(E) Comparison of average FitnessSignature scores of individual transcriptional states (scores
were scaled to a 0-1 interval). Leiden clusters are ranked by average FitnessSignature scores.
Colors reflect the colors of the Leiden clusters in (A).

(F) Kaplan-Meier plots of TCGA lung adenocarcinoma patients with respect to genes in the
derived transcriptional FitnessSignature. Patients (n=495) are stratified based on their tumors’
median expression of the sum of FitnessSignature genes into high (red) versus low (blue) groups.
Comparison of overall survival of the two groups is shown. (Log-rank test, p=5e-4).

(G) Transcriptional scores for each of the three non-overlapping gene modules identified from
the FitnessSignature using Hotspot are displayed on the gene expression UMAP. The three high
fitness-associated gene modules are enriched in different transcriptional states.

(H) Heatmap of Z-normalized Pearson’s correlations between marker gene expression and fitness
module scores. Selected differential genes with manual annotations are shown. Individual genes
are colored by which module they belong to. Genes in black indicate helpful markers but did
appear in any fitness module.

(I) Subclonal expansions are characterized by specific fitness modules. Personality plots
displaying the fold change in fitness module scores of individual expansions compared to the
non-expanding regions, where a value of 1 (the circle) indicates no fold change. Values greater
than 1 indicate the cells in expansions exhibiting enriched usage of the particular fitness gene
module. The axes are normalized from 0.4 to 2.2, the minimum and maximum fold change
observed across tumors respectively. Three representative tumors with expansions enriched for
expression of different fitness gene modules are shown. Colors reflect the colors in (H),
indicating which module a tumor expansion is best characterized by.

See also Figure S3 and Table S2 and S3.
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Figure 4. Intratumoral transcriptional heterogeneity is driven by transient increases in
plasticity of cell states

(A-B) Representative tumors with (A) low EffectivePlasticity and (B) high EffectivePlasticity.
Individual cells in each phylogeny are annotated with unique colors corresponding to their
transcriptional identity (Leiden clusters). Transcriptional states that appear in at least 2.5% of
cells in a tumor are listed below. On the right of (A) and (B), EffectivePlasticity is visualized by
highlighting cells under each color-labeled subclone on the gene expression UMAP. Cells from
both blue and red labeled subclones in (A) are more localized in gene expression space, while
cells from the red subclone in (B) are more distributed throughout gene expression space,
suggesting higher levels of transcriptional heterogeneity and EffectivePlasticity.

(C-D) Quantification of scEffectivePlasticity for each transcriptional state (Leiden clusters) for
tumors in (A) and (B), where each dot represents the value of EffectivePlasticity of a single cell.

(E) Distribution of mean EffectivePlasticity scores within individual gene expression Leiden
clusters across KP tumors. Each dot represents the mean EffectivePlasticity of a transcriptional
state within a tumor. Transcriptional states (Leiden clusters) are ordered by the mean of this
distribution across all tumors.

(F) scEffectivePlasticity score overlaid onto the gene expression UMAP. Light yellow marks
cells with high EffectivePlasticity, while dark red marks cells with low EffectivePlasticity. Cells
marked in grey are from metastases and are not included in this analysis.

(G) Relationship between average FitnessSignature and EffectivePlasticity per tumor reveals a
transient increase of EffectivePlasticity during tumor progression and a final stabilization at
high-fitness cell states. Three examples of tumor phylogenies with Leiden cluster annotations
(outer color circle) represent tumors with different levels of EffectivePlasticity following tumor
progression.

(H) A model describing changes of transcriptome heterogeneity and EffectivePlasticity following
tumor progression. KP tumor progresses by losing AT2-like identity and undergoing frequent
and rapid transitions to various transcriptional states. This diversity allows selection of cell states
associated with high fitness, eventually leading to clonal sweeps by more aggressive cancer cell
states.

See also Figure S4.
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Figure 5. Mapping the phylogenetic relationships between cell states reveals common paths
of tumor evolution

(A-D) Transcriptional state relationships of representative tumors are quantified with
Evolutionary Couplings. (A, C) Phylogenies of tumors 3435_NT_T1 and 3513_NT_T3 with
overlaid Leiden cluster annotations are shown for representative tumors. Transcriptional states
are represented with the same color scheme as presented in Fig 3A. Names and colors of major
transcriptional states of each tumor are labeled below each phylogeny. (B, D) Corresponding
Evolutionary Couplings between observed transcriptional states in each tumor are displayed in
adjacent heatmaps. Evolutionary Couplings are only computed between transcriptional states that
are represented by at least 2.5% of cells in a tumor. Values in the heatmaps are normalized
evolutionary couplings. (STAR Methods).

(E) UMAP projection and clustering of KP tumor Evolutionary Couplings. Each dot corresponds
to a tumor. Coordinates are determined by a UMAP projection of normalized Evolutionary
Couplings. Colors indicate unique “Fate Clusters” identified from a separate hierarchical
clustering of normalized Evolutionary Couplings (shown in Fig S5F).

(F) Aggregated Evolutionary Couplings between transcriptional states of tumors from each Fate
Cluster are visualized on the gene expression UMAP. The circled number represents the Leiden
cluster identity. The average magnitude of Evolutionary Couplings across tumors in a Fate
Cluster is represented by the thickness of bars connecting gene expression states (STAR
Methods).

(G) Phylotime of single cells from tumors in Fate Cluster 1 (top) and 2 (bottom) overlaid onto
the gene expression UMAP (STAR Methods). Phylotime is normalized to a 0-1 interval. Cells
from tumors that do not appear in the Fate Cluster of interest are shown in gray.

(H) Significant gene expression changes along Phylotime for Fate Cluster 1 and 2.
Representative gene markers, identified with Tradeseq, characterize each Fate Cluster. Columns
represent Phylotime quantiles and each row represents a unique gene. Genes are annotated by
which Fate Cluster they appear in. Colors in heatmap are library-normalized gene expression,
Z-normalized across quantiles of both Fate Clusters.

(I) Summary of major evolutionary paths of tumor progression in the KP model. KP tumors
progress through two major paths: Fate Cluster 1 goes through gastric and endoderm-like states,
while Fate Cluster 2 goes through a lung progenitor-like state. Both could potentially transition
to Fate Cluster 3 which mainly consists of EMT related transcriptional states. Solid lines indicate
direct evidence of Evolution Couplings between transcriptome states. Dotted lines indicate
couplings that likely involve unobserved intermediate states and gray lines indicate couplings
that are supported by rare examples.

See also Figure S5 and Table S4 and S5.
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Figure 6. Loss of tumor suppressors alters tumor transcriptome, plasticity and
evolutionary trajectory

(A) Combined gene expression UMAP of all cancer cells from KP, KPL and KPA tumors. The
19 Leiden clusters identified correspond to transferred labels from the KP tumor analysis
(Clusters 0-14) or newly identified clusters (Clusters 15-18) in KPL and KPA tumors (STAR
Methods). Each Leiden cluster is indicated with a unique color and annotated with its number on
the gene expression UMAP. New Leiden clusters are indicated on the legend.

(B) Density plots indicating the distribution of cancer cells from KP, KPL and KPA tumors on
the combined gene expression UMAP.

(C) Enrichment analysis of cancer cells from all genotypes for individual transcriptional states.
Values in the heatmap are enrichment factors where blue indicates values below 1 and red
indicates values above 1 and high enrichment. Cancer cells from KPL and KPA tumors are
enriched for different gene expression clusters compared to those from KP tumors.

(D) Comparison of the median EffectivePlasticity score of selected gene expression clusters in
KP, KPL and KPA tumors. AT2-like cancer cells from these three tumor genotypes had similar
EffectivePlasticity scores (all comparisons non-significant), while cancer cells in the Pre-EMT
state from KPL tumors had significantly lower EffectivePlasticity compared to those from KP
and KPA tumors (one-sided Mann-Whitney U Test, *p≤0.05, n.s. = not significant).

