
Linear Algebra with Sub-linear Zero-Knowledge
Arguments

Jens Groth?

University College London
E-mail: j.groth@ucl.ac.uk

Abstract. We suggest practical sub-linear size zero-knowledge arguments for
statements involving linear algebra. Given commitments to matrices over a finite
field, we give a sub-linear size zero-knowledge argument that one committed ma-
trix is the product of two other committed matrices. We also offer a sub-linear size
zero-knowledge argument for a committed matrix being equal to the Hadamard
product of two other committed matrices. Armed with these tools we can give
many other sub-linear size zero-knowledge arguments, for instance for a com-
mitted matrix being upper or lower triangular, a committed matrix being the in-
verse of another committed matrix, or a committed matrix being a permutation of
another committed matrix.
A special case of what can be proved using our techniques is the satisfiability of
an arithmetic circuit with N gates. Our arithmetic circuit zero-knowledge argu-
ment has a communication complexity of O(

√
N) group elements. We give both

a constant round variant and an O(log N) round variant of our zero-knowledge
argument; the latter has a computation complexity of O(N/ log N) exponentia-
tions for the prover and O(N) multiplications for the verifier making it efficient
for the prover and very efficient for the verifier. In the case of a binary circuit
consisting of NAND-gates we give a zero-knowledge argument of circuit satisfi-
ability with a communication complexity of O(

√
N) group elements and a com-

putation complexity of O(N) multiplications for both the prover and the verifier.

Keywords: Sub-linear size zero-knowledge arguments, public-coin special hon-
est verifier zero-knowledge, Pedersen commitments, linear algebra, circuit satis-
fiability.

1 Introduction

It has long been known [Kil92] that zero-knowledge arguments (with computa-
tional soundness) can have very low communication. However, known examples of
communication-efficient zero-knowledge arguments tend to get their efficiency at the
cost of increased computational complexity. Obtaining zero-knowledge arguments that
are efficient with respect to both communication and computation is considered one
of the important challenges in theoretical computer science [Joh00]. We address this
challenge by constructing zero-knowledge arguments for statements related to linear
algebra over finite fields that have sub-linear communication and at the same time also
have low computational complexity.
? Part of this research was done while visiting IPAM, UCLA.

1.1 Our Contribution

We consider row vectors of elements from a finite field Zp, where p is a large prime.
Using a generalization of the Pedersen commitment we can commit to a vector of n
elements from Zp. Each commitment consists of a single group element. A set of n
commitments, can be considered a commitment to the n rows of an n× n matrix. This
paper is about zero-knowledge arguments for a set of committed vectors and matrices
satisfying a set of linear algebra relations, for instance that a committed matrix is the
product of two other committed matrices. We give zero-knowledge arguments with a
communication complexity of O(n) elements, i.e., the square-root of the size of the
matrices. In addition, the arguments are computationally efficient for both the prover
and the verifier. The verifier is a public-coin verifier and does not need to take much
action until the end of the argument, where the small size of the arguments makes it
possible to verify the correctness using only little computation.

Our sub-linear size zero-knowledge arguments work for a wide range of linear al-
gebra relations. We can commit to single field elements, vectors of field elements and
square matrices of field elements. Our results also hold for non-square matrices, how-
ever, for simplicity we focus just on square matrices here. Given commitments to field
elements, vectors and matrices we can prove relations such as a committed field element
being the dot product of two committed vectors, a committed matrix being the product
of two other committed matrices, or a committed vector being the Hadamard product
(the entry-wise product) of two other vectors. Being able to prove such linear algebra
relations makes it possible to address many other statements frequently arising in linear
algebra. We can for instance prove that committed matrices are upper or lower trian-
gular, have a particular trace, compute the sums of the rows or columns or prove that
a committed matrix is the inverse of another committed matrix. We can also permute
the entries of a matrix using either a public or a hidden permutation. Using the linear
algebra relations, we also get sub-linear size zero-knowledge arguments for the satis-
fiability of arithmetic circuits and for the satisfiability of binary circuits demonstrating
the generality of our results.

1.2 Related Work

Recent work on zero-knowledge proofs [IKOS07] give us proofs with a communi-
cation complexity that grows linearly in the size of the statement to be proven and
[IKOS07,KR08,GKR08] also give us proofs with size that depend quasi-linearly on
the witness-length. If we consider arguments, the communication complexity can be
even lower and Kilian [Kil92] gave a zero-knowledge argument for circuit satisfi-
ability with polylogarithmic communication. His argument goes through the PCP-
theorem [AS98,ALM+98,Din07] and uses a collision-free hash-function to build a
hash-tree that includes the entire PCP though. Even with the best PCP constructions
known to date [BSGH+05] Kilian’s argument has high computational complexity for
practical parameters. In contrast, our goal is to get short zero-knowledge arguments that
are simple and efficient enough for both prover and verifier to be used in practice.

Groth and Ishai [GI08] gave a zero-knowledge argument for correctness of a shuf-
fle [Cha81] of N ElGamal ciphertexts. We rely on techniques developed by Groth and

Ishai and as described below also develop several new techniques. For comparison,
we believe it would be possible to modify their argument into an argument for circuit
satisfiability with a sub-linear communication of O(N2/3) group elements, but the cor-
responding computational complexity for the prover would be a super-linear number of
exponentiations.

1.3 Our Techniques

The generality of our results relies on using randomization and batch-verification tech-
niques to reduce linear algebra relations to equations of the form

z =
m∑
i=1

xi ∗ yi,

where xi,yi are committed vectors in Znp , z is a committed field element, and ∗ :
Znp ×Znp → Zp is a bilinear map. Besides greatly simplifying the task, the bilinear map
also helps reduce computation because it maps pairs of n-element vectors into single
field elements giving the prover less to commit to.