(E) Differential expression test comparing cancer cells of the Pre-EMT state from KPL tumors to
all other tumors (KP and KPA tumors combined). The Pre-EMT state is circled with a dotted
line. The results from the differential expression test are illustrated with a volcano plot where
each dot is a gene. Selected genes up-regulated in KPL tumors are labeled in red and selected
genes down-regulated in KPL tumors are labeled in blue.

(F) PCA plot of Evolutionary Coupling and transcriptional state proportion vectors for all tumors
analyzed across genotypes. Features of the form (x, y) represent Evolutionary Couplings between
state x and state y; features of the form x represent the proportion of cells found in transcriptional
state x (Leiden cluster ID). Each dot is a tumor, colored by the genotype. The percentage of
variance explained by each principal component is indicated on each axis.

(G) Biplot indicating significant features of the PCA analysis shown in (F) reveals specific cell
state couplings that are associated with different tumor genotypes. Top union of the top 10
features per principal component are shown. Evolutionary Couplings are shown as tuples (x, y);
transcriptional state proportions are shown as a single number x indicating Leiden cluster ID.

(H) Summary of major evolutionary paths in KPL and KPA tumors. In comparison to KP tumors,
loss of Lkb1 promoted and stabilized transitions to a Pre-EMT state, while loss of Apc created a
new path of tumor evolution consisting of Axin2+ KPA-specific clusters. Solid lines indicate
direct evidence of Evolution Couplings between transcriptome states and dotted lines indicate
couplings that likely involve unobserved intermediate cell states.
See also Figure S6 and Table S2, S3 and S4.
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Figure 7. Metastases originate from spatially localized, expanding subclones of primary
tumors

(A) Multi-region analysis showing spatial-phylogenetic relationship of a tumor-metastasis family
3724_NT_T1. A schematic indicating the relative spatial location of different tumor pieces is
shown in the top left inset. The phylogeny of this tumor is displayed in the center and cancer
cells from individual microdissected tumor pieces are annotated via radial tracks on the
periphery of the tumor phylogeny. Unique colors of tracks correspond to color coded regions of
the tumor (matching the top left inset). Phylogenetic positions of the four metastases related to
the primary tumor are indicated in the last track shown. The colors of the four metastases related
to the primary tumor are indicated on the bottom left.

(B) Clustered heatmap of the Evolutionary Couplings between the 15 primary tumor pieces (T-1
to T-15) and the 4 related metastases (3 liver and 1 soft tissue) from the 3724_NT_T1
tumor-metastasis family. Primary tumor samples are in black font, and metastases are matching
the color code in (A).

(C) A model summarizing the spatial-phylogenetic relationship of the tumor-metastasis family
3724_NT_T1. Independent subclonal expansions localized to distinct spatial regions of the
primary tumor and each gave rise to independent metastases. Expansion 1 mostly spanned
microdissected pieces 11-15 with partial representation in pieces 8-10; expansion 2 mostly
spanned pieces 1-10. The relatively few cells from non-expansions were distributed mostly
throughout pieces 1-10.

(D) Single-cell phylogenetic distance of individual metastases to non-expanding and expanding
subclones in their related primary tumors to identify the subclonal origin of individual
metastases. Three families of metastatic primary tumors and their related metastases are shown.
Each box represents the distribution of phylogenetic distances from a comparison between a
metastasis and the expanding or non-expanding regions of its related primary tumor. Likely
origins of metastases are indicated by small phylogenetic distances. (significances from a
one-sided Mann-Whitney U test are indicated: ***p<0.0001, n.s. = not significant).

(E-F) Overlay of metastases and their original subclones in 3724_NT_T1 onto the integrated
gene expression UMAP. Some metastases have divergent gene expression profiles from their
original subclones in the primary tumor (E) while some metastases have similar gene expression
profiles (F). Cells that are not relevant to the comparison in each panel are shown in gray.

(G) A quantification of transcriptional distances between expanding regions of 3724_NT_T1 and
its four metastases. Each box represents a distribution of transcriptional distances (significances
from a one-sided Mann-Whitney U test are indicated: **p < 0.001, ***p<0.0001).

See also Figure S7.
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RESOURCE AVAILABILITY

Lead Contact

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact Jonathan Weissman (weissman@wi.mit.edu).

Materials Availability

Plasmids generated in this study are being submitted to Addgene. All unique/stable reagents 

generated in this study are available from the Lead Contact with a completed Materials Transfer 

Agreement.

Data and Code Availability

Code used for the analysis of lineage tracing data in this study is available on Github 

(https://github.com/mattjones315/KPTracer-release). All single-cell datasets will be made 

available on GEO upon publication.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Chimeric Lineage Tracing Mouse Model

All mouse experiments described in this study were approved by the Massachusetts

Institute of Technology Institutional Animal Care and Use Committee (IACUC) (institutional

animal welfare assurance no. A-3125-01). The engineered and selected mESC clones were

injected into blastocysts from albino B6 or CD1 background for chimera making as previously

described (Zhou et al., 2010). We chose to use the chimeric mice strategy because the multiple,

random integration of lineage tracing target sites in the genome makes it challenging for

breeding stable strains. Mice with more than 10% chimerism based on coat color were used in

this study. Tumors were initiated by intratracheal infection of mice with lentiviral vectors

expressing Cre recombinase (DuPage et al., 2009). Five total mESC clones were used in this

study to avoid idiosyncrasy in clonal behavior and analyses were performed on all tumors

combined. Lenti-Cre-BC vector was co-transfected with packaging vectors (delta8.2 and

VSV-G) into HEK-293T cells using polyethylenimine (Polysciences). The supernatant was

collected at 48h post-transfection, ultracentrifuged at 25,000 r.p.m. for 90 min at 4C, and

resuspended in phosphate-buffered saline (PBS). 8-12 week-old chimeras were infected

intratracheally with lentiviral vectors, including lenti-Cre-BC-sgNT (2x107 PFU) or

lenti-Cre-BC-sgLkb1 (4x106 PFU) or lenti-Cre-BC-sgApc (1x107 PFU) to achieve similar aging

time after tumor initiation.

METHOD DETAILS
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Lenti-sgRNA-Cre-Barcode vector

The lenti_sgRNA_Cre_barcode vector was derived from a previously described

Perturb-seq lentiviral vector (Adamson et al., 2016), pBA439, with the following changes: the

two loxP sites were removed by site-directed mutagenesis (SDM) using oDYT001 and oDYT002

followed by oDYT009 and oDYT010; the Puro-BFP was removed using restriction sites NheI

and PacI and was replaced by Cre that was PCR amplified using oDYT003 and oDYT004 via

Gibson assembly; a ubiquitous chromatin opening element (UCOE) that was PCR amplified

using oDYT005 and oDYT006 was introduced using restriction sites NsiI and NotI via Gibson

assembly. oDYT007 and oDYT008 (containing EcoRI and SbfI sites for subsequent barcode

cloning) were then annealed and ligated using restriction sites BclI and PacI. Three different

sgRNAs of interest were then cloned into the resulting vector using pairs of top and bottom

strand sgRNA oligos: sgNT (non-targeting) (oDYT011 and oDYT012), sgLkb1 (oDYT013 and

oDYT014), and sgApc (oDYT015 and oDYT016) were each annealed and ligated using

restriction sites BlpI and BstXI to form pDYT003, pDYT004, and pDYT005 respectively. These

sgRNAs have been used and validated previously (Rogers et al., 2017, 2018). Finally, a whitelist

barcode oligo pool consisting of 249,959 unique 16-nucleotide barcodes where every barcode

has a Levenshtein distance of >3 from every other barcode was designed. The whitelist barcode

library was PCR amplified then introduced at the 3’UTR region of Cre in each of the three

constructs using restriction sites EcoRI and SbfI.

Lineage tracer vector (Target site & triple sgRNAs)

The lineage tracer vectors pDYT001 and pDYT002 were derived from previously

described target site plasmids, PCT 60-62 (Chan et al., 2019; Jones et al., 2020; Quinn et al.,
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2021). A loxP site was first removed from both PCT61 and PCT62 using oDYT017 and

oDYT018 via site-directed mutagenesis. The triple sgRNA cassettes driven by distinct U6

promoters in PCT61 and PCT62 were then PCR amplified using oDYT019 and oDYT020 and

introduced into the PCT60 backbone using restriction sites XbaI and NotI via Gibson assembly.

Finally, the target site barcode library was PCR amplified from a previously described gene

fragment from PCT48 (Jones et al., 2020), using oDYT021 and oDYT022 and introduced into

the two resulting vectors above using restriction sites PacI and HpaI to form pDYT001 and

pDYT002, which contain the triple guide cassette from PCT61 and PCT62 respectively. The

target site library consists of a 14-bp random integration barcode and three target sites (ade2,

bri1, whtB), which are complementary to the three sgRNAs.

Lineage tracing embryonic stem cell engineering

KP*17 is an embryonic stem (ES) cell line derived from C57BL/6-129/Sv F1 background

engineered with conditional alleles KrasLSL_G12D/+; p53fl/fl. ES cells were maintained with JM8

media (500mL: 82.9% Knockout DMEM (Gibco Cat#10829-018), 15% FBS (Hyclone

Cat#SV30014), 1% GlutaMax (Gibco Cat#35050-061), 1% Non-essential amino acids (), 0.1%

2-mercaptoethanol (Sigma Cat#M-7522), 500,000U Recombinant Mouse LIF Protein (Millipore

Cat#ESG1107)) with feeders. KP*17 was first targeted using CRISPR-assisted HDR to generate

Rosa26LSL-Cas9-P2A-mNeonGreen which was validated for correct targeting by PCR and southern blot

and validated for Cas9 activity. The lineage tracing transposon vectors were then introduced

together with transposase vector (SBI) by transfection. Three passages after transfection, mESCs

were purified by FACS based on mCherry expression and expanded as individual clones.
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Target site integration number was quantified as the following: We first used fluorescence

based readout to examine mCherry expression of each ES cell clone in 96 well format, which

allowed us to narrow down the ES clone candidates with relatively high expression of mCherry

(the reporter of lineage tracer library). Then we used quantitative genomic PCR to count the

number of lineage tracer genome integration in each ES cell clone by amplifying the target site

regions (oDYT062 and oDYT063) and normalized to a 2N locus, β-actin, in the genome

(oDYT060 and oDYT061). Samples were run in triplicates and the reactions were performed on

a QuantStudio 6 Flex Real-Time PCR System. In this study, we used the following ES clones in

the tumor analysis due to a combination of high chimeric rate and good target site capture: 1D5,

2E1, 1C4, 2F4 and 2H9. Clones 1D5, 1C4 were engineered with pDYY001 and clones 2E1, 2F4

and 2H9 were engineered with pDYT002. All five clones were used independently for

generating chimeric mice in this study and no difference in their lineage tracing performance was

observed.

Sample preparation and purification of cancer cells

Tumors were harvested and single cell suspension was prepared as described in (Chuang

et al., 2017) and (Denny et al., 2016). Primary tumors and metastases were dissociated using a

digestion buffer (DMEM/F12, 5mM HEPES, DNase, Collagenase IV, Dispase, Trypsin-EDTA)

and incubated at 37 °C for 30 min. After dissociation, the samples were quenched with twice the

volume of cold quench solution (L-15 medium, FBS, DNase). The cells were then filtered

through a 40um cell strainer, spun down at 1000rpm for 5 min, resuspended in 2mL ACK Lysing

Buffer, and incubated at room temperature for 1-2 min. Lysis was then stopped with the addition

of 10mL DMEM/F12 followed by the spinning down and resuspending of the samples in 1mL
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FACS buffer (PBS, FBS, EDTA). Cells within the pleural fluid were collected immediately after

euthanasia by making a small incision in the ventral aspect of the diaphragm followed by

introduction of 1 ml of PBS. Cells were stained with antibodies to CD45 (30-F11, Biolegend

Cat#103112), CD31 (390, Biolegend Cat#102410), F4/80 (BM8, Biolegend Cat#123116),

CD11b (Biolegend Cat#101212) and Ter119 (Biolegend Cat#116212) to exclude hematopoietic

and endothelial cells. DAPI was used to stain dead cells.

Cells were then labeled by MULTI-seq in 100ul FACS buffer containing 5ul lipid anchor

(50uM) and 2.5ul of barcode oligos (100uM) for 10 min on ice and then 6ul co-anchor (50uM)

10 min on ice. Cells were washed and resuspended with ice-cold FACS buffer to prevent

aggregation. DAPI was used to exclude dead cells. FACS Aria sorters (BD Biosciences) were

used for cell sorting. Live cancer cells were sorted based on positive expression of mCherry and

mNeonGreen as well as negative expression of hematopoietic and endothelial lineage markers.

Live normal lung cells were sorted based on negative expression of mNeonGreen, and

hematopoietic and endothelial lineage markers.

Single-cell RNAseq and library preparation

Single-cell RNA-seq libraries were prepared using 10x_3’_V2 according to the 10x user

guide, except for the following modification. After cDNA amplification, the cDNA pool is split

into two fractions. Half of the cDNA pool scRNA-seq library construction proceeds as directed

in the 10x user guide. RNA-seq libraries were sequenced on the Illumina Novaseq system.

Target site library preparation
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To prepare the Target Site libraries, the amplified cDNA libraries were further amplified

with Target Site-specific primers containing Illumina-compatible adapters and sample indices

(oDYT023-oDYT038,

forward:5′CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTCTCGTGGGCTCGGAGA

TGTGTATAAGAGACAGAATCCAGCTAGCTGTGCAGC;

reverse:5′-AATGATACGGCGACCACCGAGATCTACACNNNNNNNNTCTTTCCCTACACG

ACGCTCTTCCGATCT; “N” denotes sample indices) using Kapa HiFi ReadyMix (Roche), as

described in (Jones et al.). Approximately 30 fmol of template cDNA was used per sample,

divided between four identical reactions to avoid possible PCR induced library biases. PCR

products were purified and size-selected using SPRI magnetic beads (Beckman) and quantified

by BioAnalyzer (Agilent).

MULTI-seq library preparation

The MULTI-seq libraries were prepared as described in (McGinnis et al.), using a custom

protocol based on the 10x Genomics Single Cell V2 and CITE-seq workflows. Briefly, the 10x

workflow was followed up until complementary DNA amplification, where 1μl of 2.5μM

MULTI-seq additive primer (oDYT039) was added to the cDNA amplification master mix. After

amplification, MULTIseq barcode and endogenous cDNA fractions were separated using a 0.6X

solid phase reversible immobilization (SPRI) size selection. To further purify the MULTI-seq

barcode, we increased the final SPRI ratio in the barcode fraction to 3.2X reaction volumes and

added 1.8X reaction volumes of 100% isopropanol (Sigma-Aldrich). Eluted barcode cDNA was

then quantified using QuBit before library preparation PCR using primers oDYT040 and
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oDYT041-oDYT048 (95 °C, 5′; 98 °C, 15′; 60 °C, 30′; 72 °C, 30′; eight cycles; 72 °C, 1′; 4 °C

hold). TruSeq RPIX:

5′-CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCCTTGGCACCCGA

GAATTCCA-3′

TruSeq P5 adaptor:

5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC

T-3′

Following library preparation PCR, the library was size-selected by a 1.6X SPRI clean-up prior

to sequencing.