Groth and Ishai [GI08] gave a sub-linear size public-coin zero-knowledge argument
for the correctness of a shuffle of N ElGamal ciphertexts, with a communication com-
plexity of O(N2/3) group elements. We use similar techniques but by making more
careful use of the public-coin challenges, we can reduce the communication complex-
ity for our zero-knowledge arguments to O(

√
N) elements. The difference from Groth

and Ishai’s work is that they choose a set of challenges at random, whereas we let the
prover process the verifier’s challenges to get a more structured set of challenges. This
processing consists of taking a challenge e ∈ Zp from the verifier and using it to gen-
erate a set of challenges (1, e, e2, . . .), which is a row of a Vandermonde matrix. In
the zero-knowledge argument, we then arrange the challenges from the Vandermonde
vector in such a way that it leads to many terms cancelling out with each other.

Groth and Ishai’s shuffle argument suffered from an increase in the prover’s compu-
tation complexity in comparison with shuffle arguments that do not have sub-linear size.
The same effects apply to some extent to our zero-knowledge arguments when using a
constant number of rounds, however, by allowing a logarithmic number of rounds we
can eliminate the computational overhead. This is of interest in scenarios where round
complexity matters less than computation, for instance in cases where the Fiat-Shamir
heuristic is used to make the zero-knowledge argument non-interactive by letting the
prover use a cryptographic hash-function to compute the verifier’s challenges.

2 Preliminaries

Given two functions f, g : N → [0, 1] we write f(κ) ≈ g(κ) when |f(κ) − g(κ)| =
O(κ−c) for every constant c. We say that f is negligible when f(κ) ≈ 0 and that it is
overwhelming when f(κ) ≈ 1.

We write y = A(x; r) when the algorithm A, on input x and randomness r, outputs
y. We write y ← A(x) for the process of picking randomness r at random and setting

y = A(x; r). We also write y ← S for sampling y uniformly at random from the set
S. We write (e1, . . . , em) ← Vanm(Zp) when we pick e ← Zp and define e1, . . . , em
by ei = ei−1 mod p, corresponding to (e1, . . . , em) being a row of a Vandermonde
matrix.

2.1 Zero-knowledge Arguments of Knowledge

We are interested in zero-knowledge arguments of knowledge for statements involving
linear algebra. We define an argument of knowledge as an argument that has witness-
extended emulation, which means we can emulate the entire zero-knowledge argument
and at the same time extract a witness. For simplicity, we focus on special honest verifier
zero-knowledge (SHVZK) arguments in the common reference string model. There is
no loss of generality here: by using a coin-flipping protocol the SHVZK arguments can
be converted into arguments with full zero-knowledge against a cheating verifier and
the cost of this conversion is insignificant [Gro04]. Moreover, the common reference
string may be a random string and may even be chosen by the verifier. We refer to the
full paper for further discussion and formal definitions.

2.2 Homomorphic Commitments

The central tool in our SHVZK arguments is a homomorphic commitment to n elements
in Zp, where p is a κ-bit prime. Any homomorphic commitment scheme can be used,
but for simplicity and for the sake of making a concrete efficiency analysis, we will
in this paper use a generalization of Pedersen commitments [Ped91]. This commitment
scheme is length-reducing; a commitment is a single group element no matter how large
n is. The length-reduction is crucial, by working on short commitments instead of long
vectors we get SHVZK arguments with sub-linear communication complexity.

The generalized Pedersen commitment scheme works as follows. The key gen-
eration algorithm K generates a commitment key ck = (G, g1, . . . , gn, h), where
g1, . . . , gn, h are randomly chosen generators of a group G of prime order p with
|p| = κ. The message space is Znp , the randomizer space is Zp and the commitment
space is G. We require that G is a group where it is easy to determine membership and
compute the binary operations and assume parties check that commitments are valid,
by checking c ∈ G.1

To commit to a vector (x1, . . . , xn) ∈ Znp we pick randomness r ← Zp and compute
the commitment c = hr

∏n
i=1 g

xi
i . As a matter of notation we will write comck(x; r)

when committing to a vector x ∈ Znp using randomness r. In some cases we will
commit to less than n elements; this can be accomplished quite easily by setting the
remaining messages to 0. When committing to a single element x ∈ Zp using random-
ness r, we write comck(x; r). The generalized Pedersen commitment is perfectly hiding

1 If the commitments belong to a group Z∗
q batch verification techniques can be used to lower the

cost of checking group membership of many commitments. See also [Gro03] for a variant of
the Pedersen commitment scheme over Z∗

q that makes it possible to almost eliminate the cost
of verifying validity. If G is an elliptic curve of order p, then the validity check just consists of
checking that c is a point on the curve, which is inexpensive.

since no matter what the messages are, the commitment is uniformly distributed in G.
The commitment is computationally binding under the discrete logarithm assumption;
we will skip the simple proof.

The common reference string in our SHVZK arguments will be a commitment key
ck. We remark that for typical choices of the group G, the commitment key can be
easily sampled from a common random string and it is easy to verify that ck is a valid
commitment key. It may even be chosen by the verifier, provided the prover and verifier
use a p for which it is possible to generate groups where the discrete logarithm problem
is hard.

The generalized Pedersen commitment is homomorphic. For all x,x′ ∈ Znp and
r, r′ ∈ Zp we have

comck(x; r) · comck(x′; r′) = comck(x + x′; r + r′).