Lenti_Cre_BC library preparation

The Lenti_Cre_BC library amplification protocol was adapted from the Perturb-seq

protocol (Adamson et al., 2016). 4 parallel PCR reactions were constructed containing 30ng of

final scRNA-seq library as template, oDYT049, and indexed oDYT050-oDYT059, and

amplified using KapaHiFi ReadyMix according to the following PCR protocol: (1) 95C for 3

min, (2) 98C for 15 s, then 70C for 10 s (16-24 cycles, depending on final product amount).

Reactions were re-pooled during 0.8X SPRI selection, and then fragments of length ~390bp were

quantified by bioanalyzer. Lenti_Cre_BC libraries were sequenced as spike-ins alongside the

parent RNA-seq libraries.

Sequencing

Sequencing libraries from each sample were pooled to yield approximately equal

coverage per cell per sample; scRNA gene expression libraries, Target Site amplicon libraries,
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MULTI-seq amplicon libraries and Lenti-Cre-BC amplicon libraries were pooled in an

approximately 10:2:1:1 molar ratio for sequencing. Libraries were further pooled with

approximately 0.5-1% PhiX genomic DNA library added for quality-control. The libraries were

sequenced using a custom sequencing strategy on the NovaSeq platform (Illumina) in order to

read the full-length Target Site amplicons. Sample identities were read as indices (I1: 8 cycles,

R1: 26 cycles, R2: 290 cycles). All raw and processed data will be made available on GEO

(accession pending). Only the first 98 bases per read were used for analysis in the RNA

expression libraries to mask the longer reads required to sequence the Target Sites.

Single-cell lineage tracing preprocessing pipeline and quality-control filtering

Each cell was sequenced in four sequencing libraries: a MULTI-seq library (for

identifying sample identity), a target site library (for reconstructing phylogenies), an RNA-seq

library (for measuring transcriptional states), and a Lenti-Cre-BC library (for verifying clonal

identity). First, the scRNA-seq was processed using the 10X CellRanger pipeline (version 2.1.1)

with the mm10 genome build. Then, each cell barcode identified from the 10X pipeline was

assigned to a sample using the MULTI-seq library, which was processed with the deMULTIplex

R package (version 1.0.2; McGinnis et al., 2019). Cells identified as doublets or without a

discernible MULTI-seq label were filtered out from downstream analysis.

Next, we processed the Target Site library using the previously described Cassiopeia

preprocessing pipeline (Jones et al., 2020; Quinn et al., 2021). Briefly, reads with identical

cellBC and UMI were collapsed into a single, error-corrected consensus sequence representing a

single expressed transcript. Consensus sequences were identified within a cell based on a

maximum of 10 high-quality mismatches (PHRED score greater than 30) and an edit distance
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less than 2 (default pipeline parameters). UMIs within a cell reporting more than one consensus

sequence were resolved by selecting the consensus sequence with more reads. Each consensus

sequence was aligned to the wild-type reference Target Site sequence using a local alignment

strategy, and the intBC and indel alleles were called from the alignment. Cells with fewer than 2

reads per UMI on average or fewer than 10 UMIs overall were filtered out. These data are

summarized in a molecule table which records the cellBC, UMI, intBC, indel allele, read depth,

and other relevant information. Cells that were assigned to Normal lung tissue via a MULTI-seq

barcode or had more than 80% of their TargetSites uncut were assigned as “Normal” and not

used for downstream lineage reconstruction tasks.

Lenti-Cre-BC libraries were processed using a custom pipeline combining Cassiopeia

transcript collapsing, filtering, and quantification and a probabilistic assignment strategy based

on the Perturb-seq gRNA calling pipeline (Adamson et al., 2016). First, sequencing reads were

collapsed based off of a maximum sequence edit distance of 2 and 3 high-quality sequences

mismatches and then cells with fewer than 2 average reads per UMI or 2 UMIs overall were

filtered out. Then, Lenti-Cre-BC sequencing reads were compared to the reference sequence and

barcode identities were extracted and error-corrected by comparing each extracted barcode to a

whitelist of Lenti-Cre-BC sequences, allowing for an edit distance of 3. Then, the count

distributions for each unique Lenti-Cre-BC were studied to remove barcodes that represented

background noise. Next, a Lenti-Cre-BC coverage matrix was formed, summarizing the ratio

between reads and number of UMIs for each barcode in each cell. Cell coverages were

normalized to sum to the median number of coverage across the matrix and log2-normalized.

Finally, with this matrix we adapted the Perturb-seq gRNA calling pipeline to assign barcode

identity to cells. To do so, we fit a Guassian kernel density function to the coverage distribution
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for each barcode and then determined a threshold separating “foreground” from “background”

based on the relative extrema of the distribution (after removing the 99th percentile of the

coverage distribution). Cells whose coverage values fell above the threshold were assigned that

particular Lenti-Cre-BC. Cells that received more than one assignment or no assignment at all

were marked as ambiguous.

Across all three perturbation datasets (KP, KPL and KPA), this pipeline left us with

72,326 cells with high-quality Target Site information.

Calling clonal populations and creating character matrices

In this study, each clonal population corresponded to a primary tumor or metastatic

family. Tumors were identified with two approaches: first, by deconvolution with MULTI-seq

(and filtering with Lenti-Cre-BC information; see below in section “Cell Filtering with

Lenti-Cre-BC”); and second, by separating cells based on differing intBC sets. In the second

approach, we used Cassiopeia to identify non-overlapping intBC sets and classify cells using the

“call-lineages” command-line tool. Once clonal populations were identified, consensus intBC

sets were identified (see “Creating a consensus intBC set for mESC clones” below). All

summarized molecular information for a given cell (cellBC, number of UMI, intBC, indel allele,

read depth, etc) along with the assigned clonal identity were summarized in an allele table. Then,

character matrices were formed for each clonal population, summarizing mutation information

across the N cells in a population and their M cut-sites. Characters (i.e., cut-sites) with more than

90% missing information or containing a mutation that was reported in greater than 99% of cells

were filtered out for downstream tree reconstruction.
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Creating a consensus intBC set for mESC clones

Given that each mouse is generated from a specific mESC clone, we expected tumors

from each mouse would maintain the same set of intBCs as the parental mESC clone. To identify

this consensus set of intBCs, we stratified tumors based on which mESC clone they originated

from, and within these groups computed the proportion of tumors that reported a given intBC in

at least 50% of cells. We determined cutoffs separating reproducible intBCs from irreproducible

intBCs for each mES clone separately. These consensus intBC sets were used for downstream

reconstruction of phylogenies.

Tree Reconstruction with Cassiopeia

Trees for each clonal population (see “Calling clonal populations and creating character

matrices” above) were reconstructed with Cassiopeia-Hybrid (Jones et al., 2020). Briefly,

Cassiopeia-Hybrid infers phylogenies by first splitting cells into clusters using a “greedy”

criterion (Cassiopeia-Greedy) until a user-defined criteria is met at which point each cluster of

cells is reconstructed using a near-optimal Steiner-Tree maximum-parsimony algorithm

(Cassiopeia-ILP). We compared the parsimony of trees generated using two different greedy

criterions - both criterions employed work by first identifying a mutation and subsequently

splitting cells based on whether or not this mutation was observed in a cell. First, we used the

original Cassiopeia-Greedy criterion, which identifies mutations to split cells on by using the

frequency and probability of mutations. Second we applied a compatibility-based criterion which

prioritizes mutations based on character-compatibility (see section “Compatibility-based greedy

heuristic for tree reconstruction” below). We proceeded with the more parsimonious tree. In one

specific case, (3515_Lkb1_T1), we observed that the lineage tracing alleles were not adequately
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captured with phylogenetic inference of the primary tumor alone. To handle this, we rebuilt the

tree of the tumor-metastasis family and then subset the phylogeny to consist of only the cells

from the primary tumor - resulting in a clonal phylogeny that appeared to be better supported by

allelic information.

In most inferences, we used indel priors computed with Cassiopeia to select mutations

with a Cassiopeia-Greedy algorithm as well as weight edges during the Steiner-Tree search with

Cassiopeia-ILP. Generally, we used an LCA-based cutoff to transition between

Cassiopeia-Greedy and Cassiopeia-ILP as previously described (Quinn et al., 2021).

Clone-specific parameters are reported in Table S1.

Compatibility-based greedy heuristic for tree reconstruction

A rare, but simple case for phylogenetic inference is that of perfect phylogeny in which

every character (or cut-site) is binary (that is, can be cut or uncut) and mutates at most one time.

In this regime, every pair of characters is “compatible” -- that is, given two binary characters i

and j, the sets of cells that report a character i as mutated are non-overlapping with the set of

cells that report character j as mutated, or one set of cells is completely contained within the

other.

In this approach, we used a heuristic, called the compatibility index, to measure how far a

pair of characters is from compatibility. To do so, we first “binarized” our character matrices by

treating each unique (cut-site, mutation) pair as a binary character. (To note this binarization

procedure is possible because of the irreversibility of Cas9 mutations and discussed in our

previous work (Jones et al., 2020).) Then, we found the character that had deviated the least from

perfect phylogeny, that is violated compatibility the least. To find this character, we first built a
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directed “compatibility-graph”, where individual nodes represented characters and edges

between nodes represented deviations from compatibility. Each edge from character i to j was

weighted as follows:

𝑤𝑖𝑗 =  − 𝑛𝑗𝑙𝑜𝑔(𝑝𝑗)
where i and j are two incompatible characters, nj is the number of cells reporting character j, and

pj is the prior probability of character j mutating. For the purposes of building this compatibility

matrix, missing data was ignored (this is, no node in the graph corresponded to a missing state).

A character c’ to split cells with was identified by minimizing the sum of weights emitted from

the node:

𝑐' =  𝑎𝑟𝑔𝑚𝑖𝑛𝑐 ∈𝑋 𝑗 ∈𝑂𝑢𝑡(𝑐)∑ 𝑤𝑐𝑗

where Out(c) denotes the set of edges with c as a source. This process was repeated until the tree

was resolved completely, or a criteria was reached as in Cassiopeia-Hybrid.

Cell Filtering with Lenti-Cre-BC

After performing tree reconstruction for each clonal population, leaves were annotated

with Lenti-Cre-BC information and evaluated manually for filtering. Specifically, in tumors with

adequate Lenti-Cre-BC information, we identified subclades (defined here as clades that joined

directly to the root) that clearly had divergent Lenti-Cre-BC information. This combined
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Lenti-Cre-BC and lineage analysis helped minimize the influence of lenti-Cre-BC dropout in

single-cell experiments. These subclades were subsequently removed and cells were filtered out

from the phylogenetic analysis. In one case (3513_NT_T4 and 3513_NT_T5), two tumor

populations were split from a parental tumor (3513_NT_N2), reconstructed, and used in

downstream analyses.

CNV analysis

Chromosomal copy number variations (CNV) were inferred with the InferCNV R

package (version 1.2.1), which predicts CNVs based on single-cell gene expression data.

InferCNV was run in ‘subclusters’ analysis mode using ‘random_trees’ as the subclustering

method. Genes with less than one cell were filtered with the ‘min_cells_per_gene’ option, and no

clipping was performed on centered values (‘max_centered_threshold’ set to ‘NA’). The cutoff

for the minimum average read count per gene among reference cells was set to 0.1, per software

recommendation for 10x data. CNV prediction was performed with the ‘i6’ Hidden Markov

Model, whose output CNV states were filtered with the included Bayesian mixture model with a

threshold of 0.2 to find the most confident CNVs. All other options were set to their default

values.

Each tumor sample was processed independently with normal lung cells (identified solely

from the MULTI-seq deconvolution pipeline) as the reference cells. The number of CNVs for

each cell was computed by counting the number of CNV regions predicted. We filtered cells with

CNV counts greater than three standard deviations away from the mean of each tumor, in

addition to cells with greater than or equal to 20 predicted CNVs. When comparing CNV counts

of cells in expansions against those of cells in non-expansions, statistical significance was
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computed with a one-sided permutation test and the Mann-Whitney U-test, both of which yielded

the same results.

Tree Quality Control for Fitness Inference

Trees were subjected to quality control before identifying subclones under positive

selection and single-cell fitness inference. We employed two quality control metrics: first, a

measure of subclonal diversity known as “percent unique indel states”, defined as the proportion

of cells that reported a unique set of character states (i.e., mutations). Second, we also filter

lineage trees based on the level of “unexhausted target sites” defined as the proportion of

characters (i.e., specific cut sites) that were not dominated by a single mutation (i.e, more than

99% of cells contained the same mutation). These metrics describe the diversity and depth of the

lineage trees, and enable filtering out tumors with poor lineage tracing quality (i.e., lineage

tracing capacity became saturated too early during tumor development). Using these two metrics,

we filtered out tumors that had less than 10% unique indel states or less than 20% unexhausted

target sites. Additionally, tumors with too few cells recovered (fewer than 100 cells) were

ignored for this analysis because of a lack of power to accurately quantify subclonal behavior.

Identifying subclonal selection (i.e., expansions)

Subclones undergoing positive selection were identified by comparing the number of

cells contained in the subclone to its direct “sisters” (i.e. branches emanating directly from the

parent of a subclone of interest) and computing a probability of this observation with a

coalescent model. Specifically, consider a node v in a particular tree with k children stored in the

set C. Let nc denote the number of leaves below a particular node c (and observe that
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). Under the coalescent model, we can compute a probability indicating how𝑁 =  𝑛𝑣 = 𝑐 ∈𝐶∑ 𝑛𝑐
likely a subclone c under v would have exactly nc leaves given v had N total leaves as follows:

𝑝𝑁, 𝑘(𝑛𝑐) = 𝑁 − 𝑛𝑐 −1𝑘−2𝑁−1𝑘−1

Finally, we computed the probability that a subclone c under v would have at least nc leaves

given v had N total leaves is:

𝑝𝑁, 𝑘(𝑛𝑐) = 𝑛 = 𝑛𝑐
𝑁−𝑘+1∑ 𝑝𝑁, 𝑘(𝑛)

Nodes with probabilities at least a depth of 1 from the root, and containing𝑝𝑁, 𝑘(𝑛𝑐) <  0. 01,
subclades with at least 15% of the total tree population were annotated as undergoing an

“expansion”. In the analysis presented in this study, we additionally filtered out nodes annotated

as “expanding” if they contained another node in their subtree that was also expanding.

Expansion proportions were calculated as the fraction of the tree consisting of cells residing in

any subclade called as “expanding”.

Inferring single-cell fitness

To compute single-cell fitness, we used the “infer_fitness” function from the jungle

package (publicly available at https://github.com/felixhorns/jungle) which implements a

previously described probabilistic method for inferring relative fitness coefficients between

samples in a clonal population (Neher et al., 2014). Because some trees contained exhausted

lineages (i.e., those in which all target sites were saturated with edits), after filtering out trees that
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did not pass quality control (see section “Tree quality control for fitness inference” above), we

pre-processed branch lengths on each phylogeny such that branches had a length of 0 if no

mutations separated nodes and 1 if not. In essence, this collapses uninformative edges in the

fitness inference and helps control for lineage exhaustion. After this procedure, we were left with

fitness estimates for each leaf in a phylogeny, normalized to other cells within the phylogeny.