KNOWLEDGE OF CONTENT OF COMMITMENTS. There are standard techniques for
proving knowledge of the opening of many commitments, see the full paper. This can be
done in 3 rounds and costs little in terms of communication and computation. Therefore,
we will for simplicity and without loss of generality often assume without explicitly
stating it that the prover knows the openings of the commitments that she sends to the
verifier.

2.3 Multi-exponentiation Techniques

Multi-exponentiation techniques allow computing products of the form
∏n
i=1 g

xi
i faster

than computing n single exponentiations. Multi-exponentiations appear frequently in
the paper, for instance when computing the generalized Pedersen commitment de-
scribed earlier. Pippenger [Pip80] developed a general theory of multi-exponentiations;
we recommend Lim’s presentation [Lim00] of concrete multi-exponentiation tech-
niques with a complexity of less than 2nκ/ log n multiplications in G, when n is large.

3 Equations with Matrices and Vectors

We wish to commit to matrices and vectors of elements from Zp and make SHVZK
arguments for them satisfying equations commonly arising in linear algebra. We first
consider the following 6 types of equations over committed matrices Xi, Yi, Z ∈
Matn×n(Zp), committed row vectors xi,yi, z ∈ Znp and committed elements z ∈ Zp,
with public ai ∈ Zp.

z> =
m∑
i=1

aiXiy
>
i Z =

∑m
i=1 aiXiYi Z =

m∑
i=1

aiXi ◦ Yi

z =
m∑
i=1

aixiy
>
i z =

∑m
i=1 aixiYi z =

m∑
i=1

aixi ◦ yi,

where ◦ is the Hadamard product (entry-wise product). In this section, we will show
how to reduce a set of such equations to a couple of equations of the form

z =
m∑
i=1

xi ∗ yi,

where ∗ : Znp × Znp → Zp is a bilinear map. One bilinear map we will use is the
standard dot product of vectors x ∗ y = xy>. Another bilinear map we will use is
given by x ∗ y = x(y ◦ t)>, where t ∈ Znp is a public vector chosen by the verifier.

The first step in the reduction is very simple. Since we have committed to row
vectors, the three types of equations in the top involving matrices Xi are actually just
sets of n equations of the types below. We can therefore focus on the three types of
equations on the bottom.

3.1 Reducing Many Equations of the Form z =
∑m

i=1 aixiy
>
i to a Single

Equation

Randomization can be used to reduce Q equations of the form zq =
∑mq
i=1 aqixqiy

>
qi to

one single equation of the form z =
∑m
i=1 ziy

>
i , where m =

∑Q
q=1mq . The verifier

selects (r1, . . . , rQ) ← VanQ(Zp) (observe this only requires the verifier to transmit
one field element) and require the prover to demonstrate

Q∑
q=1

rqzq =
Q∑
q=1

mq∑
i=1

(rqaqixqi)y>qi.

This is a comparison of two degree Q − 1 polynomials in the challenge consisting
of a field element. By the Schwartz-Zippel lemma, there is probability at most Q−1

p

for the test to pass unless indeed all the equations hold. Setting z =
∑Q
q=1 rqzq and

x′qi = rqaqixqi, whose commitments can easily be computed using the homomorphic
property of the commitment scheme, we get the following equation of the desired form

z =
Q∑
q=1

mq∑
i=1

x′qiy
>
qi.

3.2 Reducing z =
∑m

i=1 aixiYi to the form z =
∑m

i=1 aixiy
>
i

We will now give a 3-move reduction of z =
∑m
i=1 aixiYi to the form z =∑m

i=1 aixiy
>
i . The verifier picks t← Vann(Zp) and asks the prover to demonstrate

zt> = (
m∑
i=1

aixiYi)t> =
m∑
i=1

aixi(Yit>).

By the Schwartz-Zippel lemma, there is at most probability n−1
p of this test passing un-

less indeed the values satisfy the equation. The problem is that the verifier does not have

a straightforward way to compute commitments to Yit> since we have commitments to
the rows of the matrices, but here the verifier is asking for a linear combination of the
columns. Choosing t and sending it to the prover is therefore only the first round of the
reduction; there will be two more rounds.

For each matrix Yi the prover creates a new commitment to yi = tY >i and sends it
to the verifier. The equation can now be reduced to the form

zt> −
m∑
i=1

aixiy
>
i = 0,

which is of the desired form. In the process we have for each matrix Yi introduced an
additional equation yi = tY >i that we need to prove too. We pick s ← Vann(Zp) and
ask the prover to demonstrate

yis
> = (sYi)t>.

This is the key idea in this reduction, sYi is a combination of row vectors from Yi and
thus easily computable. Using the homomorphic properties of the commitment scheme
both the prover and the verifier can compute a commitment to sYi.

We remark that since the last step in this reduction simply consists of the verifier
picking a challenge s, we can run the last round in parallel with the reduction in Section
3.1, so our reduction only costs 2 additional rounds. Further, we note that for all Yi in
all equations, we can use the same s and t. In the randomization step in the reduction
in Section 3.1 we can use the homomorphic properties of the commitment scheme to
combine all the vectors that we combine with respectively s and t. The main cost of the
reduction is therefore the computation of the yi’s and the sYi’s and the commitments
to yi, the rest has modest cost.

3.3 Reducing Equations with Hadamard Products to a Single Equation with a
Bilinear Map

We will now reduce a set of Q Hadamard equations of the form

zq =
mq∑
i=1

aqixqi ◦ yqi

to a single equation. The verifier picks (r1, . . . , rQ) ← VanQ(Zp) and requires the
prover to give an argument for

Q∑
q=1

rqzq =
Q∑
q=1

mq∑
i=1

(rqaqixqi) ◦ yqi.

Setting x′qi = rqaqixqi and z′ =
∑Q
q=1 rqzq , whose commitments can be computed

using the homomorphic properties, this gives us the equation z′ =
∑Q
q=1

∑mq
i=1 x′qi ◦

yqi.

Consider now a Hadamard equation of the form z =
∑m
i=1 xi ◦yi.We can simplify

this equation by picking t← Vanm(Zp) and requiring the prover to show

zt> = (
m∑
i=1

xi ◦ yi)t> =
m∑
i=1

xi(yi ◦ t)>.

Defining the bilinear map

∗ : Znp × Znp → Zp (x,y) 7→ x(y ◦ t)>,

we have reduced the equation to

0 =
m∑
i=1

xi ∗ yi − z ∗ 1.

4 SHVZK Arguments for a Vector Product Equation

We saw in the previous section that equations involving matrices and vectors could be
efficiently reduced to an equation of the form

z =
m∑
i=1

xi ∗ yi,

where ∗ is one of the two bilinear maps x ∗ y = xy> or x ∗ y = x(y ◦ t)>. In
this section we will give a SHVZK argument of knowledge of openings z ∈ Zp and
x1,y1, . . . , . . . ,xm,ym ∈ Znp satisfying such an equation.

4.1 The Minimal Case
We first give a well-known argument for the minimal case m = 1. We have three
commitments a, b, c to x,y ∈ Znp and z ∈ Zp respectively and the prover wants to
convince the verifier that z = xy>. The prover’s private input in the argument consists
of the openings (x, r), (y, s) and (z, t) of a, b and c respectively.

P→ V: Pick dx,dy ← Znp , dz ← Zp and randomizers rd, sd, t1, t0 ← Zp.
Send to the verifier the commitments

ad = comck(dx; rd) bd = comck(dy; sd)
c1 = comck(xd>y + dxy

>; t1) c0 = comck(dxd>y ; t0).

P← V: Send challenge e← Zp to the prover.
P→ V: Send to the verifier the following answer

fx = ex+dx fy = ey+dy rx = er+rd sy = es+sd tz = e2t+et1+t0.

V: Accept the argument if

aead = comck(fx; rx) ∧ bebd = comck(fy; sy) ∧ ce
2
ce1c0 = comck(fxf>y ; tz).

Theorem 1. The protocol above is a 3-move public-coin argument of knowledge of
committed values x,y, z so z = x ∗y. The argument has perfect completeness, perfect
SHVZK and witness-extended emulation.

We refer to the full paper for a proof.

4.2 Constant-Round Reduction to the Minimal Case

Next, we give a SHVZK argument that uses a 2-round communication-efficient reduc-
tion to the minimal case m = 1.

Common input: Commitment key ck and a statement consisting of commitments
a1, b1, . . . , am, bm, c.

Prover’s input: Openings of commitments x1, r1,y1, s1, . . . ,xm, rm,ym, sm, z, t so
z =

∑m
i=1 xi ∗ yi.

Argument:
P→ V: Prover picks randomizers t` ← Zp for 0 ≤ ` ≤ 2m− 1, setting tm−1 = t

though.
Prover computes c0, . . . , c2m−2 as

c` = comck

 ∑
i,j : `=m+i−j−1

xi ∗ yj ; t`

 .

Observe, by construction cm−1 = c.
Prover sends c0, . . . , c2m−2 to verifier.

P← V: Verifier sends prover random challenge e← Zp.
P↔ V: Define

a′ =
m∏
i=1

ae
i−1

i b′ =
m∏
j=1

be
m−j

j c′ =
2m−2∏
`=0

ce
`

` .

Prover computes openings

x′ =
m∑
i=1

ei−1xi r′ =
m∑
i=1

ei−1ri y′ =
m∑
j=1

em−jyj s′ =
m∑
j=1

em−jsj

and

z′ =
2m−2∑
`=0

e`
∑

i,j : `=m+i−j−1

xi ∗ yj t′ =
2m−2∑
`=0

e`t`.

Prover and verifier run the minimal case SHVZK argument from Section 4.1
on a′, b′, c′.

Theorem 2. The argument above is a public-coin argument for knowledge of openings
so z =

∑m
i=1 xi ∗ yi. The argument has perfect completeness, perfect SHVZK and

computational witness-extended emulation.

We refer to the full paper for a proof. Below, we will sketch the main ideas in the
construction and why it works.

The important part in the reduction to the minimal case is to use the verifier’s chal-
lenge in a way such that the prover only needs to send 2m − 2 commitments to the

verifier. We do this by computing a′, b′ as multi-exponentiations of a1, b1, . . . , am, bm
with exponents that are carefully chosen powers of the challenge e. The product of the
openings of a′ and b′ is

(
m∑
i=1

ei−1xi

)
∗

 m∑
j=1

em−jyj

 =
2m−2∑
`=0

e`

 ∑
i,j : `=m+i−j−1

xi ∗ yj

 .

This is the key observation to show that the argument is perfectly complete.
The part corresponding to ` = m − 1 gives us exactly the sum we are after, but

we have some extra coefficients of the polynomial corresponding to ` 6= m − 1. To
cancel them out, the prover makes 2m − 2 commitments to these values before see-
ing the challenge e. Suppose we know openings of all the commitments let us argue
that there is negligible probability of correctly answering the challenge e unless indeed
z =

∑m
i=1 xi ∗ yi. Since all commitments are chosen by the prover before seeing the

challenge e, by the binding property of the commitment scheme this shows

2m−2∑
`=0

e`

 ∑
`=m+i−j−1

xi ∗ yj

 =
2m−2∑
`=0

e`z`,

for random e where z = zm−1 since c = cm−1. But if z 6=
∑m
i=1 xi ∗ yi the Schwartz-

Zippel lemma tells us this can happen with probability at most 2m−2
p .