Tumor fitness differential expression

Genes differentially expressed along the fitness continuum within each tumor were

identified with a linear regression approach. Specifically, given a cell i, we can model the

expression of some gene j according to the cell’s fitness score fi as follows:

𝑙𝑜𝑔(1 + 𝑒𝑖𝑗) ∼ 𝑓𝑖
Where eij is the count-normalized expression of gene j in cell i (we used the median number of

UMI counts across the dataset to normalize expression level). Cells with greater than 20%

mitochondrial reads were filtered out, and only genes appearing in more than 10 cells were

retained for differential expression analysis. Linear models were fit using scipy’s linregress

function (scipy version 1.5.4), and p-values were FDR corrected using the Benjamini-Hochberg

procedure (Benjamini and Hochberg, 1995). Log2fold-changes were computed by comparing the

average expression of a gene in the top vs bottom 10th percentile of fitness scores.

Meta-analysis and derivation of the FitnessSignature
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The transcriptional FitnessSignature was derived from the results of individual tumor

fitness differential expressions with a majority-vote meta-analysis. This approach ranks genes

based on the number of times that a gene is differentially expressed (FDR < 0.05 and log2FC >

log2(1.5)) and the consistency of its direction. We used the MetaVolanoR R package (version

1.0.1) to perform this majority-vote analysis, which computed both of these values. We identified

consistently differentially expressed genes for our transcriptional FitnessSignature if a gene

appeared to show up at least 2 times in the same direction, and if the ratio between frequency and

consistency was greater than 0.5.

Fitness module identification

We determined transcriptional fitness gene modules using the Hotspot package (version

0.9.0; DeTomaso and Yosef, 2021). To do so, we first subset our processed single-cell expression

matrix (see section below “Single-cell transcriptome analysis for KP-Tracer data”) to contain

only the 1,183 genes in the FitnessSignature that were positively associated with fitness. Then,

using Hotspot we identified fitness-related genes that were significantly autocorrelated with the

scVI latent space using the “danb” observation model and 211 neighbors (the square-root of the

number of cells in the expression matrix). After this procedure, genes with an FDR of less than

0.05 were retained for downstream clustering. We then computed pairwise local autocorrelations

with Hotspot and clustered genes using these pairwise statistics with the “create_modules”

function in Hotspot (minimum gene threshold of 100, FDR threshold of 0.05, core_only=False).

This procedure identified three modules that were used for downstream analysis.

Single-cell transcriptome processing for KP-Tracer NT data
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The scRNA-seq was processed using the 10X CellRanger pipeline (version 2.1.1) with

the mm10 genome build. Cells were assigned to a sample using the MULTI-seq pipeline

described above (see section “Single-cell preprocessing pipeline”). After quantification,

informative genes were identified using the Fano filtering process implemented in VISION

(DeTomaso et al., 2019), and raw counts were batch-corrected and projected into a shared latent

space of 10 dimensions with scVI (Lopez et al., 2018). Cells were initially clustered with the

Leiden algorithm as implemented in Scanpy (Traag et al., 2019; Wolf et al., 2018), and two

clusters dominated by cells annotated as normal (see section “Single-cell preprocessing

pipeline”) were removed from downstream analysis. Clusters were then manually re-clustered to

obtain segmentations that aligned with gene expression patterns. After this process, we were left

with a total of high-quality 58,526 cells with single-cell transcriptomic profiles. Single-cell

counts were normalized by the median UMI count across cells and logged to obtain

log-normalized data. Gene markers for each Leiden cluster were identified using the Wilcox

rank-sums test on the log-normalized gene counts with the Scanpy package.

Differential expression analysis of Chuang et al

TPM-normalized RNA-seq data were downloaded from GEO accession GSE84447.

Samples were split into early and late-stage tumor groups based on the author annotations:

tumors annotated with “KPT-E” were assigned to the early stage group and tumors with

“TnonMet” or “TMet” annotations were assigned to the late group. Then, we log-normalized the

TPM counts and used the limma R package (version 3.36.3) to infer differentially expressed

genes with the “eBayes” function. Genes passing an FDR threshold of 0.05 and log2-fold-change
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threshold of 1 (in either direction) were called differentially expressed and used for comparison

with the FitnessSignature described in this study.

FitnessSignature analysis of Marjanovic et al

Raw Expression count matrices were downloaded directly from GEO, accession number

GSE152607. Gene counts were normalized to transcript length, to account for read depth

artifacts in the Smart-Seq2 protocol. VISION (DeTomaso et al., 2019) was used to compute

FitnessSignature scores for each cell in the dataset and scores were averaged within time points

of KP mice.

Survival analysis with TCGA lung adenocarcinoma tumors

The fitness signature genes including 1183 up-regulated genes and 1027 down-regulated

genes from mice experiments were converted to corresponding genes from the H. sapiens

genome (build hg19), resulting in 1126 up- and 970 down-regulated human genes, respectively.

FitnessSignature with only up-related genes was denoted as FSU, FitnessSignature with only

down-related genes was denoted as FSD. TCGA Lung adenocarcinoma cohort with RNAseq

data (n=495) were stratified into FSU-High, FSU-Low, FSD-High, and FSD-Low according to

median expression of sum of FitnessSignature genes, then, patients harboring genes with

FSU-High and FSD-Low formed a group, patients containing FSU-Low and FSD-High gene

expression formed another group. Subsequently, these two groups were used for survival analysis

using the survival package in R (version 3.2.11). The survival analysis was invoked with the call

“survfit(Surv(Time, Event) ~ Group)” where “Group” is the FitnessSignature-based

stratification. Kaplan–Meier curve is shown with a log-rank statistical test. For fitness gene
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module 1, 2, and 3 analyses, patients were divided into module gene expression of High and Low

based on the median of the sum of gene expression, followed by survival analysis.

Fitness Module Enrichment

Each of the three fitness gene module scores (computed with VISION) were normalized

to the range [0, 1] across all NT cells. All NT cells in non-expansions were defined as the

background cells, and the background module scores were calculated by averaging the

normalized module scores of these cells. Additionally, the module scores of cells in each

expansion were averaged to obtain the psuedo-bulk module score for each expansion. These

module scores were divided by the background module scores, yielding the module enrichment

score (i.e. fold-change versus background) per fitness module. These scores were plotted on a

personality plot for visualization. Every expansion was assigned (non-exclusively) to the three

fitness modules using a permutation test to test whether the cells in the expansion exhibited a

significant increase in fitness module score compared to non-expanding background cells (p <

0.05).

Calculation of single-cell and Leiden cluster EffectivePlasticity

EffectivePlasticity for each tumor was computed by first calculating a normalized

parsimony score for the tumor tree, with respect to the Leiden cluster identities at the leaves,

using the Fitch-Hartigan algorithm (Fitch, 1971; Hartigan, 1973). Briefly, this procedure begins

by assigning cluster identities to the leaves of the tree, and then calculates the minimum number

of times a transition between cluster identities must have happened ancestrally in order to

account for the pattern observed at the leaves. To compare scores across trees, we normalize

these parsimony scores by the number of edges in the tree, thus giving the EffectivePlasticity
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score. In all analyses, we filtered out cells that were part of Leiden clusters that were represented

in less than 2.5% of the total size of the tree.

In order to generate single-cell EffectivePlasticity (“scEffectivePlasticity”), we computed

the EffectivePlasticity for each subtree rooted at a node on the path from the root to a leaf and

averaged these scores together. This score thus represents the average EffectivePlasticity of every

subtree that contains a single-cell.

To generate average EffectivePlasticity for each Leiden cluster, we first stratified cells in

each tumor according to the Leiden cluster. Then, we averaged together scores within each tumor

for each Leiden cluster, thus providing a distribution of EffectivePlasticity for each Leiden

cluster.