EFFICIENCY. The prover sends 2m − 2 commitments to the verifier. Computing the
commitments requires the prover to make 2m − 2 double-exponentiations and naı̈vely
m2 bilinear map evaluations to compute the entries to the commitments. Naı̈vely this
requires m2n multiplications, but using more advanced techniques such as organizing
the vectors in m × n matrices and using Strassen’s matrix multiplication algorithm to
compute XY > to get the m2 dot products the cost can be further reduced. However, it
is not known how to bring the cost down to O(mn) multiplications.

4.3 Trading Computation for Interaction

Let us again look at the equation

z =
m∑
i=1

xi ∗ yi.

When m is large, the computational overhead of doing the multiplications in the
SHVZK argument in the previous section may be prohibitive. In this section, we will
trade computational complexity for round complexity by giving a 2 logm-round reduc-
tion to the minimal case that only requires 4mn multiplications for the prover.

To illustrate the source of the gain, look at the matrix containing the m2 products
xi ∗ yj . An example of an 8× 8 matrix is given below.

x1 ∗ y1 x1 ∗ y2

x2 ∗ y1 x2 ∗ y2

x1 ∗ y3 x1 ∗ y4

x2 ∗ y3 x2 ∗ y4

x3 ∗ y1 x3 ∗ y2

x4 ∗ y1 x4 ∗ y2

x3 ∗ y3 x3 ∗ y4

x4 ∗ y3 x4 ∗ y4

x1 ∗ y5 x1 ∗ y6

x2 ∗ y5 x2 ∗ y6

x1 ∗ y7 x1 ∗ y8

x2 ∗ y7 x2 ∗ y8

x3 ∗ y5 x3 ∗ y6

x4 ∗ y5 x4 ∗ y6

x3 ∗ y7 x3 ∗ y8

x4 ∗ y7 x4 ∗ y8

x5 ∗ y1 x5 ∗ y2

x6 ∗ y1 x6 ∗ y2

x5 ∗ y3 x5 ∗ y4

x6 ∗ y3 x6 ∗ y4

x7 ∗ y1 x7 ∗ y2

x8 ∗ y1 x8 ∗ y2

x7 ∗ y3 x7 ∗ y4

x8 ∗ y3 x8 ∗ y4

x5 ∗ y5 x5 ∗ y6

x6 ∗ y5 x6 ∗ y6

x5 ∗ y7 x5 ∗ y8

x6 ∗ y7 x6 ∗ y8

x7 ∗ y5 x7 ∗ y6

x8 ∗ y5 x8 ∗ y6

x7 ∗ y7 x7 ∗ y8

x8 ∗ y7 x8 ∗ y8


We want to argue knowledge of c being a commitment to the trace of the matrix. In the
SHVZK argument we gave in the previous section, all the 2m− 1 lines that are parallel
with the diagonal correspond to entries that have the same degree in the polynomial in
e. For instance the sum of the diagonal entries is the coefficient of em−1 whereas the
sum of the entries with i − j = 1 is the coefficient of em. In the SHVZK argument
in the previous section, we computed all these m2 products. Since they each cost n
multiplications to compute, we end up using m2n multiplications. Even with the best
known advanced matrix-multiplication techniques the cost is still significantly higher
than ω(mn) multiplications. As an example, in the 8 × 8 matrix above we end up
computing 64 vector products. We are only interested in the 8 entries along the diagonal,
so the remaining computation is just waste that we need to discard in the argument. We
will devise a method that allows us to compute larger sub-matrices at once, instead of
taking each individual entry at a time. Looking again at the example, if we can discard
2 × 2 matrices and 4 × 4 matrices, we only need to discard 14 sub-matrices instead of
the 56 entries we need to discard in the reduction in the previous section.

Below, we give a SHVZK argument that reduces the statement to the minimal case
m = 1 through logm recursive calls to itself. For simplicity we assume that m = 2µ.
We can do this without loss of generality, because we can always fill up with dummy
elements consisting of zero-vectors and trivial commitments, which do not carry any
computational overhead.

The idea in the recursive call is to handle the 2 × 2 matrices along the diagonal at
once. We already have a commitment c to the sum of the diagonal entries. In addition,
the prover sends commitments cl, cu to the verifier, containing respectively the sum of
the lower-left corners of the sub-matrices and the sum of the upper-right corners of the
sub-matrices along the diagonal.

The verifier responds with a random challenge e ← Zp. The prover now reduces
her set of vectors to half, by computing

x′i = x2i−1 + ex2i y′i = ey2i−1 + y2i.

The homomorphic properties of the commitments enables the verifier to compute com-
mitments to these vectors as a′i = a2i−1a

e
2i and b′i = be2i−1b2i. We also compute

c′ = ce
2

l c
ecu, which is a commitment to the sum of the diagonal entries in the new

matrix obtained from the vectors x′1,y
′
1, . . . ,x

′
m/2,y

′
m/2.

The prover and the verifier now engage in a SHVZK argument with these new com-
mitments and vectors for c′ containing the sum of the diagonal elements of the matrix.
The implication is that for random e we have

m/2∑
i=1

(x2i−1 + ex2i) ∗ (ey2i−1 + y2i) = e2zl + ez + zu,

where zl and zu are the contents of cl and cu. By the Schwartz-Zippel lemma this
implies with overwhelming probability z =

∑m/2
i=1 (x2i−1 ∗ y2i−1 + x2i ∗ y2i), which

is what we wanted to prove.

Common input: Commitment key ck and commitments a1, b1, . . . , am, bm, c, with
m = 2µ.

Prover’s input: Openings of commitments x1, r1,y1, s1, . . . ,xm, rm,ym, sm, z, t so
z =

∑m
i=1 xi ∗ yi.

Argument:
If m = 1: Run the SHVZK argument from Section 4.1 with common input

ck, a1, b1, c and prover input x1, r1,y1, s1, z, t to show z = x1 ∗ y1.
Else if m > 1: Define m′ = m/2 and do

P→ V: Prover picks tl, tu ← Zp and sends to verifier

cl = comck(
m′∑
i=1

x2i∗y2i−1; tl) and cu = comck(
m′∑
i=1

x2i−1∗y2i; tu).

P← V: Verifier picks random challenge e← Zp and sends it to prover.
P↔ V: Recursively run argument with common input ck, a′1, b

′
1, . . . , a

′
m′ , b

′
m′ , c

′

given by

a′i = a2i−1a
e
2i b′i = be2i−1b2i c′ = ce

2

l c
ecu.

The prover’s private input is x′1, r
′
1,y
′
1, s
′
1, . . . ,x

′
m′ , rm′ ,y

′
m′ , sm′ , z

′, t′ with

x′i = x2i−1+ex2i r′i = r2i−1+er2i y′i = ey2i−1+y2i s′i = es2i−1+s2i

z′ = e2
m′∑
i=1

x2i ∗ y2i−1 + ez +
m′∑
i=1

x2i−1 ∗ y2i t′ = e2tl + et+ tu.

Theorem 3. The argument above is a public-coin argument for knowledge of openings
so z =

∑m
i=1 xi ∗ yi. The argument has perfect completeness, perfect SHVZK and

computational witness-extended emulation.

The proof can be found in the full paper.
EFFICIENCY. Each recursive call to the SHVZK argument withm > 1 makes the prover
send 2 commitments to the verifier. The main computational cost for the prover is the
computation of m = 2m′ new vectors costing around mn multiplications and m bi-
linear map evaluations costing around n multiplications each. Summing up over logm

recursive calls, we get a total communication of 2 logm commitments from the prover
to the verifier and a computational cost for the prover of 4mn multiplications in Zp.
The verifier can wait until the proof is over to compute anything; this permits the veri-
fier to use multi-exponentiation techniques for computing the commitments a, b, c that
are used in the final call to the minimal case SHVZK argument where m = 1. As a
consequence, the verifier uses the equivalnt of 4mκ/ logm multiplications.

5 Zero-Knowledge Arguments for Linear Algebra Equations

We now have several tools to deal with committed matrices and vectors. We can add
matrices and vectors using the homomorphic properties of the commitment scheme and
we have SHVZK arguments for equations involving multiplications of matrices and
vectors and Hadamard products of matrices and vectors. We will sketch how to use
these tools to get sub-linear zero-knowledge arguments for equations often arising in
linear algebra.

INVERSE. To prove committed matrices satisfy Y = X−1 or equivalently XY = I ,
we let the verifier pick s ← Vann(Zp) and the prover give a SHVZK argument for
(sX)Y = s.

TRANSPOSE. To prove that a committed matrices satisfy Y = X>, we let the verifier
pick s, t← Vann(Zp) and the prover give a SHVZK argument for (sX)t> = (tY)s>.

EIGENVALUES AND EIGENVECTORS. To show that we have a commitment to an eigen-
value λ and an eigenvector y> of X , we first commit to z = λy. There are standard
SHVZK arguments for z = λy, so the prover can show the committed z is correct.
Now the verifier picks s ← Vann(Zp) and we also give a SHVZK argument for
sz> = (sX)y>.

SUMS OF ROWS AND COLUMNS. Computing the sum of all row vectors or all col-
umn vectors of a matrix corresponds to computing X1> and 1X respectively, where
1 = (1, . . . , 1). The sum of all entries in a matrix can be computed as 1A1>. With
our techniques we get efficient SHVZK arguments for the correctness of these compu-
tations.

HADAMARD PRODUCTS OF ROWS AND COLUMNS. Let us give a SHVZK argument
for a committed vector z containing the Hadamard product of all the rows x1, . . . ,xn
of committed matrix. The prover commits to vectors yi = x1 ◦ · · · ◦xi, using y1 = x1

and yn = z. By demonstrating for 1 ≤ i < n that yi+1 = yi ◦ xi+1 we convince the
verifier that z is the Hadamard product of the row vectors inX . We remark that it is easy
to get a SHVZK argument for z =

∏n
i=1 zi, where z = (z1, . . . , zn), so we can extend

our SHVZK argument to prove z is the product of all entries in the matrix. In case we
want to show z> is the Hadamard product of all the columns, we can commit to X>,
using the SHVZK for transposition to prove correctness, and show z is the Hadamard
product of all the rows.

TRIANGULARITY. The Hadamard product enables us to prove that a subset of the en-
tries in a committed matrix X consists of all zeroes. Let S be the matrix that has 1 in all
entries belong to the subset and has 0 in all other entries. We give a SHVZK argument

for S ◦X = 0. This SHVZK argument can for instance be used to demonstrate that a
committed matrix is lower triangular, upper triangular or diagonal.
TRACE. To show committed values satisfying z = trace(X) we give a SHVZK argu-
ment for z =

∑n
i=1 six

>
i , where si is the ith row vector of I .