Calculation of the Allelic EffectivePlasticity score

The Allelic EffectivePlasticity score provided a “tree-agnostic” measurement of a cell’s

effective plasticity. Qualitatively, the score measures the proportion of cells that are found in a

different Leiden cluster than their closest relative (as determined by the modified edit distance

between two cells’ character states; see section “Allelic Coupling” for the definition of this

distance metric). Importantly, if a cell has more than one closest relative, each of their votes are

normalized by the number of equally close relatives this cell has. More formally, the single-cell

Allelic EffectivePlasticity was defined as:

𝑎(𝑖) =  1|𝐾| 𝑘∈𝐾∑ 𝐼(𝑙𝑒𝑖𝑑𝑒𝑛(𝑘) ==  𝑙𝑒𝑖𝑑𝑒𝑛(𝑖))
Where K indicates the set of a cell’s closest relatives, as measured by modified edit distance,

leiden(i) indicates the Leiden cluster that cell i resides in, and is an indicator function that is 1𝐼(·)
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if the two Leiden clusters are the same and 0 otherwise. The Allelic EffectivePlasticity of a

tumor is the average of these scores:

𝐴(𝑡𝑢𝑚𝑜𝑟) =  1|𝐿| 𝑙∈𝐿∑ 𝑎(𝑙)
Calculation of the L2 EffectivePlasticity score

The L2 EffectivePlasticity score served as an alternative tree-based score that accounted

for random noise at the boundary between two Leiden clusters, as opposed to treating each

Leiden Cluster as a point. As with the EffectivePlasticity score, we first found nearest-neighbors

of each cell i using the phylogenies and considered neighbors found in a different Leiden cluster

than i. Yet, in contrast to the EffectivePlasticity score, we distinctly used an L2-distance in the 10

dimensional scVI latent space to obtain a measure of how distinct the neighbor was.

Mathematically, the single-cell L2 EffectivePlasticity score was defined as:

𝑙2(𝑖) = 1|𝐾| 𝑘∈𝐾∑ |𝑥𝑖 −  𝑥𝑘|2

Where K indicates the set of a cell’s closest relatives, as found with the phylogeny, and 𝑥𝑖
indicates the 10-dimensional embedding of cell i’s single-cell expression profile in scVI space.

The L2 EffectivePlasticity of a tumor was defined as the average across all leaves in the tumor.

Evolutionary Coupling
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Evolutionary Coupling is the normalized phylogenetic distance between any pair of

variables on a tree. Mathematically, given two states M and K that can be used to label a subset

of the leaves of the tree, we compute the average distance between these states:

𝐷(𝑀,  𝐾) = 1𝑛𝑚𝑛𝑘 𝑚∈{𝑀}, 𝑘∈{𝐾}∑ 𝑑𝑇(𝑚,  𝑘)
where nM is the number of leaves with state M, {M} denotes the set of cells in set M, and dT(i, j)

denotes the phylogenetic distance between leaves. There are multiple ways to score dT(i, j), and

here we used the number of mutated edges for our analysis (i.e., the number of edges separating

two leaves i and j that carried at least one mutation). To normalize these distances, we compare

D(M, K) to a random background generated by shuffling the leaf assignments 2000 times. Then,

to obtain background-normalized scores, we Z-normalize to the random distribution DR:

𝐷'(𝑀,  𝐾) = 𝐷(𝑀,𝐾) − 𝐸[𝐷𝑅(𝑀, 𝐾)]𝑆𝐷[𝐷𝑅(𝑀,𝐾)]
This score is obtained for all pairs of states in a tumor that pass a 2.5% proportion

threshold (i.e., we filter out cells in states that fall below this threshold). Then, from the matrix of

all background-normalized phylogenetic distances, P (such that PM,K is equal to D’(M,K)), we

compute the Evolutionary Couplings between two states M and K by Z-normalizing P:

𝐸(𝑀,  𝐾) = 𝑃𝑀,𝐾 − 𝐸[𝑃]𝑆𝐷(𝑃)
Evolutionary Couplings presented in Fig 5B and 5D are normalized as:𝐸(𝑀, 𝐾) = 𝑒𝑥𝑝(− 𝐸(𝑀, 𝐾) / 𝑚𝑎𝑥(𝑎𝑏𝑠(𝐸)))

69

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.464111doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464111
http://creativecommons.org/licenses/by-nc-nd/4.0/


Where E denotes all the Evolutionary Couplings between states in a given tumor.

Allelic Coupling

We used modified edit distances between cells to compute an Allelic Coupling score that

could be used to assess consistency of the Evolutionary Coupling results. Here, we used a

modified edit distance, h’(ai, bi), that scored the distance between sample a and b at the ith

character:

The allelic distance between two samples a and b is . We used these𝑖∈𝑋∑ ℎ'(𝑎𝑖,  𝑏𝑖)
distances instead of phylogenetic distances to compute the coupling statistic described in the

section above entitled “Evolutionary Coupling” and called this new coupling statistic “Allelic

Coupling”.

K-nearest-neighbor (KNN) Coupling

K-nearest-neighbor (KNN) coupling was computed by using dT as the distance to the kth

neighbor in the Evolutionary Coupling statistic. We used the same phylogenetic distance

described in the section entitled “Evolutionary Coupling” to compute the kth neighbor and used

k=10 for the analysis.

Fate clustering

To identify separate fates in the KP-Tracer dataset, we first computed Evolutionary

Couplings in each tumor for all pairs of states. To remove noise intrinsic to the clustering, we
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filtered out clusters that accounted for less than 2.5% of the tumor. As a phylogenetic distance

metric, we used the number of mutated edges (i.e., any edge that contained at least one mutation

was given a weight of 1 and otherwise the edge was weighted as 0). Before computing

Evolutionary Couplings, we preprocessed the lineages such that each leaves with the same

Leiden cluster were grouped together (see section entitled “Preprocessing lineages with respect

to states”).

After calculating the Evolutionary Coupling for all pairs of states within each tumor, we

concatenated all vectors of Evolutionary Coupling together into a matrix. We additionally

converted Evolutionary Couplings to similarities by exponentiating these values (i.e, E’(M, K) =

exp(-E(M,K))). As additional features for this clustering, we also added Leiden cluster

proportions to each tumor’s vector of couplings. Then we Z-normalized across features to

compare tumors and clustered this transformed matrix using a hierarchical clustering approach in

the python scipy package (version 1.6.1). We used a euclidean metric and the “ward” linkage

method. We identified three clusters from this hierarchical clustering, corresponding to our three

Fate Clusters. These three Fate Clusters were visualized using Uniform Manifold Approximation

and Projection (UMAP) on the Evolutionary Coupling and Leiden cluster proportion

concatenated matrix. Important couplings were identified using Principal Component Analysis

on the same Evolutionary Coupling concatenated matrix.

Preprocessing lineages with respect to states

In some lineages, we observed that polytomies (or non-bifurcating) subclades were

created at the very bottom of the tree due to the saturation of target site edits. Because this could

artificially appear to make cellular states more closely related than they actually were, we took a
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conservative approach to making conclusions about cellular relationships between leaves in such

polytomies. Specifically, we first assigned states from a state space to each leaf in a treeΣ
according to some function for all l leaves in the tree. Then, for all polytomies𝑠(𝑙) → σ ∈ Σ
that contained at least unique states or more, we created extra splits in the tree for each unique

state. More formally:

PREPROCESS-LINEAGE (Tree):
for v in Tree:

states = []
If len(children(v)) < 3:

continue
for c in children(v):

if is_leaf(c):
states.append(s(c))

If len(unique(states)) > 2:
for state in unique(states):

Tree.add_edge(v, ‘new-node-{state}’)
for c in children(v):

If s(c) == state:
Tree.add_edge(‘new-node-{state}’, c)
Tree.remove_edge(v, c)

return Tree

Aggregating Evolutionary Coupling across Fate Cluster

To create a consensus Evolutionary Coupling map across the tumors in a Fate Cluster, we

first computed the average Evolutionary Coupling between all pairs of states in a tumor as

described previously. Then, we computed an average Evolutionary Coupling for each pair of

states, normalizing by the number of tumors that this pair appeared in above the requisite 2.5%

threshold. Critically, we removed patterns that were driven by a small proportion of cells, we

72

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 13, 2021. ; https://doi.org/10.1101/2021.10.12.464111doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.12.464111
http://creativecommons.org/licenses/by-nc-nd/4.0/


only considered states that appeared in at least 2.5% of the total number of cells across all tumors

in a Fate Cluster.

Phylotime

Phylotime was defined as the distance to the first ancestor that could have been a

particular state. To approximate the Phylotime in this study, we defined the initial AT2-like state

(Leiden cluster 4) as the ground state, and inferred the sets of states for each ancestor with the

Fitch-Hartigan bottom-up algorithm (Fitch, 1971; Hartigan, 1973). Then, in each tumor, we

computed the phylogenetic distance separating each cell from its closest ancestor that could have

been an AT2-like cell, as determined with the Fitch-Hartigan bottom-up algorithm. Phylogenetic

distances were defined as the number of non-zero-length branches (though we compare the

consistency of Phylotime to a distance metric that uses the number of mutations along each edge

in Fig S5J,K). Phylotime within each tumor was normalized to a 0-1 scale. Once every tumor

was analyzed this way, Phylotime across tumors was merged by performing an average-based

smoothing across the transcriptional space: specifically, for each cell, we found the 5 closest

neighbors in transcriptional space (in the low-dimensional scVI latent space) and averaged

Phylotimes within this neighborhood. After integrating together Phylotime in this manner, the

final distribution across tumors was normalized once again to a 0-1 scale.

Phylotime differential expression

Genes associated with Phylotime in each Fate Cluster were identified using the Tradeseq

package (Van den Berge et al., 2020). Specifically, for each Fate Cluster, lowly-expressed genes

were filtered if they were detected in fewer than 10% of cells and high-variance genes were
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identified with the Fano filtering procedure implemented in VISION (DeTomaso et al., 2019).

Then, in each cluster, expression models were fitted with the “fitGAM” function and genes

associated with a specific segment of Phylotime were identified with the “associationTest”

function. P-values were FDR corrected using the Benjamini-Hochberg procedure (Benjamini and

Hochberg, 1995), and significant genes were retained if they had an FDR below 0.05 and a mean

log2-fold-change above 0.5. Smoothed expression profiles were predicted with the Tradeseq

package using the models fit from the fitGAM procedure and genes were subsequently clustered

into those expressed early and late. Gene set enrichment analysis was performed using the

enrichR R package (version 3.0) after converting gene names from mm10 to   GRCh38. We used

the Biological Process gene ontology, ChEA, and MsigDB Hallmark gene sets. Informative

genes were manually selected from the set of genes passing the significance and effect-size

thresholds, and manually clustered for display in Figure 5.

Integrating transcriptomes of KP-Lkb1 and KP-Apc data

The scRNA-seq data was processed using the 10X CellRanger pipeline (version 2.1.1)

with the mm10 genome build. Cells were assigned to a sample using the MULTI-seq pipeline as

described above (see section “Single-cell preprocessing pipeline”) to form a raw count matrix

consisting of cells from KP, KPL, or KPA mice. Cells with fewer than 200 genes detected,

greater than 15% of mitochondrial reads, or greater than 7000 genes detected were filtered out.

Cells were projected into 20 latent dimensions using scVI (Lopez et al., 2018) with 2 hidden

layers and the library batch as a batch covariate on the top 4000 most variable genes, as detected

with Scanpy’s “highly_variable_genes” function with the “seruat_v3” flavor (Wolf et al., 2018).

Clusters were identified with the Leiden algorithm (Traag et al., 2019) with manual parameter
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selection to obtain an acceptable resolution. All normal cells and seven additional clusters with

high proportions of normally-annotated cells (as with MULTI-seq or via the lineage-tracing data)

were filtered out for downstream analysis (a total of 2,209 cells in the entire dataset).

To perform label transfer from the KP-Tracer dataset, we first labeled all KP cells in the

integrated dataset with previous annotations and labeled all new cells with “Unknown”. Then,

we used scANVI (Xu et al., 2021) to predict labels of cells from KPL and KPA mice using 40

latent dimensions, 2 hidden layers, and a dropout rate of 0.2. Upon inspecting predictions, we

elected to keep predictions made by scANVI for the majority of cells, with the exception of 5

new Leiden clusters identified by clustering the scVI latent space. Additionally, we elected to

merge one new Leiden cluster with the Pre-EMT state because key gene expression markers

across these two states were consistent. After this process, we were left with a total of 104,197

high-quality cell transcriptomes.

Differential expression analysis of Pre-EMT state

The single-cell RNA count matrix was first count-normalized to the median number of

UMI counts across cells and log-transformed. Then, cells assigned to the Pre-EMT state were

separated into three non-overlapping sets according to their genotype (KP, KPL, or KPA).

Differentially expressed genes in the KPL subset of cells in the Pre-EMT cluster were identified

by comparing these cells to all other cells with Scanpy using a t-test on log-normalized count

matrix with the top 5000 most variable genes. Highlighted genes were selected from the set

genes passing an FDR cutoff of 0.05 and a log2FC cutoff of 1.

Evolutionary Trajectory Analysis of KPL and KPA Tumors
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The evolutionary trajectories from KPL and KPA mice were analyzed identically to the KP

tumors as described in the previous section entitled “Fate Clustering”. Briefly, each tumor was

described as a vector of Leiden cluster proportions and exponentiated Evolutionary Couplings

(i.e, E’(M, K) = exp(-E(M,K))). Vectors were concatenated together and Z-normalized across

features. The resulting matrix was decomposed and analyzed using Principal Component

Analysis (PCA) and informative features were identified by evaluating the features with highest

principal component loadings.

Evolutionary Coupling of 3724_NT_T1 Tumor-Metastasis Family

Using the tumor-metastasis family tree for 3724_NT_T1 and associated metastases, we

computed the Evolutionary Couplings between each microdissected piece of the primary tumor

(T1-15) and each metastasis (the statistic is described in the section entitled “Evolutionary

Coupling”). Normalized Evolutionary Couplings ( ) were computed as described previously.𝐸
Phylogenetic distances on Tumor-Metastasis Family trees

In each of the tumor-metastasis families (defined as a tumor containing both a primary

tumor and a large enough metastatic population) analyzed in Fig 7 and S7, we first reconstructed

trees encompassing all cells in the primary and metastatic tumors (referred to as a

“tumor-metastasis family” tree). Then, we stratified cells in the primary tumor by the expansions

called with our expansion-calling statistic (see above, “Identifying subclonal selection”). If a cell

was not part of an expansion, it was labeled as “non-expansion”. Then, for each cell in a

metastatic tumor, we computed the average modified phylogenetic distance to all primary tumor

cells in the tumor-metastasis family tree. The modified phylogenetic distance was computed as
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the sum of branch lengths, where each branch length was defined as the number of mutations

separating each node from one another (as inferred using Camin-Sokal parsimony).

Transcriptional distances on Tumor-Metastasis Family trees

Tumor-metastasis family trees were inferred and stratified as described above (see

“Phylogenetic distances on Tumor-Metastasis Family trees”) and Euclidean distance was used to

measure transcriptomic differences between metastatic cells and primary tumor subpopulations.
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