ABSOLUTE VALUE OF DETERMINANT. We can commit to an LUP factorization of
a matrix X . Proving lower and upper triangularity we already know how to do. It is
also easy to prove that we have a committed permutation matrix P , for instance by
showing that the matrix is a hidden permutation of I (see Section 5) and that 1P = 1
and P1> = 1>. Since we can single out the diagonal elements of L and U we can
compute the determinants of these matrices. We know that P has determinant −1 or 1.
We therefore get the determinant up to the sign. We leave it as an open problem to give a
sub-linear zero-knowledge argument for the permutation matrix P having determinant
−1 or +1.
KNOWN PERMUTATION OF A MATRIX. Consider a publicly known permutation π
over Zn × Zn and two committed matrices Y = π(X), meaning for all pairs (i, j)
we have yij = xπ(ij). To give a SHVZK argument for this, the verifier first picks
R← Vann2(Zp) and we ask the prover to show

n∑
i=1

n∑
j=1

rijxij =
n∑
i=1

n∑
j=1

rπ(ij)yij ,

which by the Schwartz-Zippel fails with probability n2−1
p unless indeed Y = π(X).

Define S = π(R) and call the row vectors of the matrices respectively ri, si,xi,yi.
The statement above is equivalent to

n∑
i=1

rix
>
i =

n∑
i=1

siy
>
i ,

for which we already know how to give a SHVZK argument.
HIDDEN PERMUTATION OF A MATRIX. To show that there is a secret permutation π
so Y = π(X), we use the fact that polynomials are identical under permutation of the
roots; an idea that stems from Neff [Nef01]. The verifier picks r ← Zp at random and
we let R be the matrix that has r in all entries. We then use the SHVZK argument from
Section 5 to show that the product of the entries in X − R equals the product of the
entries in Y −R. In other words, we show for a random r that

n∏
i=1

n∏
j=1

(xij − r) =
n∏
i=1

n∏
j=1

(yij − r),

which by the Schwartz-Zippel lemma demonstrates that the two polynomials are iden-
tical and thus there exists a permutation π so xij = yπ(ij).

This type of SHVZK argument is useful in the context of shuffling [Cha81] and
one of the main contributions of Groth and Ishai [GI08] was to show how to give an
argument with sub-linear communication. Their SHVZK argument had a communi-
cation complexity that could be brought down to Θ(n4/3) group elements at the cost

of a super-linear computation complexity of Θ(n8/3) exponentiations.2 In compari-
son, our SHVZK argument has a communication complexity of Θ(n) field elements
and even for the constant round protocol we get a much better computation complex-
ity of n3 multiplications. Using a logarithmic number of rounds, we can bring that
down to 2n2κ/ log n multiplications, beating even the best non-sublinear shuffle argu-
ment [Gro03].

6 Circuit Satisfiability

Let us consider an arithmetic circuit built fromN addition and multiplication gates over
a field Zp. We want to give a SHVZK argument for the existence of input values to the
circuit that makes it evaluate to 1. All gates have two input wires and one output, some
of which may be known constants. By introducing dummy gates we can without loss
of generality assume 3N = n2 and that the number of multiplication gates M and the
number of addition gates A are multiples of n.

1. We number the addition gates 1 through A and the multiplication gates A + 1
through A + M . We arrange the inputs and outputs such that the first two rows
contain input values to the first n addition gates and the third row contains the
corresponding output values, then follows another two rows of input gates and one
row of output gates, etc. Arranging the circuit in this way, the first 3A rows are
used for addition gates, while the last 3M rows are used for multiplication gates.
The prover commits to all these values.

2. For the addition gates, we create the commitment to row 3i as the product of the
commitments to row 3i−2 and 3i−1. By the homomorphic properties of the com-
mitment scheme, this shows that the addition gates are satisfied by the committed
wires.

3. For the multiplication gates we can use the SHVZK argument for Hadamard prod-
ucts, to show that the commitment to row 3i is the Hadamard product of the com-
mitments to rows 3i− 2 and 3i− 1. This shows that all the multiplication gates are
satisfied by the committed values.

4. Some of the values in the matrix may be publicly known constants. By introducing
dummy gates and organizing the matrix such that constants appear in the same row,
we can without loss of generality assume that we have entire rows that have publicly
known constants. We can make these commitments with trivial randomness so the
verifier easily can check that the right constants appear in the right places.

5. Finally, we need to demonstrate that all wires appearing many places in the ma-
trix have the same value assigned to them. The output wire of one gate, might for
instance appear elsewhere in matrix as an input wire of another gate; we need to
give a SHVZK argument for them having the same value. Let us first look at just
one wire that appears many places, say coordinates (i1, j1), (i2, j2), . . . , (im, jm).
We can create a directed Hamiltonian cycle on this set of indices. Let now π be a
permutation that contains directed Hamiltonian cycles for all wires in the circuit.

2 The computational complexity of Groth and Ishai’s shuffle argument can be reduced at the cost
of increasing communication.

We use our SHVZK argument for known permutations to show that X = π(X).
This proves that the committed values are consistent, giving the same value to the
same wire everywhere in the matrix.

6.1 Binary Circuits

We have given a SHVZK argument for arithmetic circuit satisfiability, demonstrating
the generality of our techniques. The argument consists of committing to a matrix and
using some of the SHVZK arguments we have developed in the paper, so it inherits the
low communication complexity from the previous sections. The computational com-
plexity of the arithmetic circuit is dominated by the commitment to the wires, costing
the prover O(Nκ/ logN) multiplications.

If we look instead at a binary circuit, where the wires can be 0 or 1, we can
reduce the computational complexity. Committing to a binary matrix requires only
O(N/ logN) multiplications of group elements. Giving a satisfiability argument for
a binary circuit requires demonstrating that we have committed to binary values only.
This can be done quite easily by demonstrating the committed matrix satisfies X =
X ◦X .

7 Efficiency

In the following table, we give efficiency estimates for SHVZK arguments we have con-
sidered in the paper. We use the parameters κ, κ′ and n to represent respectively the size
of a field element, the size of a group element and the number of elements in a vector.
We assume n is large, since this is where efficient zero-knowledge arguments are most
needed and ignore small terms. We measure communication in bits and computation in
multiplications in Zp. We let ρ, ε be the costs of respectively a multiplication in G and
an addition in Zp measured in multiplications in Zp.

SHVZK argument Rounds Communication Prover computation Verifier computation
z = x ∗ y 3 2nκ 4n κρ

logn 2n κρ
logn

z =
∑m
i=1 xi ∗ yi 5 2nκ+ 2mκ′ m2n+ 4m κρ

logm + 4n κρ
logn 8m κρ

logm + 2n κρ
logn

z =
∑m
i=1 xi ∗ yi 2 logm+ 3 2nκ 4mn+ 4n κρ

logn 4m κρ
logm + 2n κρ

logn
Inverse Y = X−1 4 2nκ n2 + 4n κρ

logn 4n κρ
logn

Transpose Y = X> 6 2nκ 2n2 + 4nκρ/ logn 6n κρ
logn

Eigenv. λy> = Xy> 5 5nκ n2 + 12n κρ
logn 6n κρ

logn
Triangularity 6 2nκ+ 2nκ′ n3ε+ 4n2 + 8n κρ

logn 10n κρ
logn

Triangularity 2 logm+ 4 2nκ 6n2 + 4n κρ
logn 6n κρ

logn
Trace(X) 5 2nκ+ 2nκ′ n3ε+ 2n2 + 8n κρ

logn 10n κρ
logn

Trace(X) 2 logn+ 3 2nκ 4n2 + 4n κρ
logn 6n κρ

logn
Hadamard of rows 7 2nκ+ 2nκ′ n3 + 2n2 κρ

logn 10n κρ
logn

Hadamard of rows 2 logn+ 5 2nκ 2n2 κρ
logn 6n κρ

logn
Known Y = π(X) 6 2nκ+ 4nκ′ 4n3 + 12n κρ

logn 3n2 + 14n κρ
logn

Known Y = π(X) 2 logn+ 4 2nκ 9n2 + 4n κρ
logn 3n2 + 6n κρ

logn
Hidden Y = π(X) 8 2nκ+ 2nκ′ n3 + 2n2 κρ

logn 10n κρ
logn

Hidden Y = π(X) 2 logn+ 6 2nκ 2n2 κρ
logn 6n κρ

logn

Arithmetic circuit 7 O(
√
N(κ+ κ′)) O(N3/2 +N κρ

logN) O(N +
√
N κρ

logN)

Arithmetic circuit logN + 5 O(
√
Nκ) O(N κρ

logN) O(N +
√
N κρ

logN)

Binary circuit 7 O(
√
N(κ+ κ′)) O(N3/2ε+N +

√
N κρ

logN) O(N +
√
N κρ

logN)

Binary circuit logN + 5 O(
√
Nκ) O(N) O(N +

√
N κρ

logN)

8 Acknowledgment

Yuval Ishai was involved at an early stage of this research and we greatly appreciate the
fruitful discussions and his insightful comments.

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501–555, May 1998.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: a new character-
ization of NP. Journal of the ACM, 45(1):70–122, 1998.

[BSGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vad-
han. Short PCPs verifiable in polylogarithmic time. In IEEE Conference on Com-
putational Complexity, pages 120–134, 2005.

[Cha81] David Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–88, 1981.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3), 2007.
[GI08] Jens Groth and Yuval Ishai. Sub-linear zero-knowledge argument for cor-

rectness of a shuffle. In EUROCRYPT, volume 4965 of Lecture Notes
in Computer Science, pages 379–396, 2008. Full paper available at
http://www.daimi.au.dk/∼jg/PCPShuffle.pdf.

[GKR08] Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computa-
tion: interactive proofs for muggles. In STOC, pages 113–122, 2008.

[Gro03] Jens Groth. A verifiable secret shuffle of homomorphic encryptions. In PKC, vol-
ume 2567 of Lecture Notes in Computer Science, pages 145–160, 2003. Full paper
available at ePrint Archive: http://eprint.iacr.org/2005/246.

[Gro04] Jens Groth. Honest verifier zero-knowledge arguments applied. Dissertation Series
DS-04-3, BRICS, 2004. PhD thesis. xii+119 pp.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In STOC, pages 21–30, 2007.

[Joh00] David Johnson. Challenges for theoretical computer science, 2000. Available at
http://www.research.att.com/∼dsj/nsflist.html#Crypto.

[Kil92] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In STOC,
pages 723–732, 1992.

[KR08] Yael Tauman Kalai and Ran Raz. Interactive pcp. In ICALP, volume 5126 of Lecture
Notes in Computer Science, pages 536–547, 2008.

[Lim00] Chae Hoon Lim. Efficient multi-exponentiation and ap-
plication to batch verification of digital signatures, 2000.
http://dasan.sejong.ac.kr/∼chlim/pub/multi exp.ps.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In ACM
CCS, pages 116–125, 2001.

[Ped91] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable se-
cret sharing. In CRYPTO, volume 576 of Lecture Notes in Computer Science, pages
129–140, 1991.

[Pip80] Nicholas Pippenger. On the evaluation of powers and monomials. SIAM Journal of
Computing, 9(2):230–250, 1980.

